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Abstract

The fact that the solution of a martingale problem for a diffusion process gives a
weak solution of the corresponding Itô equation is well-known since the original work
of Stroock and Varadhan. The result is typically proved by constructing the driving
Brownian motion from the solution of the martingale problem and perhaps an auxiliary
Brownian motion. This constructive approach is much more challenging for more
general Markov processes where one would be required to construct a Poisson random
measure from the sample paths of the solution of the martingale problem. A “soft”
approach to this equivalence is presented here which begins with a joint martingale
problem for the solution of the desired stochastic equation and the driving processes and
applies a Markov mapping theorem to show that any solution of the original martingale
problem corresponds to a solution of the joint martingale problem. These results
coupled with earlier results on the equivalence of forward equations and martingale
problems show that the three standard approaches to specifying Markov processes
(stochastic equations, martingale problems, and forward equations) are, under very
general conditions, equivalent in the sense that existence and/or uniqueness of one
implies existence and/or uniqueness for the other two.
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1 Introduction.

Let X be a solution of an Itô equation

X(t) = X(0) +

∫ t

0

σ(X(s))dW (s) +

∫ t

0

b(X(s))ds, (1.1)

where X has values in Rd, W is standard, m-dimensional Brownian motion, σ is a locally
bounded d×m-matrix-valued function, and b is a locally bounded Rd-valued function. Let
L be the corresponding differential generator

Lf(x) =
1

2

∑
i,j

aij(x)
∂2

∂xi∂xj
f(x) +

∑
i

bi(x)
∂

∂xi
f(x).

If we define Af = Lf for f ∈ D(A) ≡ C2
c (Rd), the twice continuously differentiable functions

with compact support in Rd, then it follows from Itô’s formula and the properties of the Itô
integral that

f(X(t))− f(X(0))−
∫ t

0

Af(X(s))ds =

∫ t

0

∇f(X(s))Tσ(X(s))dW (s) (1.2)

is a martingale and hence that X is a solution of the martingale problem for A (or more
precisely, the CRd [0,∞)-martingale problem for A). That the converse to this observation
is, in a useful sense, true is an important fact observed early in the study of martingale
problems for diffusion processes (Stroock and Varadhan (1972)). To state precisely the sense
in which the assertion is true, we say that a process X with sample paths in CRd [0,∞) is a
weak solution of (1.1) if and only if there exists a probability space (Ω,F , P ) and stochastic

processes X̃ and W̃ adapted to a filtration {Ft} such that X̃ has the same distribution as

X, W̃ is an {Ft}-Brownian motion, and

X̃(t) = X̃(0) +

∫ t

0

σ(X̃(s))dW̃ (s) +

∫ t

0

b(X̃(s))ds. (1.3)

We then have

Theorem 1.1 X is a solution of the CRd [0,∞)-martingale problem for A if and only if X
is a weak solution of (1.1).

Taking expectations in (1.2) we obtain the identity

νtf = ν0f +

∫ t

0

νsAfds, f ∈ D(A), (1.4)

which is just the weak form of the forward equation for {νt}, the one-dimensional distribu-
tions of X. The converse of the observation that every solution of the martingale problem
gives a solution of the forward equation is also true, and we have the following theorem. (See
the construction in Ethier and Kurtz (1986), Theorem 4.9.19, or Kurtz (1998), Theorem 2.6.)
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Theorem 1.2 If X is a solution of the martingale problem for A, then {νt}, the one-
dimensional distributions of X, is a solution of the forward equation (1.4). If {νt} is a
solution of (1.4), then there exists a solution X of the martingale problem for A such that
{νt} are the one-dimensional distributions of X.

Note that Theorem 1.1, as stated, applies to solutions of the CRd [0,∞)-martingale prob-
lem, that is, solutions whose sample paths are in CRd [0,∞), while Theorem 1.2 does not
have this restriction. In general, we cannot rule out the possibility that a solution of (1.1)
hits infinity in finite time unless we add additional restrictions to the coefficients. One way
around this issue is to allow X to take values in Rd∆, the one-point compactification of Rd,
and to allow νt to be in P(Rd∆). To avoid problems with the definition of the stochastic
integral in (1.1), we can replace (1.1) by the requirement that (1.2) hold for all f ∈ C2

c (Rd),
extending f to Rd∆ by defining f(∆) = 0.

Given an initial distribution ν0 ∈ P(Rd∆), we say that uniqueness holds for the mar-
tingale problem (or CRd [0,∞)-martingale problem) for (A, ν0) if any two solutions of the
martingale problem (resp. CRd [0,∞)-martingale problem) for A with initial distribution ν0

have the same finite dimensional distributions. Similarly, weak uniqueness holds for (1.2)
(or (1.1)) with initial distribution ν0 if any two weak solutions of (1.2) (resp. (1.1)) with
initial distribution ν0 have the same finite dimensional distributions, and uniqueness holds
for the forward equation (1.4) if any two solutions with initial distribution ν0 are the same.

Note that neither Theorem 1.1 nor Theorem 1.2 assumes uniqueness. Consequently,
existence and uniqueness for the three problems are equivalent.

Corollary 1.3 Let ν0 ∈ P(Rd). The following are equivalent:

a) Uniqueness holds for the martingale problem for (A, ν0).

b) Weak uniqueness holds for (1.2) with initial distribution ν0.

c) Uniqueness holds for (1.4) with initial distribution ν0.

The usual proof of Theorem 1.1 involves the construction of W in terms of the given
solution X of the martingale problem. If d = m and σ is nonsingular, this construction is
simple. In particular, if we define

M(t) = X(t)−
∫ t

0

b(X(s))ds,

then

W (t) =

∫ t

0

σ−1(X(s))dM(s),

where σ−1 denotes the inverse of σ. If σ is singular, the construction involves an auxiliary
Brownian motion independent of X. (See, for example, Stroock and Varadhan (1979),
Theorems 4.5.1 and 4.5.2, or Ethier and Kurtz (1986), Theorem 5.3.3.)

A possible alternative approach is to consider the process Z = (X, Y ) = (X, Y (0) +W ).
Of course

dZ(t) = d

(
X(t)

Y (0) +W (t)

)
=

(
σ(X(t))

I

)
dW (t) +

(
b(X(t)

0

)
dt. (1.5)
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Note that each weak solution of (1.1) gives a weak solution of (1.5) and each weak solution of
(1.5) gives a weak solution of (1.1). As before, using Itô’s formula, it is simple to compute the

generator Â corresponding to (1.5) (take the domain to be C2
c (Rd+m)). Furthermore, since

if one knows Z one knows W , it follows immediately that every solution of the martingale
problem for Â is a weak solution of the stochastic differential equation. In particular, weak
uniqueness for (1.5) implies uniqueness for the martingale problem for Â. Note, however,

that the assertion that every solution of the martingale problem for Â is a weak solution
of (1.5) (and hence gives a weak solution of (1.1)) does not immediately imply that every
solution of the martingale problem for A is a weak solution of (1.1) since we must obtain the
driving Brownian motion. In particular, we cannot immediately conclude that uniqueness
for (1.1) implies uniqueness for the martingale problem for A.

In fact, however, an argument along the lines described can be used to show that each
solution of the martingale problem for A is a weak solution of (1.1). For simplicity, assume
d = m = 1. Instead of augmenting the state by Y (0) +W , augment the state by

Y (t) = Y (0) +W (t) mod 2π.

We can still recover W from observations of the increments of Y . For example, if we set

ζ(t) =

(
cos(Y (t)) +

∫ t
0

1
2

cos(Y (s))ds

sin(Y (t)) +
∫ t

0
1
2

sin(Y (s))ds

)
, (1.6)

and

W (t) =

∫ t

0

(− sin(Y (s)), cos(Y (s)))dζ(s), (1.7)

then W is a standard Brownian motion and ζ satisfies

dζ(t) =

(
− sin(Y (t)
cos(Y (t))

)
dW (t). (1.8)

The introduction of Y may look strange, but the heart of our argument depends on being
able to compute the conditional distribution of Y (t) given FXt ≡ σ(X(s) : s ≤ t). If Y (0) is
uniformly distributed on [0, 2π] and is independent of W , then the conditional distribution
of Y (t) given FXt is uniform on [0, 2π]. In fact, that is the conditional distribution even if
we condition on both X and W .

LetD(Â) be the collection of f ∈ C2
c (R×[0, 2π)) such that f(x, 0) = f(x, 2π−), fy(x, 0) =

fy(x, 2π−), and fyy(x, 0) = fyy(x, 2π−). Applying Itô’s formula, for f ∈ D(Â), we have

Âf =
1

2
σ2fxx + σfxy +

1

2
fyy + bfx.

Suppose Z = (X, Y ) is a solution of the martingale problem for Â, and define ζ by (1.6)
and W by (1.7). Applying Lemma A.1 with f1(x, y) = f(x), f2(x, y) = cos(y), f3(x, y) =
sin(y), g1(x, y) = 1, g2(x, y) = f ′(x)σ(x) sin(y), and g3(x, y) = −f ′(x)σ(x) cos(y) implies

M(t) = f(X(t))− f(X(0))−
∫ t

0

Af(X(s))ds

+

∫ t

0

f ′(X(s))σ(X(s)) sin(Y (s))dζ1(s)−
∫ t

0

f ′(X(s))σ(X(s)) cos(Y (s))dζ2(s)
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satisfies 〈M〉 ≡ 0 so M ≡ 0 and hence

f(X(t)) = f(X(0)) +

∫ t

0

f ′(X(s))σ(X(s))dW (s) +

∫ t

0

Af(X(s))ds. (1.9)

It follows that any solution of the martingale problem for Â satisfying sups≤t |X(s)| < ∞
a.s. for each t is a weak solution of (1.1).

Of course, this last observation does not prove Theorem 1.1. We still have the question
of whether or not every solution of the martingale problem for A corresponds to a solution
of the martingale problem for Â. The following result from Kurtz (1998) provides the tools
needed to answer this question affirmatively. Let (E, r) be a complete, separable metric
space, B(E), the bounded, measurable functions on E, and C(E), the bounded continuous

functions on E. If E is locally compact, then Ĉ(E) will denote the continuous functions
vanishing at infinity. We say that an operator B ⊂ B(E)×B(E) is separable if there exists
a countable subset {gk} ⊂ D(B) such that B is contained in the bounded, pointwise closure
of the linear span of {(gk, Bgk)}. B is a pre-generator if it is dissipative and there are
sequences of functions µn : E → P(E) and λn : E → [0,∞) such that for each (f, g) ∈ B

g(x) = lim
n→∞

λn(x)

∫
S
(f(y)− f(x))µn(x, dy), (1.10)

for each x ∈ E.
For a measurable, E0-valued process U , F̂Ut is the completion of σ(

∫ r
0
h(U(s))ds : r ≤

t, h ∈ B(E0)) ∨ σ(U(0)). Let TU = {t : U(t) is F̂Ut -measurable}. (TU has full Lebesgue
measure, and if U is cadlag with no fixed points of discontinuity, then TU = [0,∞). See
Appendix A.2 of Kurtz and Nappo (2009).) Let ME0 [0,∞) be the space of measurable
functions from [0,∞) to E0 topologized by convergence in Lebesgue measure.

Theorem 1.4 Suppose that B ⊂ C(E) × C(E) is separable and a pre-generator and that
D(B) is closed under multiplication and separates points in E. Let (E0, r0) be a complete,
separable metric space, γ : E → E0 be Borel measurable, and α be a transition function
from E0 into E (y ∈ E0 → α(y, ·) ∈ P(E) is Borel measurable) satisfying α(y, γ−1(y)) = 1.
Define

C = {(
∫
E

f(z)α(·, dz),
∫
E

Bf(z)α(·, dz)) : f ∈ D(B)} .

Let µ0 ∈ P(E0), and define ν0 =
∫
α(y, ·)µ0(dy). If Ũ is a solution of the martingale problem

for (C, µ0), then there exists a solution V of the martingale problem for (B, ν0) such that Ũ
has the same distribution on ME0 [0,∞) as U = γ ◦ V and

P{V (t) ∈ Γ|F̂Ut } = α(U(t),Γ), Γ ∈ B(E), t ∈ TU . (1.11)

If Ũ (and hence U) has a modification with sample paths in DE[0,∞), then the modified Ũ
and U have the same distribution on DE[0,∞).

Assume that σ and b in (1.1) are continuous. (This assumption can be removed with
the application of more complicated technology. See Section 4.) Let B in the statement of
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Theorem 1.4 be Â, E = R× [0, 2π), E0 = R, γ(x, y) = x, and for f ∈ B(R× [0, 2π)), define

αf(x) = 1
2π

∫ 2π

0
f(x, y)dy. For f ∈ D(Â), a straight forward calculation gives

αÂf(x) = Aαf(x),

so A = C. It follows that if X is a solution of the martingale problem for A, then there
exists a solution (X̃, Ỹ ) of the martingale problem for Â such that X and X̃ have the
same distribution. Consequently, if X has sample paths in CR[0,∞), then X is a weak
solution for (1.1), and Theorem 1.1 follows. Every solution of the martingale problem for A
will have a modification with sample paths in DR∆ [0,∞), where R∆ denotes the one-point
compactification of R, and any solution with sample paths in DR[0,∞) will, in fact, have
sample paths in CR[0,∞).

Invoking Theorem 1.4 is obviously a much less straight forward approach to Theorem
1.1 than the usual argument; however, the state augmentation approach extends easily to
much more general settings in which the constructive argument becomes technically very
complicated if not impossible.

2 Stochastic differential equations for Markov processes.

Typically, a Markov process X in Rd has a generator of the form

Af(x) =
1

2

d∑
i,j=1

aij(x)
∂2

∂xi∂xj
f(x)+b̂(x)·∇f(x)+

∫
Rd

(f(x+y)−f(x)−1B1(y)y·∇f(x))η(x, dy)

where B1 is the ball of radius 1 centered at the origin and η satisfies∫
1 ∧ |y2|η(x, dy) <∞ (2.1)

for each x. (See, for example, Stroock (1975), Çinlar, Jacod, Protter, and Sharpe (1980).)
The three terms are, respectively, the diffusion term, the drift term, and the jump term.
In particular, η(x,Γ) gives the “rate” at which jumps satisfying X(s) − X(s−) ∈ Γ occur.
Note that B1 can be replaced by any set C containing an open neighborhood of the origin
provided that the drift term is replaced by

bC(x) · ∇f(x) =

(
b(x) +

∫
Rd

y(1C(y)− 1B1(y))η(x, dy)

)
· ∇f(x).

Suppose that there exist λ : Rd × S → [0, 1], γ : Rd × S → Rd, and a σ-finite measure ν
on a measurable space (S,S) such that

η(x,Γ) =

∫
S

λ(x, u)1Γ(γ(x, u))ν(du).
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This representation is always possible. In fact, there are many such representations. For
example, we can rewrite

η(x,Γ) =

∫
S

λ(x, u)1[0,1](|γ(x, u|))1Γ(γ(x, u))ν(du)

+

∫
S

λ(x, u)1(1,∞)(|γ(x, u|))1Γ(γ(x, u))ν(du)

=

∫
S

λ1(x, u)1Γ(γ(x, u))ν(du) +

∫
S

λ2(x, u)1Γ(γ(x, u))ν(du)

=

∫
S1

λ(x, u)1Γ(γ(x, u))ν(du) +

∫
S2

λ(x, u)1Γ(γ(x, u))ν(du),

where S1 and S2 are copies of S and λ on S1 is given by λ1 and λ on S2 is given by λ2.
Noting that 1S1(u) = 1B1(γ(x, u)), we can replace S by S1 ∪ S2, and assuming∫

S

λ(x, u)(1S1(u)|γ(x, u)|2 + 1S2(u))ν(du) <∞,

Af(x) =
1

2

d∑
i,j=1

aij(x)
∂2

∂xi∂xj
f(x) + b(x) · ∇f(x) (2.2)

+

∫
S

λ(x, u)(f(x+ γ(x, u))− f(x)− 1S1(u)γ(x, u) · ∇f(x))ν(du).

We will take D(A) = C2
c (Rd) and assume that for f ∈ D(A), Af ∈ C(Rd). Removal

of the continuity assumption will be discussed in Section 4. The assumption that Af is
bounded can also be relaxed, but that issue is not addressed here.

Let ξ be a Poisson random measure on [0, 1]×S× [0,∞) with mean measure m× ν×m,

and let ξ̃(A) = ξ(A) − m × ν × m(A). Let (S0,S0) be a measurable space, µ a σ-finite
measure on (S0,S0), W a Gaussian white noise on S0×[0,∞) satisfying E[W (A, s)W (B, t)] =
s ∧ tµ(A ∩B), and σ : Rd × S0 → Rd satisfying

∫
S0
|σ(x, u)|2µ(du) <∞ and

a(x) =

∫
S0

σ(x, u)σT (x, u)µ(du).

Again, there are many possible choices for µ and σ. The usual form for an Itô equation
corresponds to taking µ to be counting measure on a finite set S0.

Assume that for each compact K ⊂ Rd

sup
x∈K

(
|b(x)|+

∫
S0

|σ(x, u)|2µ(du) +

∫
S1

λ(x, u)|γ(x, u)|2ν(du) (2.3)

+

∫
S2

λ(x, u)|γ(x, u)| ∧ 1ν(du)
)
<∞.
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Then X should satisfy a stochastic differential equation of the form

X(t) = X(0) +

∫
S0×[0,t]

σ(X(s), u)W (du× ds) +

∫ t

0

b(X(s))ds (2.4)

+

∫
[0,1]×S1×[0,t]

1[0,λ(X(s−),u)](v)γ(X(s−), u)ξ̃(dv × du× ds)

+

∫
[0,1]×S2×[0,t]

1[0,λ(X(s−),u)](v)γ(X(s−), u)ξ(dv × du× ds),

for t < τ∞ ≡ limk→∞ inf{t : |X(t−)| or |X(t)| ≥ k}. Stochastic equations of this form
appeared first in Itô (1951).

An application of Itô’s formula again shows that any solution of (2.4) gives a solution
of the martingale problem for A. We will apply an extension of Theorem 1.4 to show that
every solution of the DRd [0,∞)-martingale problem for A is a weak solution of (2.4), or more
generally, we can replace (2.4) by the analog of (1.2) and drop the requirement that the
solution have sample paths in DRd [0,∞). (In any case, the solution will have a modification
with sample paths in DRd∆ [0,∞).)

As in the introduction, we will need to represent the driving processes W and ξ in terms
of processes whose conditional distributions given X are their stationary distributions. To
avoid the danger of measure-theoretic or functional-analytic faux-pas, we will assume that S
and S0 are complete, separable metric spaces and that ν and µ are σ-finite Borel measures.

2.1 Representation of W by stationary processes.

Let ϕ1, ϕ2, . . . be a complete, orthonormal basis for L2(µ). Then W is completely determined
by

W (ϕi, t) =

∫
S0×[0,t]

ϕi(u)W (du× ds), i = 1, 2, . . . .

In particular, if H is an {Ft}-adapted process with sample paths in DL2(µ)[0,∞), then∫
S0×[0,t]

H(s−, u)W (du× ds) =
∞∑
i=1

∫ t

0

〈H(s−, ·), ϕi〉dW (ϕi, s).

In turn, if we define Yi(t) = Yi(0) +W (ϕi, t) mod 2π and

ζi(t) =

(
cos(Yi(t)) +

∫ t
0

1
2

cos(Yi(s))ds

sin(Yi(t)) +
∫ t

0
1
2

sin(Yi(s))ds

)
=

(
−
∫ t

0
sin(Yi(s))dW (ϕi, s)∫ t

0
cos(Yi(s))dW (ϕi, s)

)
,

then

W (ϕi, t) =

∫ t

0

(− sin(Yi(s)), cos(Yi(s))) dζi(s), (2.5)

and hence,∫
S0×[0,t]

H(s, u)W (du× ds) =
∞∑
i=1

∫ t

0

〈H(s, ·), ϕi〉(− sin(Yi(s)), cos(Yi(s)))dζi(s).
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Note that if Yi(0) is uniformly distributed on [0, 2π) and independent of W , then Yi is a
stationary process and for each t, the Yi(t) are independent and independent of σ(W (ϕj, s) :
s ≤ t, j = 1, 2, . . .). Identifying 2π with 0, [0, 2π) is compact and Y = {Yi} is a Markov
process with compact state space [0, 2π)∞

2.2 Representation of ξ by stationary processes.

Let {Di} ⊂ B(S) be a partition of S satisfying ν(Di) <∞, and define ξi(C1 ×C2 × [0, t]) =
ξ(C1 ×C2 ∩Di × [0, t]). Then the ξi are independent Poisson random measures, and setting
Ni(t) = ξ([0, 1]×Di × [0, t]), ξi can be written as

ξi(· × [0, t]) =

Ni(t)−1∑
i=0

δ(Vi,k,Uik),

where {Vi,k, Ui,k, i ≥ 1, k ≥ 0} are independent, Vi,k is uniform-[0, 1], and Ui,k is Di-valued
with distribution

βi ≡
ν(· ∩Di)

ν(Di)
.

Define
Zi(t) = (Vi,Ni(t), Ui,Ni(t)).

Then Zi is a Markov process with stationary distribution ` × βi, where ` is the uniform
distribution on [0, 1], and Zi(t) is independent of σ(ξ(· × [0, s]), s ≤ t).

Since, with probability one, Vi,k 6= Vi,k+1, Ni can be recovered from Zi, and since∫
[0,1]×S×[0,t]

H(v, u, s−)ξ(dv × du× ds) =
∑
i

∫ t

0

H(Zi(s−), s−)dNi(s),

ξ can be recovered from {Zi}.

2.3 Equivalence to martingale problem

To simplify notation, we will replace 1[0,λ(x,u)](v)γ(x, u) by γ(x, u). There is no loss of
generality since S is arbitrary and we can replace [0, 1]×S by S. Under the new notation, ξ
is a Poisson random measure on S × [0,∞) with mean measure ν ×m. We will also assume
that ν is nonatomic so it is still the case that, with probability one, Ni can be recovered
from observations of Zi.

Let D0 ⊂ C2([0, 2π)) be the collection of functions satisfying f(0) = f(2π−), f ′(0) =
f ′(2π−), and f ′′(0) = f ′′(2π−), and let Di = C(Di). Define

D(Â) = {f0(x)

m1∏
i=1

f1i(yi)

m2∏
i=1

f2i(zi) : f0 ∈ C2
c (Rd), f1i ∈ D0, f2i ∈ Di},

and for f ∈ D(Â), derive Âf by applying Itô’s formula to

f0(X(t))

m1∏
i=1

f1i(Yi(t))

m2∏
i=1

f2i(Zi(t)).
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Define Lx by

Lxf(x) =
1

2

d∑
i,j=1

aij(x)
∂2

∂xi∂xj
f(x) + b(x) · ∇f(x),

and Ly by

Lyf(y) =
1

2

∑
k

∂2

∂y2
k

f(y).

Note that Lx would be the generator for X if γ were zero and Ly is the generator for
Y = {Yi}. The quadratic covariation of Xi and Yk is

[Xi, Yk] =

∫ t

0

cik(X(s))ds,

where cik(x) =
∫
S0
σi(x, u)ϕk(u)µ(du), so define Lxy by

Lxyf(x, y) =
∑
i,k

cik(x)∂xi∂ykf(x, y).

For u ∈ S and z ∈
∏

iDi, let ρ(z, u) be the element of
∏

iDi obtained by replacing zi by u
provided u ∈ Di. Define

Jif(x, y, z) =

∫
Di

(
f(x+ γ(x, zi), y, ρ(z, u))− f(x, y, z)

−1S1(u)γ(x, u) · ∇xf(x, y, z)
)
ν(du)

=

∫
Di

(
f(x+ γ(x, zi), y, ρ(z, u))− f(x+ γ(x, u), y, z)

)
ν(du)

+

∫ (
f(x+ γ(x, u), y, z)− f(x, y, z)− 1S1(u)γ(x, u) · ∇xf(x, y, z)

)
Then, at least formally, by Itô’s formula,

f(X(t), Y (t), Z(t))− f(X(0), Y (0), Z(0))−
∫ t

0

Âf(X(s), Y (s), Z(s))ds

is a martingale for

Âf(x, y, z) = Lxf(x, y, z) + Lyf(x, y, z) + Lxyf(x, y, z) +
∑
i

Jif(x, y, z)

=

m1∏
i=1

f1i(yi)

m2∏
i=1

f2i(zi)Af0(x) + Lyf(x, y, z) + Lxyf(x, y, z)

+
∑
i

∫
Di

(
f(x+ γ(x, zi), y, ρ(z, u))− f(x+ γ(x, u), y, z)

)
ν(du).
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Unfortunately, in general,
∑

i Ji may not converge. Consequently, the extension needs to
be done one step at a time, so define Zn = (Z1, . . . , Zn) and observe that the generator for
(X, Y, Zn) is

Ânf(x, y, z) = Lxf(x, y, z) + Lyf(x, y, z) + Lxyf(x, y, z) +
n∑
i=1

Jif(x, y, z)

=

m1∏
i=1

f1i(yi)

m2∏
i=1

f2i(zi)Af0(x) + Lyf(x, y, z) + Lxyf(x, y, z)

+
n∑
i=1

∫
Di

(
f(x+ γ(x, zi), y, ρ(z, u))− f(x+ γ(x, u), y, z)

)
ν(du),

where we take D(Ân) = {f ∈ D(Â) : m2 ≤ n}. Note that as long as Af0 ∈ B(Rd),

Ânf ∈ B(Rd × [0, 2π)∞ ×
∏n

i=1Di).

Instead of requiring (X, Y, Z) to be a solution of the martingale problem for Â, for each

n, we require (X, Y, Zn) to be a solution of the martingale problem for Ân.

Lemma 2.1 If for each n, (X, Y, Zn) is a solution of the martingale problem for Ân with
sample paths in DRd∆×[0,2π)∞×

∏n
i=1 Di

[0,∞), W is given by (2.5), and ξ is given by∫
S×[0,t]

g(u)ξ(du× ds) =
∞∑
i=1

∫ t

0

g(Zi(s−))dNi(s),

then (X,W, ξ) satisfies (2.4) for 0 ≤ t < τ∞.

Remark 2.2 Any process (X, Y, Z) such that for each n, (X, Y, Zn) is solution of the martin-

gale problem for Ân will have a modification with sample paths in DRd∆×[0,2π)∞×
∏∞

i=1 Di
[0,∞)

and the modification will satisfy (2.6) for all f ∈ C2
c (Rd), taking f(∆) = 0.

Proof. As in the verification of (1.9) Lemma A.1 can again be used to show that (X,W, ξ)
satisfies

f(X(t)) = f(X(0)) +

∫ t

0

Af(X(s))ds+

∫ t

0

∇f(X(s))Tσ(X(s), u)W (du× ds) (2.6)

+

∫
S×[0,t]

(f(X(s−) + γ(X(s−), u))− f(X(s−))ξ̃(du× ds),

f ∈ C2
c (Rd), t ≥ 0, and it follows that X satisfies (2.4) for 0 ≤ t < τ∞. �

Theorem 2.3 Let A be given by (2.2), and assume that (2.3) is satisfied and that for f ∈
C2
c (Rd), Af ∈ B(Rd). Then any solution of the DRd [0,∞)-martingale problem for A is a

weak solution of (2.4). More generally, any solution of the martingale problem for A has a
modification with sample paths in DRd∆ [0,∞) and is a weak solution of (2.4) on the time
interval [0, τ∞).
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Remark 2.4 We need to relax the requirement in Theorem 1.4 that R(B) ⊂ C(E). This
extension is discussed in Section 4.

Proof. Let βy ∈ P([0, 2π)∞) be the product of uniform distributions on [0, 2π) and βnz ∈∏n
i=1 βi. For x ∈ Rd, αn(x, ·) = δx × βy × βnz ∈ P(Rd × [0, 2π)∞ ×

∏n
i=1 Di). (γn is just the

projection onto Rd.) Computing αnÂnf , observe that αnLxf = Lxαnf , that αnLyf = 0 since

βy is the stationary distribution for Ly, and that αnLxyf = 0 since
∫ 2π

0
∂ykf(x, y, z)dyk = 0.

To see that αnJif = Jiαnf , note that∫
Di

∫
Di

f(x+ γ(x, zi), y, ρ(z, u))ν(du)ν(dzi) =

∫
Di

∫
Di

f(x+ γ(x, u), y, z)ν(du)ν(dzi).

Taking these observations together, we have αnÂnf = Aαnf .
We apply Theorem 4.1. See Section 4. Note that D(Ân) is closed under multiplication.

The separability condition follows from the separability of D(Ân) under the norm

‖f‖∗ = ‖f‖+ ‖∇xf‖+ ‖∂2
xf‖.

The pre-generator condition for B and Bn defined in Section 4 follows from existence of
solutions of the martingale problem for Bvnf ≡ Bnf(·, v). (See the discussion in Section 2

of Kurtz (1998).) Consequently, taking C = A and B = Ân in Theorem 4.1, any solution

X̃ of the martingale problem for A corresponds to a solution (X, Y, Zn) of the martingale

problem for Ân. But note also, that βnÂn+1f = Ânβnf for f ∈ D(Ân+1). Consequently, any

solution the martingale problem for Ân extends to a solution of the martingale problem for
Ân+1. By induction, we obtain the process (X, Y, Z) so the first part of the theorem follows
by Lemma 2.1.

If X is a solution of the martingale problem for A, then by Ethier and Kurtz (1986),
Corollary 4.3.7, X has a modification with sample paths in DRd∆ [0,∞). For nonnegative
κ ∈ B(Rd), let

γ(t) = inf{s :

∫ s

0

κ−1(X(r))dr ≥ t}.

Then X̃(t) = X(γ(t)) is a solution of the martingale problem for κA. If κ(x) = 1 for |x| ≤ k

and κ(x) = 0 for |x| ≥ k + 1, then for τk ≡ inf{t : |X(t−)| or |X(t)| ≥ k}, X̃(t) = X(t) for

t < τk and X̃ has sample paths in DRd [0,∞). It follows that X̃ is a weak solution of (2.4)
with σ replaced by

√
κσ, b replaced by κb and λ replaced by κλ, and hence X is a weak

solution of the original equation (2.4) for t ∈ [0, τk). Since τ∞ = limk→∞ τk, the theorem
follows. �

Corollary 2.5 Uniqueness holds for the DRd [0,∞)-martingale problem for (A, ν0) if and
only if weak uniqueness holds for (2.4) with initial distribution ν0.

3 Conditions for uniqueness.

In Itô (1951) as well as in later presentations (for example, Skorokhod (1965) and Ikeda
and Watanabe (1989)), L2-estimates are used to prove uniqueness for (2.4). Graham (1992)
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points out the possibility and desirability of using L1-estimates. (In fact, for equations
controlling jump rates with factors like 1[0,λ(X(t),u](v), L1-estimates are essential.) Kurtz and
Protter (1996) develop methods that allow a mixing of L1, L2, and other estimates.

Theorem 3.1 Suppose there exists a constant M such that

|b(x)|+
∫
S0

|σ(x, u)|2µ(du) +

∫
S1

|γ(x, u)|2λ(x, u)ν(du) (3.1)

+

∫
S2

λ(x, u)|γ(x, u)|ν(du) < M,

and √∫
S0

|σ(x, u)− σ(y, u)|2µ(du) ≤ M |x− y| (3.2)

|b(x)− b(y)| ≤ M |x− y| (3.3)∫
S1

(γ(x, u)− γ(y, u))2λ(x, u) ∧ λ(y, u)ν(du) ≤ M |x− y|2 (3.4)∫
S1

|λ(x, u)− λ(y, u)||γ(x, u)− γ(y, u)|ν(du) ≤ M |x− y| (3.5)∫
S2

λ(x, u)||γ(x, u)− γ(y, u)|ν(du) ≤ M |x− y| (3.6)∫
S

|λ(x, u)− λ(y, u)||γ(y, u)|ν(du) ≤ M |x− y|. (3.7)

Then there exists a unique solution of (2.4).

Proof. Suppose X and Y are solutions of (2.4). Then

X(t) (3.8)

= X(0) +

∫
S0×[0,t]

σ(X(s), u)W (du× ds) +

∫ t

0

b(X(s))ds

+

∫
[0,∞)×S1×[0,t]

1[0,λ(X(s),u)∧λ(Y (s),u)](v)γ(X(s−), u)ξ̃(dv × du× ds)

+

∫
[0,∞)×S1×[0,t]

1(λ(Y (s−),u)∧λ(X(s−),u),λ(X(s−),u)](v)

γ(X(s−), u)ξ̃(dv × du× ds)

+

∫
[0,∞)×S2×[0,t]

1[0,λ(X(s−),u)](v)γ(X(s−), u)ξ(dv × du× ds),

and similarly with the roles of X and Y interchanged. Then (3.2) and (3.3) give the necessary
Lipschitz conditions for the coefficient functions in the first two integrals on the right, (3.4)
gives an L2-Lipschitz condition for the third integral term, and (3.5), (3.6), and (3.7) give
L1-Lipschitz conditions for the fourth and fifth integral terms on the right. Theorem 7.1 of
Kurtz and Protter (1996) gives uniqueness, and Corollary 7.7 of that paper gives existence.
�
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Corollary 3.2 Suppose that there exists a function M(r) defined for r > 0, such that (3.1)
through (3.7) hold with M replaced by M(|x| ∨ |y|). Then there exists a stopping time
τ∞ and a process X(t) defined for t ∈ [0, τ∞) such that (2.4) is satisfied on [0, τ∞) and

τ∞ = limk→∞ inf{t : |X(t)| or |X(t−)| ≥ k}. If (X̃, τ̃) also has this property, then τ̃ = τ∞
and X̃(t) = X(t), t < τ∞.

Proof. The corollary follows by a standard localization argument. �

4 Equations with measurable coefficients.

Let E and F be complete, separable metric spaces, and let B ⊂ C(E) × C(E × F ). Then
Theorem 1.4 can be extended to generators of the form

Bf(x) =

∫
F

Bf(x, v)η(x, dv), (4.1)

where η is a transition function from E to F , that is, x ∈ E → η(x, ·) ∈ P(F ) is measurable.
Note that B ⊂ C(E) × B(E) but that B may not have range in C(E). (The boundedness
assumption can also be relaxed with the addition of moment conditions.) Theorem 1.4
extends to operators of this form.

Theorem 4.1 Suppose that B given by (4.1) is separable, that for each v ∈ F , Bvf ≡
Bf(·, v) is a pre-generator, and that D(B) is closed under multiplication and separates points
in E. Let (E0, r0) be a complete, separable metric space, γ : E → E0 be Borel measurable,
and α be a transition function from E0 into E (y ∈ E0 → α(y, ·) ∈ P(E) is Borel measurable)
satisfying α(y, γ−1(y)) = 1. Define

C = {(
∫
E

f(z)α(·, dz),
∫
E

Bf(z)α(·, dz)) : f ∈ D(B)} .

Let µ0 ∈ P(E0), and define ν0 =
∫
α(y, ·)µ0(dy). If Ũ is a solution of the martingale problem

for (C, µ0), then there exists a solution V of the martingale problem for (B, ν0) such that Ũ
has the same distribution on ME0 [0,∞) as U = γ ◦ V and

P{V (t) ∈ Γ|F̂Ut } = α(U(t),Γ), Γ ∈ B(E), t ∈ TU . (4.2)

If Ũ (and hence U) has a modification with sample paths in DE[0,∞), then the modified Ũ
and U have the same distribution on DE[0,∞).

Proof. See Corollary 3.5, Theorem 2.7, and Theorem 2.9d of Kurtz (1998). �

To apply this result in the proof of Theorem 2.3, we must show that Ân can be written
in the form (4.1). Suppose that for each compact K ⊂ Rd,

sup
x∈K

(|a(x)|+ |b(x)|+
∫
S1

|γ(x, u)|2ν(du) +

∫
S2

|γ(x, u)| ∧ 1ν(du) <∞.
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Let F1 be the space of d × d nonnegative definite matrices with the usual matrix norm,
F2 = Rd, and F3 the space of Rd-valued functions on S such that∫

S1

|γ(u)|2ν(du) +

∫
S2

|γ(u)| ∧ 1ν(du)) <∞.

We can define a metric on F3 by

d4(γ1, γ2) =

√∫
S1

|γ1(u)− γ2(u)|2ν(du) +

∫
S2

|γ1(u)− γ2(u)| ∧ 1ν(du).

Then F = F1 × F2 × F3 is a complete, separable metric space, and for v = (v1, v2, v3) ∈ F ,

Bf(x, v) =
1

2

d∑
i,j=1

v1
ij

∂2

∂xi∂xj
f(x) + v2 · ∇f(x) (4.3)

+

∫
S

(f(x+ v3(u))− f(x)− 1S1(u)v3(u) · ∇f(x))ν(du)

is the generator of a Levy process in Rd. Let

η(x, ·) = δ(a(x),b(x),γ(x,·)).

Then

Af(x) =

∫
Bf(x, v)η(x, dv).

Similarly, we can define Bn to include Y and Zn so that

Ânf(x, y, z) =

∫
Bnf(x, y, z, v)η(x, dv).

A Appendix.

Lemma A.1 Let A ⊂ B(E) × B(E), and let X be a cadlag solution of the martingale
problem for A. For each f ∈ D(A), define

Mf (t) = f(X(t))−
∫ t

0

Af(X(s))ds.

Suppose D(A) is an algebra and that f◦X is cadlag for each f ∈ D(A). Let f1, . . . , fm ∈ D(A)
and g1, . . . , gm ∈ B(E). Then

M(t) =
m∑
i=1

∫ t

0

gi(X(s−))dMfi(s)

is a square integrable martingale with Meyer process

〈M〉t =
∑

1≤i,j≤m

∫ t

0

gi(X(s))gj(X(s))(Afifj(X(s))−fi(X(s))Afj(X(s))−fj(X(s))Afi(X(s)))ds.

15



Proof. The lemma follows by standard properties of stochastic integrals and the fact that

〈Mf1 ,Mf2〉t =

∫ t

0

(Af1f2(X(s))− f1(X(s))Af2(X(s))− f2(X(s))Af1(X(s)))ds.

This identity can be obtained by applying Itô’s formula to f1(X(t))f2(X(t)) and the fact
that [f1 ◦X, f2 ◦X]t = [Mf1 ,Mf2 ]t to obtain

[Mf1 ,Mf2 ]t = f1(X(t))f2(X(t))− f1(X(0))f2(X(0))−
∫ t

0

Af1f2(X(s))ds

−
∫ t

0

f1(X(s−))dMf2(s)−
∫ t

0

f2(X(s−))dMf1(s)

+

∫ t

0

(Af1f2(X(s))− f1(X(s))Af2(X(s))− f2(X(s))Af1(X(s)))ds .

Since the first five terms on the right give a martingale and the last term is predictable, the
last term must be 〈Mf1 ,Mf2〉t. �
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