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Abstract

An in�nite system of stochastic di�erential equations for the locations and weights of a collec-
tion of particles is considered. The particles interact through their weighted empirical measure,
V , and V is shown to be the unique solution of a nonlinear stochastic partial di�erential equation
(SPDE). Conditions are given under which the weighted empirical measure has an L2-density
with respect to Lebesgue measure. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

We consider a class of nonlinear stochastic partial di�erential equations of the form

dv(t; x) =

(
1
2

d∑
i; j=1

@xi@xj [aij(x; v(t; ·))v(t; x)]

−
d∑

i=1

@xi [bi(x; v(t; ·))v(t; x)] + d(x; v(t; ·))v(t; x)
)
dt

−
∫
U

(
�(x; v(t; ·); u)v(t; x) +

d∑
i=1

@xi [�i(x; v(t; ·); u)]
)

W (du dt); (1.1)

∗ Corresponding author.
E-mail addresses: kurtz@math.wisc.edu (T.G. Kurtz), jxiong@math.utk.edu (J. Xiong)
1 Research supported in part by NSF grant DMS 96-26116.
2 This research was carried out while the author was on leave from the University of Tennessee visiting

the University of Wisconsin-Madison. Financial support from both universities and the hospitality of the
latter is appreciated. Support was also provided by NSF grant DMS 94-24340.

0304-4149/99/$ - see front matter c© 1999 Elsevier Science B.V. All rights reserved.
PII: S0304 -4149(99)00024 -1



104 T.G. Kurtz, J. Xiong / Stochastic Processes and their Applications 83 (1999) 103–126

where W is a space–time Gaussian white noise on U × [0;∞). We are interested in
representations of the solution in terms of weighted empirical measures of the form

V (t) = lim
n→∞

1
n

n∑
i=1

Ai(t)�Xi(t); (1.2)

where �x is the Dirac measure at x and the limit exists in the weak∗ topology
on M(Rd), the collection of all �nite signed Borel measures on Rd. We think of
{Xi(t): t¿0; i ∈ N} as a system of particles with locations in Rd and time-varying
weights {Ai(t): t¿0; i ∈ N}.
Suppose {Xi; Ai; V} is governed by the following equations:

Xi(t) = Xi(0) +
∫ t

0
�(Xi(s); V (s)) dBi(s) +

∫ t

0
c(Xi(s); V (s)) ds

+
∫
U×[0; t]

�(Xi(s); V (s); u)W (du ds) (1.3)

and

Ai(t) = Ai(0) +
∫ t

0
Ai(s)T(Xi(s); V (s)) dBi(s) +

∫ t

0
Ai(s)d(Xi(s); V (s)) ds

+
∫
U×[0; t]

Ai(s)�(Xi(s); V (s); u)W (du ds); (1.4)

where the Bi are independent, standard Rd-valued Brownian motions and W , indepen-
dent of {Bi}, is Gaussian white noise with

E[W (A; t)W (B; t)] = �(A ∩ B)t:

For simplicity, assume that � is a Borel measure on a complete, separable metric
space U .
Assume that {(Ai(0); Xi(0))} is exchangeable (for example, iid) and independent of

{Bi} and W . Applying Itô’s formula to (1.3) and (1.4), for every � ∈ C2b (Rd), we
have

Ai(t)�(Xi(t)) = Ai(0)�(Xi(0)) +
∫ t

0
Ai(s)�(Xi(s))T(Xi(s); V (s)) dBi(s)

+
∫ t

0
Ai(s)�(Xi(s))d(Xi(s); V (s)) ds

+
∫
U×[0; t]

Ai(s)�(Xi(s))�(Xi(s); V (s); u)W (du ds)

+
∫ t

0
Ai(s)L(V (s))�(Xi(s)) ds

+
∫ t

0
Ai(s)∇T�(Xi(s))�(Xi(s); V (s)) dBi(s)

+
∫
U×[0; t]

Ai(s)∇T�(Xi(s))�(Xi(s); V (s); u)W (du ds); (1.5)
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where

L(v)�(x) =
1
2

d∑
i; j=1

aij(x; v)@xi@xj�(x) +
d∑

i=1

bi(x; v)@xi�(x)

with

a(x; v) = �(x; v)�T(x; v) +
∫
U
�(x; v; u)�T(x; v; u)�(du)

and

b(x; v) = c(x; v) + �(x; v)(x; v) +
∫
U
�(x; v; u)�(x; v; u)�(du):

Averaging both sides of (1.5), we will show that V given by (1.2) satis�es

〈�; V (t)〉= 〈�; V (0)〉+
∫ t

0
〈d(·; V (s))�+ L(V (s))�; V (s)〉 ds

+
∫
U×[0; t]

〈�(·; V (s); u)�+ �T(·; V (s); u)∇�; V (s)〉W (du ds);

∀� ∈ C2b (Rd); (1.6)

and, hence, is a weak solution of the stochastic partial di�erential equation (SPDE)
(1.1) where, if it exists, v is the density

V (t; B) =
∫
B
v(t; x) dx:

Our goal is to give conditions under which there exists a unique solution of the system
(1.3), (1.4) and as a consequence obtain existence and uniqueness of the SPDE (1.6).
Limits of empirical measure processes for systems of interacting di�usions have

been studied by various authors (see, for example, Chiang et al., 1991; Graham,
1992; Hitsuda and Mitoma, 1986; Kallianpur and Xiong, 1994, 1995; M�el�eard, 1996;
Morien, 1996) since the pioneering work by McKean (1967). Typically, the driving
processes in the models are assumed to be independent. The limit is then a determin-
istic, measure-valued function.
Florchinger and Le Gland (1992) consider particle approximations for stochastic

partial di�erential equations in a setting that, in the notation above, corresponds to
taking =�=0 and the other coe�cients independent of V . Florchinger and Le Gland
were motivated by approximations to the Zakai equation of nonlinear �ltering. Del
Moral (1995) speci�cally studies this example. Kotelenez (1995) introduces a model
of n-particles with the same driving process for each particle and studies the empirical
process as the solution of a SPDE. His model corresponds to taking =�=d=�=0,
but the other coe�cients are allowed to depend on V . In particular, the weights Ai are
constants. Dawson and Vaillancourt (1995) consider a model given as a solution of a
martingale problem that corresponds to taking Ai(t) ≡ 1 in the current model. Bernard
et al. (1994) consider a system with time-varying weights and a deterministic limit.
The paper is organized as follows: In Section 2, we prove that the system (1.2)–(1.4)

has a unique solution. Since the system does not satisfy a global Lipschitz con-
dition, we cannot directly apply the results developed by Kurtz and Protter (1996)
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(cf. Theorem 9:1). Instead, a truncation technique is employed. In Section 3, we prove
existence and uniqueness for (1.6). We achieve this goal by considering a correspond-
ing linear equation �rst. As a by-product from this linear equation, the existence of the
density v(t; x) is obtained. Uniqueness for the system (1.2)–(1.4) and for the linear
equation implies uniqueness for the SPDE (1.1). In Section 4, we briey discuss the
relationship of (1.6) to the equations of nonlinear �ltering theory.

2. Existence and uniqueness of the solution for the system

In this section, we establish existence and uniqueness for the solution of the system
(1.2)–(1.4). For �1; �2 ∈ M+(Rd), the Wasserstein metric is de�ned by

�(�1; �2) = sup{|〈�; �1〉 − 〈�; �2〉|: � ∈ B1};
where

B1 = {�: |�(x)− �(y)|6|x − y|; |�(x)|61;∀x; y ∈ Rd}:
Note that the metric � determines the topology of weak convergence on M+(Rd).
We assume that � : Rd×M(Rd)→ Rd×d; c : Rd×M(Rd)→ Rd; � : Rd×M(Rd)×

U → Rd;  : Rd×M(Rd)→ Rd, d : Rd×M(Rd)→ R and � : Rd×M(Rd)×U → R
satisfy the following conditions (S1) and (S2):
(S1) There exists a constant K such that for each x ∈ Rd; � ∈ M(Rd)

|�(x; �)|2 + |c(x; �)|2 +
∫
U
|�(x; �; u)|2�(du)

+|(x; �)|2 + |d(x; �)|2 +
∫
U
�(x; �; u)2�(du)6K2:

(S2) For each x1; x2 ∈ Rd �1; �2 ∈ M(Rd) and any representation �i = �+i − �−i ; �+i ;
�−i ∈ M+(Rd)

|�(x1; �1)− �(x2; �2)|2 + |c(x1; �1)− c(x2; �2)|2

+|(x1; �1)− (x1; �1)|2 +
∫
U
|�(x1; �1; u)− �(x2; �2; u)|2�(du)

+|d(x1; �1)− d(x2; �2)|2 +
∫
U
|�(x1; �1; u)− �(x2; �2; u)|2�(du)

6K2(|x1 − x2|2 + �(�+1 ; �
+
2 )
2 + �(�−1 ; �

−
2 )

2):

Let (X; A; V ) be a solution of (1.2)–(1.4). In order to apply the Lipschitz condition,
we identify a canonical decomposition V (t)=V+(t)−V−(t). For simplicity of notation,
de�ne

M (t) =
∫ t

0
T(Xi(s); V (s)) dBi(s) +

∫
U×[0; t]

�(Xi(s); V (s); u)W (du ds):
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Then M (t) is a martingale and

〈M 〉t =
∫ t

0
|(Xi(s); V (s))|2 ds+

∫
U×[0; t]

�(Xi(s); V (s); u)2�(du) ds

6K2t:

An application of Itô’s formula shows that the solution of (1.4) is given by

Ai(t) = Ai(0)exp
(
M (t)− 1

2
〈M 〉t +

∫ t

0
d(Xi(s); V (s)) ds

)
: (2.1)

Note that if Ai(0)¿ 0, then Ai(t)¿ 0 for all t ¿ 0 and similarly if Ai(0)¡ 0. Let
A+i (t)=Ai(t) if Ai(t)¿ 0 and A+i (t)=0 otherwise, and let A

−
i (t)=−Ai(t) if Ai(t)¡ 0

and A−
i (t) = 0 otherwise. Then we de�ne

V+(t) = lim
n→∞

1
n

n∑
i=1

A+i (t)�Xi(t); V−(t) = lim
n→∞

1
n

n∑
i=1

A−
i (t)�Xi(t): (2.2)

A truncation argument will require the following estimate.

Proposition 2.1. Suppose that Assumption (S1) holds and

EA1(0)2 + E|X1(0)|2¡∞: (2.3)

If (X; A; V ) is a solution of (1:2)–(1:4); then for every t¿0;

E sup
06s6t

(Ai(s)2 + |Xi(s)|2)¡∞: (2.4)

Proof. By Doob’s inequality, we have

E sup
06s6t

|Xi(s)|26 4E|Xi(0)|2 + 16E
∫ t

0
|�(Xi(s); V (s))|2 ds

+4tE
∫ t

0
|c(Xi(s); V (s))|2 ds

+16E
∫
U×[0; t]

|�(Xi(s); V (s); u)|2�(du) ds

6 4E|Xi(0)|2 + 32K2t + 4K2t2¡∞:

By (2.1), we have

A2i (t) = A2i (0)exp
(
2M (t)− 〈M 〉t +

∫ t

0
2d(Xi(s); V (s)) ds

)
:

Since exp(2M (t) − 2〈M 〉t) is a martingale, the bounds on 〈M 〉 and d and Doob’s
inequality imply

E sup
06s6t

Ai(s)264e2Kt+K2tEAi(0)2:

Theorem 2.1. Under Assumptions (S1); (S2) and (2:3); the system has at most one
solution.
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Proof. Let (X; A; V ) and (X̃ ; Ã; Ṽ ) be two solutions of (1.2)–(1.4) with the same initial
conditions, and de�ne V+; V−; Ṽ

+
, and Ṽ

−
as in (2.2).

Recall that by the exchangeability, we have the existence of limn→∞(1=n)
∑n

i=1 Ai(t)2.
Let

�m = inf

{
t: lim

n→∞
1
n

n∑
i=1

Ai(t)2¿m2
}

:

�̃m is de�ned similarly. Let �m = �m ∧ �̃m. Then

E|Xi(t ∧ �m)− X̃ i(t ∧ �m)|2

612E
∫ t

0
|�(Xi(s); V (s))− �(X̃ i(s); Ṽ (s))|21s6�m ds

+3tE
∫ t

0
|c(Xi(s); V (s))− c(X̃ i(s); Ṽ (s))|21s6�m ds

+12E
∫
U×[0; t]

|�(Xi(s); V (s); u)− �(X̃ i(s); Ṽ (s); u)|21s6�m�(du) ds

63K2(8 + t)E
∫ t

0
(|Xi(s)− X̃ i(s)|2 + �(V+(s); Ṽ

+
(s))2

+�(V−(s); Ṽ
−
(s))2)1s6�m ds: (2.5)

For s6�m,

�(V+(s); Ṽ
+
(s)) = sup

�∈B1

∣∣∣∣∣ limn→∞
1
n

n∑
i=1

(A+i (s)�(Xi(s))− Ã
+
i (s)�(X̃ i(s)))

∣∣∣∣∣
6 sup

�∈B1
lim
n→∞

1
n

n∑
i=1

A+i (s)|�(Xi(s))− �(X̃ i(s))|

+ sup
�∈B1

lim
n→∞

1
n

n∑
i=1

|A+i (s)− Ã
+
i (s)||�(X̃ i(s))|

6 lim
n→∞

1
n

n∑
i=1

A+i (s)|Xi(s)− X̃ i(s)|

+ lim
n→∞

1
n

n∑
i=1

|A+i (s)− Ã
+
i (s)|

and a similar estimate holds for �(V−(t); Ṽ
−
(t)). Consequently,

�(V+(s); Ṽ
+
(s)) + �(V−(s); Ṽ

−
(s))

6

(
lim
n→∞

1
n

n∑
i=1

Ai(s)2
)1=2(

lim
n→∞

1
n

n∑
i=1

|Xi(s)− X̃ i(s)|2
)1=2
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+ lim
n→∞

1
n

n∑
i=1

|Ai(s)− Ãi(s)|

6m

(
lim
n→∞

1
n

n∑
i=1

|Xi(s)− X̃ i(s)|2
)1=2

+ lim
n→∞

1
n

n∑
i=1

|Ai(s)− Ãi(s)|:

Let

fm(t) = E|Xi(t ∧ �m)− X̃ i(t ∧ �m)|2

and

gm(t) = E



(
lim
n→∞

1
n

n∑
i=1

|Ai(t ∧ �m)− Ãi(t ∧ �m)|
)2 :

By (2.5) and Fatou’s lemma, we have

fm(t)63K2(8 + t)
∫ t

0
(fm(s) + 2m2fm(s) + 2gm(s)) ds: (2.6)

By (2.1), making use of the fact that |ex − ey|6(ex ∨ ey)|x − y|, we have
|Ai(t)− Ãi(t)|

=(|Ai(t)| ∨ |Ãi(t)|)
∣∣∣∣
∫ t

0
(T(Xi(s); V (s))− T(X̃ i(s); Ṽ (s))) dBi(s)

+
∫
U×[0; t]

(�(Xi(s); V (s); u)− �(X̃ i(s); Ṽ (s); u)))W (du ds)

+
∫ t

0
(d(Xi(s); V (s))− d(X̃ i(s); Ṽ (s))) ds

−1
2

∫ t

0
(|(Xi(s); V (s))|2 − |(X̃ i(s); Ṽ (s))|2) ds

− 1
2

∫
U×[0; t]

(�(Xi(s); V (s); u)2 − �(X̃ i(s); Ṽ (s); u))2)�(du) ds
∣∣∣∣ :

Hence, for t6�m;(
lim
n→∞

1
n

n∑
i=1

|Ai(t)− Ãi(t)|
)2

6 lim
n→∞

1
n

n∑
i=1

A2i (t) ∨ Ã
2
i (t)

× lim
n→∞

1
n

n∑
i=1

∣∣∣∣
∫ t

0
(T(Xi(s); V (s))− T(X̃ i(s); Ṽ (s))) dBi(s)

+
∫
U×[0; t]

(�(Xi(s); V (s); u)− �(X̃ i(s); Ṽ (s); u)))W (du ds)

+
∫ t

0
(d(Xi(s); V (s))− d(X̃ i(s); Ṽ (s))) ds
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−1
2

∫ t

0
(|(Xi(s); V (s))|2 − |(X̃ i(s); Ṽ (s))|2) ds

− 1
2

∫
U×[0; t]

(�(Xi(s); V (s); u)2 − �(X̃ i(s); Ṽ (s); u))2)�(du) ds
∣∣∣∣
2

6 lim
n→∞

1
n

n∑
i=1

(Ai(t)2 + Ãi(t)2)

×5 lim
n→∞

1
n

n∑
i=1

(∣∣∣∣
∫ t

0
(T(Xi(s); V (s))− T(X̃ i(s); Ṽ (s))) dBi(s)

∣∣∣∣
2

+
∣∣∣∣
∫
U×[0; t]

(�(Xi(s); V (s); u)− �(X̃ i(s); Ṽ (s); u)))W (du ds)
∣∣∣∣
2

+t
∫ t

0
(d(Xi(s); V (s))− d(X̃ i(s); Ṽ (s)))2 ds

+
1
4
t
∫ t

0
(|(Xi(s); V (s))|2 − |(X̃ i(s); Ṽ (s))|2)2 ds

+
1
4
t
∫ t

0

(∫
U
(�(Xi(s); V (s); u)2 − �(X̃ i(s); Ṽ (s); u))2�(du)

)2
ds

)

62m25 lim
n→∞

1
n

n∑
i=1

(∣∣∣∣
∫ t

0
(T(Xi(s); V (s))− T(X̃ i(s); Ṽ (s))) dBi(s)

∣∣∣∣
2

+
∣∣∣∣
∫
U×[0; t]

(�(Xi(s); V (s); u)− �(X̃ i(s); Ṽ (s); u)))W (du ds)
∣∣∣∣
2

+K2t
∫ t

0
(|Xi(s)− X̃ i(s)|2 + �(V+(s); Ṽ

+
(s))2 + �(V−(s); Ṽ

−
(s))2) ds

+
1
4
t
∫ t

0
(2K)2|(Xi(s); V (s))− (X̃ i(s); Ṽ (s))|2 ds

+
1
4
t
∫ t

0
4K2

∫
U
|�(Xi(s); V (s); u)− �(X̃ i(s); Ṽ (s); u)|2�(du) ds

)

610m2 lim
n→∞

1
n

n∑
i=1

(∣∣∣∣
∫ t

0
(T(Xi(s); V (s))− T(X̃ i(s); Ṽ (s)) dBi(s)

∣∣∣∣
2

+
∣∣∣∣
∫
U×[0; t]

(�(Xi(s); V (s); u)− �(X̃ i(s); Ṽ (s); u))W (du ds)
∣∣∣∣
2
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+K2t(1 + 2K2)
∫ t

0
(|Xi(s)− X̃ i(s)|2 + �(V+(s); Ṽ

+
(s))2

+(�(V−(s); Ṽ
−
(s))2) ds):

By Fatou’s lemma and Doob’s inequality, we have

gm(t)6 10m2 lim
n→∞

1
n

n∑
i=1

E
(
4
∫ t

0
|(Xi(s); V (s))− (X̃ i(s); Ṽ (s))|21s6�m ds

+4
∫
U×[0; t]

|�(Xi(s); V (s); u)− �(X̃ i(s); Ṽ (s); u)|2�(du)1s6�m ds (2.7)

+K2t(1 + 2K2)
∫ t

0
(|Xi(s)− X̃ i(s)|2 + �(V+(s); Ṽ

+
(s))2

+(�(V−(s); Ṽ
−
(s))2)1s6�m ds

)

6 10m2 lim
n→∞

1
n

n∑
i=1

(8K2 + K2t(1 + 2K2))

×
∫ t

0
E(|Xi(s)− X̃ i(s)|2 +�(V+(s); Ṽ

+
(s))2+�(V−(s); Ṽ

−
(s))2)1s6�m ds

6 10m2(8K2 + K2t(1 + 2K2))
∫ t

0
(fm(s) + 2m2fm(s) + 2gm(s)) ds:

Adding (2.6) and (2.7), for t6T , we have

fm(t) + gm(t)6K(m; T )
∫ t

0
(fm(s) + gm(s)) ds; (2.8)

where K(m; T ) is a constant. By Gronwall’s inequality, we have fm(t)+gm(t)=0. Then
for each m and t ∈ [0; T ], we have Xi(t∧�m)=X̃ i(t∧�m) a.s. and Ai(t∧�m)=Ãi(t∧�m)
a.s. By (1.2), we have V (t∧�m)=Ṽ (t∧�m) a.s. Hence (X; A; V )=(X̃ ; Ã; Ṽ ) for t6�m∧T .
Taking T; m → ∞, (X; A; V ) = (X̃ ; Ã; Ṽ ) for t6�∞. By the de�nition of �m,

P(�m6t)6 P

(
sup
06s6t

lim
n→∞

1
n

n∑
i=1

Ai(s)2¿m2
)

6
1
m2
E sup
06s6t

lim
n→∞

1
n

n∑
i=1

Ai(s)2

6
1
m2
lim inf
n→∞

1
n

n∑
i=1

E sup
06s6t

Ai(s)2

=
1
m2
E sup
06s6t

(A1(s)2);
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where the last inequality follows by moving the sup inside the sum and applying Fatou’s
lemma, and the last equality follows from the exchangeability. Hence, by Proposition
2.1, P(�∞6t)= limm→∞P{�m6t}=0, i.e., �∞=∞ a.s., and uniqueness follows.

Finally, we establish the existence of a solution. We will need the following lemma
from Kotelenez and Kurtz (1999).

Lemma 2.1. For n = 1; 2; : : : ; let X n = (X n
1 ; : : : ; X

n
Nn
) be exchangeable families

of DE[0;∞)-valued random variables such that Nn ⇒ ∞ and X n ⇒ X in DE[0;∞)∞.
De�ne �n = (1=Nn)

∑Nn
i=1 �X n

i
∈ P(DE[0;∞)); � = limm→∞(1=m)

∑m
i= �Xi ; Zn(t) =

(1=Nn)
∑Nn

i=1 �X n
i (t) ∈ P(E); and Z(t) = limm→∞(1=m)

∑m
i=1 �Xi(t); and set D� =

{t : E[�{x : x(t) 6= x(t−)}]¿ 0}. Then the following hold:

(a) For t1; : : : ; tl 6∈ D�;

(�n; Zn(t1); : : : ; Zn(tl))⇒ (�; Z(t1); : : : ; Z(tl)):

(b) If X n ⇒ X in DE∞ [0;∞); then (Xn; Zn)⇒ (X; Z) in DE∞×P(E)[0;∞). If
X n → X in probability in DE∞ [0;∞); then (Xn; Zn)→ (X; Z) in DE∞×P(E)

[0;∞) in probability.

Theorem 2.2. Under Assumptions (S1); (S2) and (2:3); the system has a solution.

Proof. De�ne Bn
i (t)=Bi([nt]=n); Dn(t)=([nt]=n), and Wn(B×[0; t])=W (B×[0; [nt]=n]),

∀B ∈ B(U ). Consider the discrete time, Euler-type approximation (X n; An) obtained by
replacing Bi by Bn

i ; dt by dDn(t), and W by Wn in (1.3) and de�ning

An
i (t) = Ai(0)exp

{∫ t

0
T(X n

i (s−); V n(s−)) dBn
i (s)

+
∫
U×[0; t]

�(X n
i (s−); V n(s−); u)Wn(du× ds)

+
∫ t

0
D(X n

i (s−); V n(s−)) dDn(s)
}

;

where

D(x; �) = d(x; �)− 1
2
|(x; �)|2 − 1

2

∫
U
�(x; �; u)2�(du):

Note that the exchangeability of {(Xi(0); Ai(0))} gives the existence of Vn(t) = Vn(0)
for 06t ¡ 1=n and the exchangeability of {(X n

i (1=n); A
n
i (1=n))}. The exchangeability

of {(X n
i (t); A

n
i (t))} and the existence of Vn(t) then follows recursively.

Let

C1 = sup
x;v

|c(x; v)|

and

C2 = sup
x;v
(|�(x; v)�(x; v)T|+

∫
U
|�(x; v; u)|2�(du)):
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Then

E[|X n
i (t + h)−X n

i (t)|2|Ft]62

(
C1

(
[n(t + h)]− [nt]

n

)2
+C2

[n(t + h)]− [nt]
n

)
;

with a similar estimate holding for log|An
i |. By Theorem 3:8:6 and Remark 3:8:7 of

Ethier and Kurtz (1986), for each i {(X n
i ; A

n
i )} is relatively compact for convergence

in distribution in DRd×R[0;∞). But relative compactness of {(X n
i ; A

n
i )} in DRd×R[0;∞)

implies relative compactness of {(X n; An)} in DRd×R[0;∞)∞ (see, for example, Ethier
and Kurtz, 1986, Proposition 3:2:4).
Taking a subsequence if necessary, we assume that (X n; An) ⇒ (X; A). By the

continuity of Bi and W and the boundedness of the coe�cients in (1.3) and (1.4),
(Xi; Ai) will be continuous for each i, and it follows that the convergence is, in fact,
in D(Rd×R)∞ [0;∞). De�ne

Zn(t) = lim
m→∞

1
m

m∑
i=1

�(X n
i (t); A

n
i (t)); Z = lim

m→∞
1
m

m∑
i=1

�(Xi(t); Ai(t)):

Then by Lemma 2.1, Zn ⇒ Z , or more precisely, (X n; An; Zn)⇒ (X; A; Z).
For simplicity, assume that Ai(0)¿0 for all i. If, for �¿ 0, we de�ne Vn

� by

〈’; V n
� 〉=

∫
Rd+1

(a ∧ �)’(x)Zn(t; dx × da);

and observe that

||Vn(t)− Vn
� (t)|| = lim

m→∞
1
m

m∑
i=1

(An
i (t)− � ∧ An

i (t))

6 lim
m→∞

1
m

m∑
i=1

(
sup
s6T

An
i (s)− � ∧ sup

s6T
An
i (s)
)

:

By the same argument as in the proof of Proposition 2.1, {supt6TA
n
1(t)} is bounded

in L2 and hence uniformly integrable, so

E sup
t6T

||Vn(t)− Vn
� (t)||6E

(
sup
t6T

A1(t)− � ∧ sup
t6T

A1(t)
)

: (2.9)

Since the right-hand side of (2.9) goes to zero as � → ∞; it follows that (X n; An; V n)
is relatively compact, and as in Kurtz and Protter (1996, Proposition 7.4), any limit
point will be a distributional solution of (1.3)–(1.4). But as in Yamada and Watanabe
(1971), distributional existence and pathwise uniqueness imply strong existence.

In the classical setting, the limiting empirical process is deterministic and character-
ized by a McKean–Vlasov equation. Here and, for example, in earlier work by Dawson
and Vaillancourt, the limiting equation (1.6) is still stochastic.
The classical McKean–Vlasov limit (no W and no weights) is sometimes described

by the equation

X (t) = X (0) +
∫ t

0
�(X (s); Z(s)) dB(s) +

∫ t

0
c(X (s); Z(s)) ds;
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where Z(t) is required to be the distribution of X (t). The analogous formulation in
our setting is to consider the system

X (t) = X (0) +
∫ t

0
�(X (s); V (s)) dB(s) +

∫ t

0
c(X (s); V (s)) ds

+
∫
U×[0; t]

�(X (s); V (s); u)W (du ds) (2.10)

and

A(t) = A(0) +
∫ t

0
A(s)T(X (s); V (s)) dB(s) +

∫ t

0
A(s) d(X (s); V (s)) ds

+
∫
U×[0; t]

A(s)�(X (s); V (s); u)W (du ds); (2.11)

where, as we will see below, V (t) is the random measure determined by

〈�; V (t)〉= E(A(t)�(X (t)) |FW
t ); (2.12)

{FW
t } being the �ltration generated by W . (Similar representations have been used by

other authors. See, for example, Sowers, 1995.) We require (X; A) to be compatible
with (B;W ) in the sense that for each time t¿0, the increments of B and W after
time t are independent of FX;A;B;W

t . Note that this independence implies

〈�; V (t)〉= E(A(t)�(X (t))|W ): (2.13)

As a characterization of V , this system is essentially equivalent to the particle system.

Theorem 2.3. Let (X; A; V; B;W ) satisfy (2:10)–(2:12). Then there exists a solution

({Xi}; {Ai}; {Bi}; Ṽ ; W̃ )

of (1:2)–(1:4) such that (X1; A1; Ṽ ; B1; W̃ ) has the same distribution as (X; A; V; B;W ).
Conversely; if there exists a pathwise unique solution ({Xi}; {Ai}; {Bi}; V;W )
of (1:2)–(1:4); then (X1; A1; V; B1; W ) is a solution of (2:10)–(2:12).

Proof. Since we are not assuming uniqueness, (X; A) may not be uniquely deter-
mined by (X (0); A(0); B;W ); however, if we let (X; A; V; B;W ) be a particular solu-
tion of (2:10)–(2:12), then (X; A) will have a regular conditional distribution given
(X (0); A(0); B;W ). In particular, there will exist a transition function q(x0; a0; b; w; �)
such that P{(X; A) ∈ �|X (0); A(0); B;W}=q(X (0); A(0); B;W; �), � ∈ B(DRd×R[0;∞)).
Since every probability measure on a complete, separable metric space can be induced
by a mapping from the probability space given by Lebesgue measure on [0; 1], it fol-
lows that there will be a mapping F such that if U is uniformly distributed on the
interval [0; 1] and (X̃ (0); Ã(0); B̃; W̃ ) is independent of U and has the same distribution
as (X (0); A(0); B;W ), then (X̃ ; Ã)=F(X̃ (0); Ã(0); B̃; W̃ ; U ) and (X̃ (0); Ã(0); B̃; W̃ ) have
the same joint distribution as (X; A) and (X (0); A(0); B;W ). De�ning Ṽ by

〈�; Ṽ (t)〉= E(Ã(t)�(X̃ (t))|FW̃
t ); (2.15)

(X̃ ; Ã; Ṽ ; B̃; W̃ ) will have the same distribution as (X; A; V; B;W ). Let W be Gaussian
white noise, {Bi} be independent standard Brownian motions, {(Xi(0); Ai(0))} be iid



T.G. Kurtz, J. Xiong / Stochastic Processes and their Applications 83 (1999) 103–126 115

with the same distribution as (X (0); A(0)), and {Ui} be independent uniform-[0; 1]
random variables. De�ne

(Xi; Ai) = F(Xi(0); Ai(0); Bi; W; Ui):

Note that V determined by

〈�; V (t)〉= E(Ai(t)�(Xi(t)) |FW
t );

does not depend on i and that ({Xi}; {Ai}; V; {Bi}; W ) satis�es (1.3) and (1.4). It
remains only to show that V satis�es (1.2).
Note that {(Xi; Ai)} is exchangeable so that

〈�; Ṽ (t)〉= lim
n→∞

1
n

n∑
i=1

Ai(t)�(Xi(t)) = E(A1(t)�(X1(t))|I)

exists. The second equality holds by the ergodic theorem, and I is the invariant
�-algebra for the stationary sequence {(Xi(0); Ai(0); Bi; Ui;W )}. But the independence
of {(Xi(0); Ai(0); Bi; Ui)} implies I is contained in the completion of the �-algebra
generated by W . Consequently,

〈�; Ṽ (t)〉= E(A1(t)�(X1(t))|W ) = E(A1(t)�(X1(t)) |FW
t );

where the second equality follows by (2.13), and hence V (t) = Ṽ (t).
To obtain the converse, note that pathwise uniqueness implies that the invariant

�-algebra for {(Xi; Ai; Bi; W )} is contained in the completion of �(W ). Pathwise unique-
ness also implies that the solution {(Xi; Ai)} is compatible with the {Bi} and W , so
we have

〈�; V (t)〉= E(A1(t)�(X1(t)) |W ) = E(A1(t)�(X1(t)) |FW
t ):

3. A nonlinear SPDE

In this section, we establish the existence and uniqueness for the solution to the
SPDE (1.6). Our approach is motivated by the second author’s uniqueness proof of
a nonlinear PDE for the empirical measure (on a conuclear space) of a system of
interacting neurons (cf. Xiong, 1999).
We summarize the techniques used in this section. First, by applying Itô’s formula,

it is shown that V is a solution to (1.6). To prove uniqueness for the solution to (1.6),
we assume the existence of another solution V1 and freeze the nonlinear arguments in
(1.6) by V1 (cf. (3.13) and (3.1)) to obtain a linear SPDE. Similar to the argument in
Xiong (1999), the uniqueness for the solution to (1.6) is implied by that of the linear
SPDE (3.13) and that of the system (1:2)–(1:4) proved in the previous section (cf. the
proof of Theorem 3.5 for this argument).
We actually only prove uniqueness among solutions U such that for each t¿0,

U (t) is absolutely continuous with respect to Lebesgue measure and has a density in
L2(Rd). (We also prove existence of such a solution for all U (0) with this property.)
The necessary estimates are obtained by �rst smoothing the solutions with a Gaussian
kernel. As a by product, the estimates (cf. Theorem 3.2) give the existence of a density
v(t; x) for the solution to (1.6) under the assumption that V (0) has a density in L2(Rd).
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Theorem 3.1. Let V be the weighted empirical measure for the particle system given
by Theorems 2:1 and 2:2. Then V is a solution of (1:6).

Proof. It is easy to see that

E sup
t6T

∣∣∣∣∣1n
n∑

i=1

∫ t

0
Ai(s)∇T�(Xi(s))�(Xi(s); V (s)) dBi(s)

∣∣∣∣∣
2

64
1
n2

n∑
i=1

E
∫ T

0
Ai(s)2|∇T�(Xi(s))�(Xi(s); V (s))|2 ds

6
4
n
||∇�||2∞K2TE sup

s6T
A1(s)2 → 0:

By (1.5), it is then easy to prove that V is a solution of (1.6).

Now we �x an M(Rd)-valued process V and consider the linear equation

〈�;U (t)〉= 〈�;U (0)〉+
∫ t

0
〈ds�+ Ls�; U (s)〉 ds

+
∫
U×[0; t]

〈�s(·; u)�+ �Ts (·; u)∇�;U (s)〉W (du ds); (3.1)

where

Ls�=
1
2

d∑
i; j=1

aij; s(x)@xi@xj�(x) +
d∑

i=1

bi; s(x)@xi�(x);

aij; s(x) = a(1)ij; s(x) + a(2)ij; s(x);

a(1)ij; s(x) =
d∑

k=1

�ik(x; V (s))�jk(x; V (s));

a(2)ij; s(x) =
∫
U
�i(x; V (s); u)�j(x; V (s); u)�(du)

and

bi; s(x) = bi(x; V (s)); ds(x) = d(x; V (s));

�s(x; u) = �(x; V (s); u); �s(x; u) = �(x; V (s); u):

Let H0 =L2(Rd) be the Hilbert space with the usual L2-norm || · || and inner product
〈·; ·〉 given by ||�||20=

∫
Rd |�(x)|2 dx and 〈�;  〉0=

∫
Rd �(x) (x) dx. To obtain good esti-

mates and to derive uniqueness for the solution to (3.1), we transform anM(Rd)-valued
process to a H0-valued process. A similar idea was employed by Kotelenez (1995).
For any � ∈ M(Rd) and �¿ 0, let

(T��)(x) =
∫
Rd

G�(x − y)� (dy); (3.2)
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where G� is the heat kernel given by G�(x) = (2��)−d=2exp
(−|x|2=2�). We use

the same notation for the Brownian motion semigroup on Cb(Rd), i.e., Tt�(x) =∫
Rd Gt(x − y)�(y) dy, ∀� ∈ Cb(Rd).
The following facts can be veri�ed easily.

Lemma 3.1. (i) If � ∈ H0 ≡ L2(Rd) and �¿ 0; then ||T��||06||�||0.
(ii) If � ∈ M(Rd) and �¿ 0; then T�� ∈ H0.
(iii) If � ∈ M(Rd) and �¿ 0; then ||T2�|�|||06||T� | �|||0; where |�| is the total

variation measure of �.

Let Z�(s) = T�U (s) where U is an M(Rd)-valued solution to (3.1). To obtain an
estimate for the H0-norm of the process Z�, we adapt Kotelenez’s arguments to the
present setup. Replacing � by T�� in (3.1) and using the fact that di�erentiation and
T� commute, we have

〈Z�(t); �〉0 = 〈T��;U (t)〉

= 〈T��;U (0)〉+
∫ t

0
〈T��; dsU (s)〉 ds

+
1
2

d∑
i; j=1

∫ t

0
〈aij; s@xi @xjT��; U (s)〉 ds+

d∑
i=1

∫ t

0
〈bi; s@xiT��; U (s)〉 ds

+
∫
U×[0; t]

〈
d∑

i=1

�i; s(·; u)@xiT��+ �s(·; u)T��;U (s)

〉
W (du ds)

= 〈Z�(0); �〉0 +
∫ t

0
〈T�(dsU (s)); �〉0 ds

+
1
2

d∑
i; j=1

∫ t

0
〈@xi@xjT�(aij; sU (s)); �〉0 ds

−
d∑

i=1

∫ t

0
〈@xiT�(bi; sU (s)); �〉0 ds

+
∫
U×[0; t]

〈
−

d∑
i=1

@xiT�(�i; s(·; u)U (s))+T�(�s(·; u)U (s)); �
〉
0

W (du ds):

By Itô’s formula, we have

〈Z�(t); �〉20

=〈Z�(0); �〉20 +
∫ t

0
2〈Z�(s); �〉0〈T�(dsU (s)); �〉0 ds
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+
d∑

i; j=1

∫ t

0
〈Z�(s); �〉0〈@xi@xjT�(aij; sU (s)); �〉0 ds

−
d∑

i=1

∫ t

0
2〈Z�(s); �〉0〈@xiT�(bi; sU (s)); �〉0 ds

+
∫
U×[0; t]

2〈Z�(s); �〉0

×
〈
−

d∑
i=1

@xiT�(�i; s(·; u)U (s)) + T�(�s(·; u)U (s)); �
〉
0

W (du ds)

+
∫
U×[0; t]

∣∣∣∣∣
〈
−

d∑
i=1

@xiT�(�i; s(·; u)U (s)) + T�(�s(·; u)U (s)); �
〉
0

∣∣∣∣∣
2

�(du) ds:

Summing over � in a complete, orthonormal basis of H0 and taking expectations,
we have

E||Z�(t)||20

=||Z�(0)||20 + E
∫ t

0
2〈Z�(s); T�(dsU (s))〉0 ds

+
d∑

i; j=1

E
∫ t

0
〈Z�(s); @xi @xjT�(a

(1)
ij; sU (s))〉0 ds

+
d∑

i; j=1

E
∫ t

0
〈Z�(s); @xi @xjT�(a

(2)
ij; sU (s))〉0 ds

−
d∑

i=1

E
∫ t

0
2〈Z�(s); @xiT�(bi; sU (s))〉0 ds

+E
∫
U×[0; t]

∣∣∣∣∣
∣∣∣∣∣

d∑
i=1

@xiT�(�i; s(·; u)U (s))
∣∣∣∣∣
∣∣∣∣∣
2

0

�(du) ds

−2E
∫
U×[0; t]

〈
d∑

i=1

@xiT�(�i; s(·; u)U (s)); T�(�s(·; u)U (s))
〉
0

�(du) ds

+E
∫
U×[0; t]

||T�(�s(·; u)U (s))||20�(du) ds: (3.3)

We will show that the integral terms on the right-hand side of (3.3) are bounded by a
constant times the integral of ||T�(|U (s)|)||0.



T.G. Kurtz, J. Xiong / Stochastic Processes and their Applications 83 (1999) 103–126 119

Lemma 3.2. Let (H;H; �) be a measure space and H= L2(�). (We are interested in
the cases H a singleton and H = U with �= �:) Let fi : Rd → H; i = 1; 2 satisfy

||fi(x)− fi(y)||H6K |x − y|; ∀x; y ∈ Rd;

||fi(x)||H6K; ∀x ∈ Rd;

g; @xig ∈ H0; i = 1; : : : ; d; and let � ∈ M(Rd). Then there exist constants K1; and K2
depending on f1 and f2 but not on � such that

||〈g; f1@xig〉0||H6 1
2K ||g||20; (3.4)

||||T�(f1�)||0||H6||T�(||f1(·)||H |�|)||06K ||T�(|�|)||0; (3.5)

||||f1@xiT�(�)− @xiT�(f1�)||0||H6K1||T2�(|�|)||0; (3.6)

|〈T�(f2�); @xiT�(f1�)〉H0⊗H|6K2||T�(|�|)||0: (3.7)

Proof. To prove (3.4), �rst assume that f1 and g are continuously di�erentiable with
compact support. Then integrating by parts we have

〈g; f1(·; u)@xig〉0 =
1
2

∫
Rd

f1(x; u)@xi(g
2(x)) dx =−1

2

∫
Rd

g2(x)@xif1(x; u) dx;

and hence∫
H
|〈g; f1(·; u)@xig〉0|2�(du)6

1
4

∫
H

∣∣∣∣
∫
Rd

g2(x)@xif1(x; u) dx
∣∣∣∣
2

�(du)6
1
4
K2||g||40:

The general result follows by approximation.
Writing

||||T�(f1�)||0||2H =
∫
H

∫
Rd

∣∣∣∣
∫
Rd

G�(x − y)f1(y; u)�(dy)
∣∣∣∣
2

dx �(du)

6
∫
Rd

∫
Rd

∫
Rd

G�(x − y)G�(x − ỹ)

×
∫
H
|f1(y; u)f1(ỹ; u)|�(du)|�|(dy)|�|(dỹ) dx

6
∫
Rd

(∫
Rd

G�(x − y)||f1(y)||H |�|(dy)
)2
dx;

(3.5) follows.
Noting that

||f1(x; ·)@xiT�(�)(x)− @xiT�(f1�)(x)||H

=
∣∣∣∣
∣∣∣∣
∫
Rd
(f1(x; ·)− f1(y; ·))@xiG�(x − y)�(dy)

∣∣∣∣
∣∣∣∣
H

6
∫
Rd

K |x − y| |xi − yi|
�

G�(x − y)|�|(dy)
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6K
∫
Rd

|x − y|2
�

exp
(
−|x − y|2

4�

)
2d=2G2�(x − y)|�|(dy)

62d=2+2KT2�(|�|)(x):
Taking the H0-norm of both sides gives (3.6) with K1=2d=2+2K . (Note that ||||h||H||0=
||||h||0||H.)
By (3.4) and (3.6),

|〈T�(f2�); @xiT�(f1�)〉H0⊗H|

6|〈T�(f2�); f1@xiT�(�)〉H0⊗H|+ |〈T�(f2�); @xiT�(f1�)− f1@xiT�(�)〉H0⊗H|

6|〈T�(f2�); @xif1T�(�)〉H0⊗H|+ |〈f2@xiT�(�); f1T�(�)〉H0⊗H|

+|〈(@xiT�(f2�)− f2@xiT�(�)); f1T�(�)〉H0⊗H|+ K1||T�(f2�)||H0⊗H||T2�(|�|)||0
6K ||||T�(f2�)||0||H||T�(�)||0 + K2||T�(|�|)||20 + KK1||T�(|�|)||20 + K1K ||T�(|�|)||20
6K3||T�(|�|)||20;

where the next to the last inequality follows by Lemma 3.1(iii) and the previous
inequalities.

Lemma 3.3. For i = 1; : : : ; d; let �i : Rd → H = L2(�) satisfy ||�i(x)||H6K and
||�i(x) − �i(y)||H6K |x − y|. De�ne aij(x) =

∫
H �i(x; u)�j(x; u)�(du). Then for � ∈

M(Rd)

d∑
i; j=1

〈T��; @xi@xjT�(aij�)〉0+
∫
U

∣∣∣∣∣
∣∣∣∣∣

d∑
i=1

@xiT�(�i(·; u)�)
∣∣∣∣∣
∣∣∣∣∣
2

0

�(du)6K4||T�(|�|)||20: (3.8)

Proof. Note that
d∑

i; j=1

〈T��; @xi@xjT�(aij�)〉0

=
d∑

i; j=1

∫
Rd
dx
∫
Rd

G�(x − y)�(dy)
∫
Rd

@xi@xjG�(x − z)aij(z)�(dz)

=
d∑

i; j=1

∫
Rd

�(dy)
∫
Rd

aij(z)�(dz)@zi@zj

∫
Rd

G�(x − y)G�(x − z) dx

=
d∑

i; j=1

∫
Rd

�(dy)
∫
Rd

�(dz)
(
(zi − yi)(zj − yj)

4�2
− 1i=j

2�

)
G2�(z − y)aij(z)

=
d∑

i; j=1

∫
Rd

�(dy)
∫
Rd

�(dz)
(
(zi − yi)(zj − yj)

4�2
− 1i=j

2�

)

×G2�(z − y) 12 (aij(z) + aij(y));
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where the last equality follows from the symmetry in y; z. Similarly,

∫
H

∣∣∣∣∣
∣∣∣∣∣

d∑
i=1

@xiT�(�i(·; u)�)
∣∣∣∣∣
∣∣∣∣∣
2

0

�(du)

=−
∫
H
�(du)

d∑
i; j=1

〈T�(�i(·; u)�); @xi @xjT�(�j(·; u)�)〉0

=−
d∑

i; j=1

∫
H
�(du)

∫
Rd

�(dy)
∫
Rd

�(dz)
(
(zi − yi)(zj − yj)

4�2
− 1i=j

2�

)
G2�(z − y)

×1
2
(�i(y; u)�j(z; u) + �i(z; u)�j(y; u)):

Hence

LHS of (3:8) =
d∑

i; j=1

∫
Rd

�(dy)
∫
Rd

�(dz)
(
(zi − yi)(zj − yj)

4�2
− 1i=j

2�

)
G2�(z − y)

×1
2

∫
H
(�i(y; u)− �i(z; u))(�j(y; u)− �j(z; u))�(du)

6
1
2

d∑
i; j=1

∫
Rd

|�|(dy)
∫
Rd

|�|(dz)
(|z − y|2

4�2
+
1
2�

)
exp
(
−|z − y|2

4�

)

×2d=2G4�(z − y)K2|z − y|2

616d2K2
d∑

i; j=1

∫
Rd

|�|(dy)
∫
Rd

|�|(dz)2d=2G4�(z − y)

=2d=2+4d2K2||T2�(|�|)||20
62d=2+4d2K2||T�(|�|)||20;

where the second inequality follows by bounding (v2 + v)e−v=4. The lemma follows
with K4 = 2d=2+4d2K2.

The estimates in Lemmas 3.2 and 3.3 give the following.

Theorem 3.2. If U is an M(Rd)-valued solution of (3:1) and Z� = T�U; then

E||Z�(t)||206||Z�(0)||20 + K6

∫ t

0
E||T�(|U (s)|)||20 ds; (3.9)

where K6 is a constant.

Proof. The second and last terms of (3.3) are bounded by a constant times
||T�(|U (s)|)||20 by (3.5). The bound for the third term follows from Lemma 3.3. (Take
H to be a singleton.) The bound for the sum of the fourth and sixth terms also follows
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from Lemma 3.3. (Take H=L2(�).) The bound for the �fth and seventh terms follows
by (3.7).

Corollary 3.1. If U is an M+(Rd)-valued solution of (3:1) and U (0) ∈ H0; then
U (t) ∈ H0 a.s. and E||U (t)||20¡∞; ∀t¿0.

Proof. It follows from (3.9) that

E||Z�(t)||206||Z�(0)||20 + K6

∫ t

0
E||Z�(s)||20 ds:

By Gronwall’s inequality, we have

E||Z�(t)||206||Z�(0)||20eK6t :
Let {�j} be a complete, orthonormal system of H0 such that �j ∈ Cb(Rd). Then, by
Fatou’s lemma,

E
[∑

j

〈�j; U (t)〉2
]
= E

[∑
j

lim
�→0

〈�j; U (t)〉2
]
6 lim inf

�→0
E||Z�(t)||206||U (0)||20eK6t :

Hence U (t) ∈ H0 and E||U (t)||20¡∞.

These estimates give uniqueness of M+(Rd)-valued solutions with U (0) ∈ H0.

Theorem 3.3. Suppose that U (0) ∈ H0; U (0)¿0. Then (3:1) has at most one
M+(Rd)-valued solution.

Proof. Let U1(t) and U2(t) be two M+(Rd)-valued solutions with the same initial
value U (0). By Corollary 3.1, U1(t); U2(t) ∈ H0 a.s. Let U (t) = U1(t)− U2(t). Then
U (t) ∈ H0 and

E||T�U (t)||206K6

∫ t

0
E||T�(|U (s)|)||20 ds:

As before, taking � → 0, we have

E||U (t)||206K6

∫ t

0
E|||U (s)|||20 ds= K6

∫ t

0
E||U (s)||20 ds;

and by Gronwall’s inequality, we have U (t) ≡ 0.

By exactly the same argument we have the following theorem.

Theorem 3.4. Suppose that U (0) ∈ H0. Then (3:1) has at most one H0-valued
solution.

Proof. Let U1(t) and U2(t) be two H0-valued solutions with the same initial value
U (0). Let U (t) = U1(t)− U2(t). Then U (t) ∈ H0 and

E||T�U (t)||206K6

∫ t

0
E||T�(|U (s)|)||20 ds:
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Taking � → 0, we have

E||U (t)||206K6

∫ t

0
E|||U (s)|||20 ds= K6

∫ t

0
E||U (s)||20 ds:

By Gronwall’s inequality, we have U (t) ≡ 0.

Finally, we consider the uniqueness of the solution of the nonlinear SPDE (1.6).

Theorem 3.5. Suppose that V (0) ∈ H0; then there exists a unique H0-valued solution
of (1:6).

Proof. Let V be the solution of (1.6) given by Theorem 3.1. Then by Corollary 3.1,
V+ and V− (and hence V ) have values in H0.
Let V1(t) be another H0-valued solution of (1.6). Consider the system

Xi(t) = Xi(0) +
∫ t

0
�(Xi(s); V1(s)) dBi(s) +

∫ t

0
c(Xi(s); V1(s)) ds

+
∫
U×[0; t]

�(Xi(s); V1(s); u)W (du ds) (3.10)

and

Ai(t) = Ai(0) +
∫ t

0
Ai(s)T(Xi(s); V1(s)) dBi(s) +

∫ t

0
Ai(s)d(Xi(s); V1(s)) ds

+
∫
U×[0; t]

Ai(s)�(Xi(s); V1(s); u)W (du ds): (3.11)

Let V±
2 (t) be given by

V±
2 (t) = lim

n→∞
1
n

∞∑
i=1

A±
i (t)�Xi(t): (3.12)

As in Theorem 3.1, V+2 and V−
2 are solutions of

〈�;U (t)〉= 〈�;U (0)〉+
∫ t

0
〈d(·; V1(s))�+ L(V1(s))�;U (s)〉 ds

+
∫
U×[0; t]

〈�(·; V1(s); u)�+ �T(·; V1(s); u)∇�;U (s)〉W (du ds): (3.13)

By Corollary 3.1, V+2 and V−
2 (and hence V2 =V+2 −V−

2 ) are H0-valued. In particular,
V2 is an H0-valued solution of (3.13). Since V1 is also an H0-valued solution of (3.13),
it follows from Theorem 3.4 that V2 = V1. Hence, V1 corresponds to a solution of the
system (1.2)–(1.4). By the uniqueness of the solution of this system we see that
V (t) = V1(t).
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4. Relationship to �ltering equations

Consider a �ltering model with a signal given by

X (t) = X (0) +
∫ t

0
�(X (s)) dB(s) +

∫ t

0
b(X (s)) ds

and the observations given as a set indexed process

Y (A; t) =
∫ t

0

∫
A
h(X (s); u)�(du) +W (A; t):

Intuitively, think of Y as representing observations of spatially distributed information.
The corresponding Zakai equation, in weak form, is

〈�; V (t)〉= 〈�; V (0)〉+
∫ t

0
〈L�; V (s)〉 ds+

∫
U×[0; t]

〈�h(·; u); V (s)〉Y (du ds);

where

L�(x) =
1
2

∑
ij

aij(x)@xi@xj�(x) +
∑

i

bi(x)@xi�(x)

with a(x) = �(x)�(x)T. The Kushner–Stratonovich equation is

〈�; �(t)〉= 〈�; �(0)〉+
∫ t

0
〈L�; �(s)〉 ds

−
∫
U×[0; t]

(〈�h(·; u); �(s)〉〈h(·; u); �(s)〉−〈�; �(s)〉〈h(·; u)�(s)〉2)�(du) ds

+
∫
U×[0; t]

(〈�h(·; u); �(s)〉 − 〈�; �(s)〉〈h(·; u); �(s)〉)Y (du ds);

and V and � are related by

〈�; �〉= 〈�; V (t)〉
〈�; 1〉 :

Following the standard reference measure approach to �ltering, we can think of Y as
being Gaussian white noise de�ned on the Girsanov-transformed probability space, and
with that interpretation, both equations are of the form (1.6).
In particular, for the Zakai equation, we have

d= 0;
�(x; �; u) = h(x; u);
�= 0;
= 0;

and the system is

Xi(t) = Xi(0) +
∫ t

0
�(Xi(s)) dBi(s) +

∫ t

0
b(Xi(s)) ds

Ai(t) = Ai(0) +
∫
U×[0; t]

Ai(s)h(Xi(s); u)Y (du ds):
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For the Kushner–Stratonovich equation,

d(x; �) =−
∫
U
(〈h(·; u); �〉(h(x; u)− 〈h(·; u); �〉))�(du);

�(x; �; u) = h(x; u)− 〈h(·; u); �〉;

�= 0;

= 0;

and the system becomes

Xi(t) = Xi(0) +
∫ t

0
�(Xi(s); dBi(s) +

∫ t

0
b(Xi(s)) ds;

Ai(t) = Ai(0)−
∫ t

0

∫
U
Ai(s)(〈h(·; u); �(s)〉(h(Xi(s); u)− 〈h(·; u); �(s)〉)�(du) ds

+
∫
U×[0; t]

Ai(s)(h(Xi(s); u)− 〈h(·; u); �(s)〉)Y (du ds)

with

�(t) = lim
n→∞

1
n

n∑
i=1

Ai(t)�Xi(t):

De�ne

P(t) = lim
n→∞

1
n

n∑
i=1

Ai(t):

Then

P(t) = P(0)−
∫ t

0
(1− P(s))

∫
U
〈h(·; u); �(s)〉2�(du) ds

+
∫
U×[0; t]

(1− P(s))〈h(·; u); �(s)〉Y (du ds);

so it follows that if P(0) = 1, then P(t) = 1, t¿0, and �(t) must be a probability
measure.
Note that the representation for the Zakai equation is just Monte Carlo integration

of the Kallianpur–Striebel formula which was studied in Del Moral (1995). These
representations are also closely related to the branching particle methods considered in
Crisan and Lyons (1997) and Crisan et al. (1998).
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