1. a.) Show that $\frac{d}{dx} \tan^{-1} x = \frac{1}{1+x}$ a.) Show that $\frac{d}{dx}$ tan $x - \frac{1}{1+x^2}$
Solution: $y = \tan^{-1} x$, so $\tan y = x$. Taking the derivative of both sides, we see $\sec^2 y \frac{dy}{dx} = 1$ $\frac{dy}{dx} = \frac{1}{\sec^2}$ $\sec^2 y$ Using the Pythagorean Identity $\sec^2 a = 1 + \tan^2 a$, we get $\frac{dy}{dx} = \frac{1}{1 + \tan^2 a}$ Finally, using $\tan y = x$ from above, we get $\frac{dy}{dx} = \frac{1}{1+x}$ This can also be done using facts about the derivatives of inverse func-
This can also be done using facts about the derivatives of inverse functions.

b.) Evaluate $\int \frac{x^2+2x-1}{x^2+9} dx$

Solution: $\int \frac{x^2+2x-1}{x^2+9} dx = \int \frac{x^2+9-9+2x-1}{x^2+9} dx$ Note: This step could also be done using polynomial long division, but this is a bit neater on my page.

$$
\int \frac{x^2 + 2x - 1}{x^2 + 9} dx = \int \left(\frac{x^2 + 9}{x^2 + 9} + \frac{2x}{x^2 + 9} + \frac{-10}{x^2 + 9} \right) dx
$$

So using the fact that we can split up integrals, we get $\int \frac{x^2+2x-1}{x^2+9} dx =$ $\int \frac{x^2+9}{x^2+9} dx + \int \frac{2x}{x^2+9} dx + \int \frac{-10}{x^2+9} dx$

Taking each of these integrals in turn, we get $\int \frac{x^2+9}{x^2+9} dx = \int 1 dx = x+C$ For $\int \frac{2x}{x^2+9} dx$, we use a substitution of $u = x^2 + 9$. In this case, $du = 2xdx$.

This means
$$
\int \frac{2x}{x^2+9} dx = \int \frac{1}{x^2+9} 2x dx = \int \frac{1}{u} du
$$

 $\int \frac{2x}{x^2+9} dx = \ln |u| + C = \ln |x^2 + 9| + C$

Finally, the last part is the trickiest. $\int \frac{-10}{x^2+9} dx$ has a sum of squares in the denominator, so it looks like the integral will be of the same form as inverse tangent. Hence, we want something that looks like $x^2 + 1$ in the denominator. We will factor out a 9.

$$
\int \frac{-10}{x^2+9} dx = \frac{-10}{9} \int \frac{1}{\frac{x^2}{9}+1} dx.
$$

Using the substitution $3u = x$, (the same as $u = \frac{x}{3}$) $(\frac{x}{3})$ we get $3du = dx$. $\int \frac{-10}{x^2+9} dx = \frac{-10}{9}$ $\frac{10}{9} \int \frac{1}{u^2+1} 3 du = \frac{-10}{3}$ $rac{10}{3} \int \frac{1}{u^2+1} du$ This is now a recognizable integral. $\int \frac{-10}{x^2+9} dx = \frac{-10}{3}$ $\frac{-10}{3}\int \frac{1}{u^2+1} du = \frac{-10}{3}$ $\frac{-10}{3} \tan^{-1} u +$ $C = \frac{-10}{3}$ $\frac{10}{3}$ tan⁻¹ $\left(\frac{x}{3}\right)$ $(\frac{x}{3})+C$

Bringing all of these parts together, we get $\int \frac{x^2 + 2x - 1}{x^2 + 9} dx = x + \ln(x^2 + 9)$ 9) $-\frac{10}{3}$ $\frac{10}{3}$ tan⁻¹ $\left(\frac{x}{3}\right)$ $(\frac{x}{3}) + C$ (note that all of the C's combine into a single arbitrary constant).

2. Compute the derivatives $\frac{dy}{dx}$

a.) $y = \ln(\ln(x^2))$ Solution: $y' = (\ln(\ln(x^2)))'$. Using the chain rule, the outermost function is $\ln u$ and its derivative is $\frac{1}{u}$ $y'=\frac{1}{\ln(a)}$ $\frac{1}{\ln(x^2)}(\ln(x^2))'$ Using a property of logarithms, $\ln(x^2) = 2 \ln x$, so $y' = \frac{1}{2 \ln x}$ $\frac{1}{2\ln x}(2\ln x)' =$ 1 $2 \ln x$ 2 $\frac{2}{x}$. This simplifies to $\frac{1}{x \ln x}$. b.) $\ln y = e^y \sin x$ Solution: $(\ln y)' = (e^y \sin x)'$ $\frac{y'}{y} = e^y y' \sin x + e^y \cos x$ using the product rule and implicit differentiation. $\frac{y'}{y} - y'e^y \sin x = e^y \cos x$ $y'(\frac{1}{y} - e^y \sin x = e^y \cos x)$ Dividing by the coefficient of y', we get $y' = \frac{e^y \cos x}{\frac{1}{y} - e^y \sin x}$, which is our derivative. c.) $y = 2^{\sin(3x)}$

Solution: The only exponential we're comfortable differentiating is an exponential of e. Hence, we will remember that $2 = e^{\ln 2}$. $y = (e^{\ln 2})^{\sin(3x)} = e^{(\ln 2)\sin(3x)}$ Differentiating, we remember the chain rule $y' = e^{(\ln 2) \sin(3x)} (\ln 2) \sin(3x)$ ' = $e^{(\ln 2)\sin(3x)}((\ln 2)3\cos(3x)).$ Simplifying this, we get $y' = 3(\ln 2)2^{\sin(3x)}\cos(3x)$.

3. $\frac{dV}{dt} = -\frac{1}{40}V, V(0) = V_0$ a.) Solve for $V(t)$ Solution: We first need to get all the V 's and t 's on their respective sides. To accomplish this, we "multiply" by dt . $\frac{dV}{V} = -\frac{1}{40}dt$ Integrating both sides, we get $\ln|V| = -\frac{1}{40}t + c$ Exponentiating both sides, we get $e^{\ln |V|} = e^{-\frac{1}{40}t+c}$ $|V| = e^{-\frac{1}{40}t+c} = e^c e^{-\frac{1}{40}t}$ We notice that e^c can be any positive number. Together with eliminating the absolute value on V , this means e^c can be any (non-zero) number. We will call this number C.

$$
V = Ce^{-\frac{1}{40}t}
$$

 $V(0) = V_0$, so $V_0 = Ce^{-\frac{1}{40}*0} = Ce^0 = C$.

 $V(t) = V_0 e^{-\frac{1}{40}t}$

b.) Show how long it will take for V to reach ten percent of its initial value.

Solution: Ten percent of the initial value is $.1V_0$. We will plug this in and solve for t .

 $.1V_0 = V_0 e^{-\frac{1}{40}t}$ At this point, we divide both sides by V_0 , cancelling it off.

 $1 = e^{-\frac{1}{40}t}$ We need to get t out of the exponent, so we will take the natural logarithm of both sides.

$$
\ln 1 = \ln e^{-\frac{1}{40}t} = -\frac{1}{40}t
$$

 $t = -40 \ln 1$. Using the reciprocal property of logarithms, we can simplify this to $t = 40 \ln 10$.

4. Find the volume of the figure obtained by rotating the region between $y = 2-x^2$, $y = x^2$, and $x = 0$ about the y-axis. (Hint: the shell method will be easier here, but use whatever method you wish)

Solution: Using the shell method, $V = \int_a^b$ a $2\pi r h dr$.

The radius is the distance from the axis of rotation, hence the distance from the y-axis, so $r = x$. The radius ranges from 0 to where these functions meet.

 $2-x^2=x^2$, so $2=2x^2$, so $1=x^2$. $x=1$ or $x=-1$. As it turns out, these will rotate over each other (the function is even, so it matches up). We will, therefore, integrate from 0 to 1.

The height is the distance from the top of the shell to the bottom of the shell. In this region, x^2 is smaller than $2-x^2$. Therefore, the height is $(2-x^2)-x^2=2-2x^2$.

$$
V = \int_{0}^{1} 2\pi x (2 - 2x^{2}) dx
$$

\n
$$
V = 4\pi \int_{0}^{1} (x - x^{3}) dx
$$

\n
$$
V = 4\pi (\frac{x^{2}}{2} - \frac{x^{4}}{4})|_{0}^{1} = 4\pi (\frac{1^{2}}{2} - \frac{1^{4}}{4} - (\frac{0^{2}}{2} - \frac{0^{4}}{4}))
$$

\nThis works out to $V = \pi$.

5. Find the total area between $y = x$ √ $a^2 - x^2$ and $y = 0$ for $-a \le x \le a$ $(a > 0)$

Solution: We notice that when $x < 0$, the x is negative. Similarly, Solution: we notice that when $x < 0$, the x is negative. Similarly,
when $x > 0$, the x is positive. $\sqrt{a^2 - x^2}$ is always positive. Therefore, this function is positive when $x > 0$ and negative when $x < 0$. $A = \int_a^b$ a $|f(x)|dx$ In this case, $A = \int_a^a |x|$ $-a$ √ a^2-x^2 |dx. As stated above, the sign flips at 0. In fact, with the absolute value, this is an even function, so the area simplifies to $A = 2 \int_a^a$ \overline{x} √ a^2-x^2dx .

0 We use a substitution $u = a^2 - x^2$, which gives us $du = -2x dx$. Hence, when $x = 0$, $u = a^2$. When $x = a$, $u = 0$. Our integral becomes $A = -\int_0^0$ a^2 √ $\overline{u}du =$ a^2 R 0 √ \overline{u} du since negative signs flip the direction of integration. $A=\frac{2}{3}$ $rac{2}{3}u^{\frac{3}{2}}|_0^{a^2} = \frac{2}{3}$ $\frac{2}{3}((a^2)^{\frac{2}{3}}-0^{\frac{3}{2}})=\frac{2}{3}a^3.$

- 6. Sketch (including minima, maxima, intercepts, asymptotes and any other relevant data you know how to compute) $f(x) = x^{\frac{2}{3}}(\frac{5}{2} - x)$ Solution: See other solution set.
- 7. The sum of two non-negative numbers is 20. Find the numbers if: a.) the product of one number with the square root of the other is to be as large as possible. Solution: We have two numbers a and b. We have the relationship that $a + b = 20$. We are trying to maximize $M = a\sqrt{b}$. Solving for a above, we find $a = 20 - b$. Substituting, we find $M = (20 - b)\sqrt{b}$. We also notice that $0 \le b \le 20$. This is a continuous function on a closed interval, so it will have a maximum and a minimum (by the extreme value theorem). $M' = \frac{10}{\sqrt{l}}$ $\frac{1}{b} - \frac{3}{2}$ $\frac{3}{2}\sqrt{b}$. We find where this is zero or non-existent to find critical points (and hence places we need to check for maxima). $b = 0$ is the only place of interest where the derivative does not exist. $0 = \frac{10}{\sqrt{l}}$ $\frac{1}{\overline{b}}-\frac{3}{2}$ $rac{3}{2}\sqrt{b}$ \sqrt{b} 2^V \sqrt{b} , we get 0 = 10 − $\frac{3}{2}$ $\frac{3}{2}b$. Solving, we get $b = \frac{20}{3}$ $rac{20}{3}$. The maximum exists. The First Derivative Test tells us it happens

either at an endpoint or at a critical point. We only have three points to check. $M(0) = 0$, $M(20) = 0$, and $M(\frac{20}{3})$ $(\frac{20}{3}) = \frac{40}{3} * \sqrt{\frac{20}{3}}$ $\frac{20}{3}$. The largest of these is clearly at $\frac{20}{3}$. Hence, the numbers are $\frac{20}{3}$ and $\frac{40}{3}$.

b.) one number plus the square root of the other number is to be as large as possible.

Solution: We set this up in a similar matter to above. The only difference is $N = a + \sqrt{b}$. √

Using the same solving for a, we get $N = 20 - b +$ b. We actually have several ways of finding the maximum of this (it's a parabola in \sqrt{b}), but let's use our old friend calculus.

$$
N' = -1 + \frac{1}{2\sqrt{b}}.
$$

As above, we find zeroes and discontinuities of N'. These occur at $\frac{1}{4}$ and 0 respectively.

Again, we notice this function is continuous on a closed, bounded do-Again, we notice this function is continuous on a closed, bounded do-
main, so it has a minimum and a maximum. $N(0) = 20$. $N(20) = \sqrt{20}$. $N(\frac{1}{4})$ $\frac{1}{4}$) = 20 - $\frac{1}{4}$ + $\sqrt{\frac{1}{4}}$ = 20 - $\frac{1}{4}$ + $\frac{1}{2}$ = 20.25. Clearly, 20.25 is the biggest. This means our numbers are 19.75 and .25.

8. Evaluate

a.) $\int \frac{\sin(2t+1)}{\cos^2(2t+1)}dt$ Solution: Set $u = \cos(2t + 1)$. This makes $du = -2\sin(2t + 1)dt$. $\int \frac{\sin(2t+1)}{\cos^2(2t+1)}dt = -\frac{1}{2}$ $rac{1}{2} \int \frac{1}{u^2} du$ $\int \frac{\sin(2t+1)}{\cos^2(2t+1)}dt = \frac{1}{2}$ 2 $\frac{1}{u} + C$ $\int \frac{\sin(2t+1)}{\cos^2(2t+1)}dt = \frac{1}{2\cos(2t+1)} + C$ b.) $\int \frac{1}{x^2}$ $\overline{x^2}$ $\sqrt{2-\frac{1}{x}}$ $rac{1}{x}dx$ Solution: In this case, we want $u = 2 - \frac{1}{x}$ $\frac{1}{x}$, so $du = \frac{1}{x^2}$ $\overline{x^2}$ $\int \frac{1}{\pi}$ $\overline{x^2}$ $\sqrt{2-\frac{1}{x}}$ $\frac{1}{x}dx = \int \sqrt{u}du$ $=\int u^{\frac{1}{2}} du$ $=\frac{2}{3}$ $\frac{2}{3}u^{\frac{3}{2}} + C = \frac{2}{3}$ $rac{2}{3}(2-\frac{1}{x})$ $(\frac{1}{x})^{\frac{3}{2}} + C$ c.) $\frac{\pi}{2}$ 0 $\sin x$ $\frac{\sin x}{(3+2\cos x)^2}dx$

Solution: Here we choose $u = 3 + 2\cos x$, so $du = -2\sin x dx$. Also, when $x = 0$, $u = 3 + 2\cos 0 = 5$. When $x = \frac{\pi}{2}$ $\frac{\pi}{2}$, $u = 3 + \cos \frac{\pi}{2} = 3$.

 $\frac{\pi}{2}$ $\boldsymbol{0}$ $\sin x$ $\frac{\sin x}{(3+2\cos x)^2}dx=-\frac{1}{2}$ $rac{1}{2}$ \int 5 $rac{1}{u^2}du$ $=\frac{1}{2}$ $rac{1}{2}$ $rac{5}{1}$ 3 $\frac{1}{u^2}$ du since a negative sign flips the direction of integration. $=\frac{1}{2}$ $rac{1}{2}(-\frac{1}{u})$ $\frac{1}{u}$) $\vert_3^5 = \frac{1}{2}$ $\frac{1}{2}(-\frac{1}{5}-(-\frac{1}{3}$ $(\frac{1}{3})) = \frac{1}{15}.$ Therefore, $\frac{\pi}{2}$ $\boldsymbol{0}$ $\sin x$ $\frac{\sin x}{(3+2\cos x)^2}dx = \frac{1}{15}.$