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Spatial Point Processes
and the Projection Method

Nancy L. Garcia and Thomas G. Kurtz

Abstract. The projection method obtains non-trivial point processes from
higher-dimensional Poisson point processes by constructing a random subset
of the higher-dimensional space and projecting the points of the Poisson pro-
cess lying in that set onto the lower-dimensional region. This paper presents
a review of this method related to spatial point processes as well as some
examples of its applications. The results presented here are known for some-
time but were not published before. Also, we present a backward construction
of general spatial pure-birth processes and spatial birth and death processes
based on the projection method that leads to a perfect simulation scheme for
some Gibbs distributions in compact regions.
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1. Introduction

A point process is a model of indistinguishable points distributed randomly in
some space. The simplest assumption that there are no multiple points and events
occurring in disjoint regions of space are independent leads to the well-known Pois-
son point process. However, it is obvious that not all phenomena can be modelled
by a process with independent increments. In [0,∞), any simple point process N
with continuous compensator Λ, that is, N([0, t])−Λ(t) is a local martingale, can
be obtained as a random time change N([0, t]) = Y (Λ(t)), where Y is a unit rate
Poisson process. (See, for example, Proposition 13.4.III, Daley and Vere-Jones,
1988.) More generally, multivariate counting processes with continuous compen-
sators and without simultaneous jumps can be obtained as multiple random time
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changes of independent unit Poisson processes (Meyer (1971), Aalen and Hoem
(1978), Kurtz (1980b), Kurtz (1982)).

The projection method introduced by Kurtz (1989) can be seen as a gener-
alization of the random time change representations. It constructs point processes
through projections of underlying Poisson processes using stopping sets. These
projections are made carefully in order that the projected process inherits many
of the good properties of the Poisson processes. Garcia (1995a and 1995b) used
this method to construct birth and death processes with variable birth and death
rates and to study large population behavior for epidemic models. However, Kurtz
(1989) is an unpublished manuscript and the generality of Garcia (1995a) hides
the beauty of the ideas and methods behind technicalities. The goal of this paper
is to present the projection method in detail as well as some examples. Another
form of stochastic equation for spatial birth processes is considered by Massouliè
(1998) and Garcia and Kurtz (2006). The latter paper also considers birth and
death processes.

This paper is organized as follows:
Section 3 is based on Kurtz(1989) and provides a proper presentation of the

projection method and states the basic theorems regarding martingale properties
and moment inequalities for the projected processes. Simple examples, such as
inhomogeneous Poisson processes, M/G/∞ queues, and Cox processes, are pre-
sented.

Section 4 characterizes some of the processes that can be obtained by the
projection method, the result obtained here is more general than the similar one
in Garcia(1995a).

Section 5 presents spatial pure birth processes as projections of Poisson pro-
cesses and derives some consequences, such as ergodicity. Although these results
can be seen as particular cases from Garcia (1995a) the proofs in this case are
simpler and provide much better insight into the use of the projection method.

Section 6 deals with birth and death processes in the special case when the
stationary distribution is a Gibbs distribution, and for the finite case, a backward
scheme provides perfect simulation.

2. Basic definitions

In this work, we are going to identify a point process with the counting measure N
given by assigning unit mass to each point, that is, N(A) is the number of points
in a set A. With this identification in mind, let (S, r) be a complete, separable
metric space, and let N (S) be the collection of σ-finite, Radon counting measures
on S. B(S) will denote the Borel subsets of S. Typically, S ⊂ R

d.
For counting measures, the Radon condition is simply the requirement that

for each compact K ⊂ S, there exists an open set G ⊃ K such that N(G) < ∞.
For a general discussion, see Daley and Vere-Jones (1988). We topologize N (S)
with the vague topology.
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Definition 2.1. A sequence {ξk} ⊂ N (S) converges vaguely to ξ ∈ N (S) if and
only if for each compact K there exists an open G ⊃ K such that

lim
k→∞

∫
fdξk =

∫
fdξ

for all f ∈ Cb(S) with supp(f) ⊂ G.

If ξ is simple, that is ξ({x}) = 0 or 1 for all x ∈ S, then {ξk} converges
vaguely to ξ if and only if there exist representations

ξk =
∞∑
i=1

δxki
, ξ =

∞∑
i=1

δxi

such that for each i, limk→∞ xki = xi.

Definition 2.2. Let µ be a σ-finite, Radon measure on S. A point process N on S
is a Poisson process with mean measure µ if the following conditions hold:

(i) For A1, A2, . . . , Ak ∈ B(S) disjoint sets, N(A1), N(A2), . . . , N(Ak) are inde-
pendent random variables.

(ii) For each A ∈ B(S) and k ≥ 0,

P[N(A) = k] = e−µ(A)µ(A)k

k!
.

Assuming that µ is diffuse, that is, µ{x} = 0 for all x ∈ S, the strong
independence properties of a Poisson process imply that N conditional on n points
of N being sited at x1, x2, . . . , xn has the properties of N +

∑n
k=1 δxk

. Thus, the
process “forgets” where it had the n points and behaves as if it were N with the
n points adjoined. The notion of conditioning in this case is not straightforward
since the the event “having a point at x” has probability zero. Assuming that
µ(Bε(xk)) > 0 for all ε > 0 and k = 1, . . . , n,

lim
ε→0+

E[F (N)|N(Bε(xk)) > 0, k = 1, . . . , n] = E

[
F

(
N +

n∑
k=1

δxk

)]

for all F ∈ Cb(N (S)). As a consequence, we have the following basic identity for
Poisson processes.

Proposition 2.3. Let N be a Poisson process on S with diffuse mean measure µ.
Then

E

[∫
S

f(z,N)N(dz)
]

= E

[∫
S

f(z,N + δz)µ(dz)
]
. (2.1)

For example, let c : S → [0,∞), ρ : S × S → [0,∞) and φ : [0,∞) → [0,∞) be
Borel measurable functions. Then (cf. Garcia (1995a))

E

[∫
S

c(z)φ
(∫

S

ρ(x, z)N(dx)
)
N(dz)

]

=
∫
S

c(z)E
[
φ(ρ(z, z) +

∫
S

ρ(x, z)N(dx))
]
µ(dz).
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Alternatively, we may condition in a formal way in terms of Palm probabilities
and Palm distributions (see Karr (1986, Section 1.7) or Daley and Vere-Jones
(1988, Chapter 12)).

If we have a sequence of Poisson processes Nn with mean measures nµ, defin-
ing the random signed measure Wn by Wn(A) = n−1/2(Nn(A) − nµ(A)), for
A1, . . . , Am Borel sets with µ(Ai) <∞, the central limit theorem gives

(Wn(A1), . . . ,Wn(Am)) D→ (W (A1), . . . ,W (Am)), (2.2)

where W is the mean zero Gaussian process indexed by Borel sets with covariance
E[W (A)W (B)] = µ(A ∩B).

3. Projection method

The basic idea of the projection method is to obtain point processes from higher-
dimensional Poisson processes by constructing a random subset of the higher-
dimensional space and projecting the points of the Poisson process lying in that
set onto the lower-dimensional subspace. This general approach can be used to
construct, for example, Cox processes (the random set is independent of the Pois-
son process), a large class of Gibbs distributions, and birth and death processes
with variable birth and death rates.

This construction gives a natural coupling among point processes and hence
a method to compare results and prove limit theorems. The law of large numbers
and central limit theorem for Poisson processes can be exploited to obtain corre-
sponding results for the point processes under study. Garcia (1995b) studied large
population behavior for epidemic models using the underlying limit theorems for
Poisson processes. Ferrari and Garcia (1998) applied the projection method to the
study of loss networks.

Even though the basic concepts and ideas described in the remainder of
this section were introduced in Kurtz (1989) and were used in Garcia (1995a and
1995b), a number of results appear here for the first time.

3.1. Representation of inhomogeneous Poisson processes as projections of
higher-dimensional homogeneous Poisson processes

Let N be a Poisson random measure on R
d+1 with Lebesgue mean measure m.

Let C ∈ B(Rd+1) and define NC , a point process on R
d, by

NC(A) = N(C ∩A× R), A ∈ B(Rd). (3.1)

Note that NC is a random measure corresponding to the point process ob-
tained by taking the points ofN that lie in C and projecting them onto R

d. Clearly,
NC(A) is Poisson distributed with mean

µC(A) = m(C ∩A× R).
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If µ is an absolutely continuous measure (with respect to Lebesgue measure)
in R

d with density f and C = {(x, y);x ∈ R
d, 0 ≤ y ≤ f(x)}, then NC is a Poisson

random measure on R
d with mean measure µ given by

µC(A) = m(C ∩A× R) =
∫
A

∫ f(x)

0

dy dx =
∫
A

f(x)dx = µ(A).

3.2. M/G/∞ queues

A particular application of the projection method for inhomogeneous Poisson pro-
cesses is the M/G/∞ queue. In fact, Foley (1986) exploits precisely this observa-
tion. Consider a process where clients arrive according to a λ-homogeneous Poisson
process and are served according to a service distribution ν. For simplicity, assume
that there are no clients at time t = 0. Let µ = λm× ν and S = [0,∞) × [0,∞),
and let N be the Poisson process on S with mean measure µ. Define

B(t) = {(x, y) ∈ S;x ≤ t} (3.2)

and
A(t) = {(x, y) ∈ S; y ≤ t− x}. (3.3)

We can identify the points of N in B(t) with customers that arrive by time t
(note that the distribution ofN(B(t)) is Poisson with parameter λ t) and the points
in A(t) are identified with customers that complete service by time t. Therefore,
the points of N in

C(t) = B(t) −A(t) = {(x, y) : x ≤ t, y > t− x}
correspond to the customers in the queue and hence the queue length is

Q(t) = N(C(t)). (3.4)

Notice that we can construct this process starting at −T instead of 0. There-
fore, the system at time 0 in this new construction has the same distribution as
the system at time T in the old construction. In fact, defining

CT (t) = {(x, y) ∈ [−T,∞) × [0,∞);−T ≤ x ≤ t, y ≥ t− x}, (3.5)

and
QT (t) = N(CT (t)), (3.6)

we have that
QT (0) D= Q(T ). (3.7)

Letting T → ∞, we have

CT (0) → {(x, y);x ≤ 0, y ≥ −x}
and

QT (0) → N({(x, y) ∈ R × [0,∞); y ≥ −x ≥ 0}) (3.8)

which implies

Q(T ) ⇒ N({(x, y) ∈ R × [0,∞); y ≥ −x ≥ 0}) (3.9)
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in the original M/G/∞ queue. Even though this result is well known by other
arguments, this “backward construction” can be used for other non trivial cases.
(See Section 6.3.)

3.3. Projections through random sets

The projected process NC defined by (3.1) was a Poisson process due to the fact
that the projection set was deterministic. The construction, however, still makes
sense if the projection set C is random. Let N denote a Poisson process on S =
S1 × S2 with mean measure µ, where S1 and S2 are complete separable metric
spaces. Let Γ be a random subset of S (in general, not independent of N). Define
a point process NΓ on S1 by NΓ(B) = N(Γ ∩B × S2).

For example, if the set Γ is independent of the process N , then NΓ will be a
Cox process (or doubly stochastic Poisson process). In fact, conditioned on Γ, in
the independent case, NΓ is a Poisson process with mean measure µ(Γ ∩ · × S2)
and the mean measure, µΓ(B) ≡ E[NΓ(B)], for NΓ is

µΓ(B) = E[µ(Γ ∩B × S2)]. (3.10)

It is tempting to conjecture that (3.10) holds for other random sets, but in
general, that is not true (e.g., let Γ be the support of N). However, there is a class
of sets for which the identity does hold, the class of stopping sets.

Assume that (Ω,F ,P) is complete and that {FA} is a family of complete
sub-σ-algebras indexed by Borel subsets, A ∈ B(S), having the property that if
A ⊂ B then FA ⊂ FB. A Poisson point process N on S is compatible with {FA},
if for each A ∈ B(S), N(A) is FA-measurable and, for each C ∈ B(S) such that
C ∩A = ∅, N(C) is independent of FA.

For technical reasons, we will restrict attention to Γ with values in the closed
sets C(S), and we will assume that {FA, A ∈ C(S)} is right continuous in the
sense that if {Ak} ⊂ C(S), A1 ⊃ A2 ⊃ · · · , then ∩kFAk

= F∩Ak
. If FA is the

completion of the σ-algebra σ(N(B) : B ∈ B(S), B ⊂ A), then {FA, A ∈ C(S)} is
right continuous.

Definition 3.1. A C(S)-valued random variable Γ is a {FA}-stopping set, if
{Γ ⊂ A} ∈ FA for each A ∈ C(S).

Γ is separable if there exists a countable set {Hn} ⊂ C(S) such that
Γ = ∩{Hn : Hn ⊃ Γ}. Then Γ is separable with respect to {Hn}.

The information σ-algebra, FΓ, is given by

FΓ = {G ∈ F : G ∩ {Γ ⊂ A} ∈ FA for all A ∈ C(S)}.
Remark 3.2. The definition of stopping set used here is from Garcia (1995a). It
differs from the definition used by Ivanoff and Merzbach (1995). A stopping set
in the sense used here is a special case of a generalized stopping time as used
in Kurtz (1980a), and is essentially the same as an adapted set as used in Balan
(2001).
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The significance of separability of Γ is that we can approximate Γ by a de-
creasing sequence of discrete stopping sets. Without loss of generality, we can
always assume H1 = S.

Lemma 3.3. Let Γ be separable with respect to {Hn}, and define Γn = ∩{Hk : k ≤
n,Hk ⊃ Γ}. Then Γn is a stopping set with Γ1 ⊃ Γ2 ⊃ · · · ⊃ Γ and ∩nΓn = Γ.

Proof. Let Sn = {Hi1 ∩ · · · ∩Him : 1 ≤ i1, . . . , im ≤ n}. Then

{Γn ⊂ A} = ∪C⊂A,C∈Sn{Γ ⊂ C} ∈ FA,
so Γn is a stopping set. Separability then implies ∩nΓn = Γ. �

These definitions are clear analogs of the definitions for real-valued stopping
times, and stopping sets have many properties in common with stopping times.

Lemma 3.4. Let Γ,Γ1,Γ2, . . . be {FA}-stopping sets. Then
(i) For A ∈ C(S), {Γ ⊂ A} ∈ FΓ.
(ii) For n = 1, 2, . . ., Γ1 ∪ · · · ∪ Γn is a {FA}-stopping set.
(iii) The closure of ∪∞

i=1Γi is a stopping set.
(iv) If Γ1 ⊂ Γ2, then FΓ1 ⊂ FΓ2 .
(v) If the range of Γ is countable, say R(Γ) = {Ck}, then

FΓ = {B ∈ F : B = ∪k{Γ = Ck} ∩Bk, Bk ∈ FCk
}.

(vi) If Γ is separable and {Γn} are defined as in Lemma 3.3, then for B ∈ B(S),
N(Γ ∩B) is ∩nFΓn-measurable.

Remark 3.5. The intersection of two stopping sets need not be a stopping set.

Proof. {Γ ⊂ A} ∩ {Γ ⊂ B} = {Γ ⊂ A ∩ B} ∈ FA∩B ⊂ FB, for all B ∈ C(S), and
hence, {Γ ⊂ A} ∈ FΓ.

Since {Γi ⊂ A} ∈ FA, {∪ni=1Γi ⊂ A} = ∩ni=1{Γi ⊂ A} ∈ FA. Similarly, since
A is closed,

{cl ∪i Γi ⊂ A} = {∪iΓi ⊂ A} = ∩i{Γi ⊂ A} ∈ FA.
Suppose Γ1 ⊂ Γ2, and let G ∈ FΓ1 . Then

G ∩ {Γ2 ⊂ A} = G ∩ {Γ1 ⊂ A} ∩ {Γ2 ⊂ A} ∈ FA.
If R(Γ) = {Ck}, then

{Γ = Ck} = {Γ ⊂ Ck} − ∪Cj�Ck
{Γ ⊂ Cj} ∈ FCk

.

Similarly, if B ∈ FΓ, Bk ≡ B∩{Γ = Ck} ∈ FCk
, and hence B = ∪k{Γ = Ck}∩Bk

with Bk ∈ FCk
. Conversely, if B = ∪k{Γ = Ck} ∩Bk with Bk ∈ FCk

,

B ∩ {Γ ⊂ A} = ∪Ck⊂A(Bk ∩ {Γ = Ck}) ∈ FA,
so B ∈ FΓ.

Finally, R(Γn) = {Cnk } is countable, so

{N(Γn ∩B) = l} ∩ {Γn ⊂ A} = ∪Cn
k ⊂A{N(Cnk ∩B) = l} ∩ {Γn = Cnk } ∈ FA
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and {N(Γn∩B) = l} ∈ FΓn . Since Γ1 ⊃ Γ2 ⊃ · · · and ∩nΓn = Γ, limn→∞N(Γn∩
B) = N(Γ ∩B) and N(Γ ∩B) is ∩nFΓn -measurable. �

Lemma 3.6. If K ⊂ S is compact, then {Γ∩K = ∅} ∈ FΓ. In particular, for each
x ∈ S, 1Γ(x) is FΓ-measurable.

Proof. If Γ ∩K = ∅, then inf{r(x, y) : x ∈ Γ, y ∈ K} > 0. Consequently, setting
Gn = {y : infx∈K r(x, y) < n−1},

{Γ ∩K = ∅} = ∪n{Γ ∩Gn = ∅} = ∪n{Γ ⊂ Gcn} ∈ FΓ.

For the second statement, note that {1Γ(x) = 0} = {Γ∩{x} = ∅} ∈ FΓ. �

We will need to know that, in some sense, limits of stopping sets are stopping
sets. If we assume that S is locally compact, then this result is simple to formulate.

Lemma 3.7. Assume that S is locally compact. Suppose {Γk} are stopping sets,
and define

Γ = lim sup
k→∞

Γk ≡ ∩mcl ∪k≥m Γk.

Then Γ is a stopping set.

Proof. Let G1 ⊂ G2 ⊂ · · · be open sets with compact closure satisfying ∪nGn =
S, and for A ∈ C(S), let An = {y ∈ S : infx∈A r(x, y) ≤ n−1}. Noting that
A = ∩n(An ∪ Gcn), Γ ⊂ A if and only if for each n, there exists m such that
∪k≥mΓk ⊂ An ∪ Gcn. Otherwise, for some n, there exist xm ∈ ∪k≥mΓk such that
xm ∈ Acn ∩Gn, and by the compactness of clGn, a limit point x of {xm} such that
x ∈ Γ ∩ cl(Acn ∩Gn) ⊂ Ac. Consequently,

{Γ ⊂ A} = ∩n ∪m {∪k≥mΓk ⊂ An ∪Gcn} ∈ ∩nFAn∪Gc
n

= FA. �

Local compactness also simplifies issues regarding separability of stopping
sets. Note that the previous lemma implies that the intersection of a decreasing
sequence of stopping sets is a stopping set.

Lemma 3.8. Let S be locally compact. Then all stopping sets are separable, and if
{Γn} is a decreasing sequence of stopping sets with Γ = ∩nΓn, then Γ is a stopping
set and FΓ = ∩nFΓn.

Proof. Let {xi} be dense in S, εj > 0 with limj→∞ εj = 0, and {Gn} be as in
the proof of Lemma 3.7. Let {Hk} be some ordering of the countable collection
of sets of the form Gcn ∪ ∪ml=1B̄εjl

(xil ) with H1 = S. Then for A ∈ C(S) and
An = ∩{Hk : k ≤ n,A ⊂ Hk}, A = ∩nAn. If G ∈ ∩nFΓn , then

G ∩ {Γ ⊂ A} = ∩nG ∩ {Γ ⊂ An} = ∩nG ∩ {Γn ⊂ An} ∈ FA. �

Theorem 3.9. Let N be a Poisson process in S with mean measure µ and compat-
ible with {FA}. If Γ is a separable {FA}-stopping set and NΓ is the point process
in S1 obtained by projecting the points of N that lie in Γ onto S1, then the mean
measure for NΓ satisfies (3.10) (allowing ∞ = ∞).
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More generally, if Γ(1) and Γ(2) are stopping sets with Γ(1) ⊂ Γ(2), then for
each D satisfying µ(D) <∞,

E[N(Γ(2) ∩D) − µ(Γ(2) ∩D)|FΓ(1) ] = N(Γ(1) ∩D) − µ(Γ(1) ∩D) (3.11)

and
E[NΓ(2)(B) −NΓ(1)(B)] = E[µ((Γ(2) − Γ(1)) ∩B × S2], (3.12)

again allowing ∞ = ∞.

Proof. The independence properties of the Poisson process imply that for each
D ∈ B(S) such that µ(D) <∞,

MD(A) = N(A ∩D) − µ(A ∩D) (3.13)

is a {FA}-martingale. Let {Γn} be the stopping sets with countable range defined
in Lemma 3.3. Then the optional sampling theorem (see Kurtz (1980a)) implies
E[N(Γn ∩D) − µ(Γn ∩D)] = 0, and since Γ1 ⊃ Γ2 ⊃ · · · and Γ = ∩nΓn,

E[N(Γ ∩D) − µ(Γ ∩D)] = 0.

(Note that Γ being a {FA}-stopping set does not imply that Γ ∩ D is a {FA}-
stopping set.) For B ∈ B(S1), assume {Dk} ⊂ B(S) are disjoint, satisfy µ(Dk) <
∞, and ∪kDk = B × S2. Then, by the monotone convergence theorem,

E[N(Γ ∩B × S2)] =
∞∑
k=1

E[N(Γ ∩Dk)] =
∞∑
k=1

E[µ(Γ ∩Dk)] = E[µ(Γ ∩B × S2)],

and the same argument gives (3.11) and (3.12). �

Some martingale properties of this process:

Theorem 3.10. Let N and Γ be as in Theorem 3.9.
(a) If µ(D) <∞, then LD defined by

LD(A) = (N(A ∩D) − µ(A ∩D))2 − µ(A ∩D) (3.14)

is an {FA}-martingale, and if µΓ(B) = E[NΓ(B)] <∞,

E
[
(NΓ(B) − µ(Γ ∩ (B × S2)))2

]
= µΓ(B). (3.15)

(b) If D1, D2 ∈ B(S) are disjoint with µ(D1)+µ(D2) <∞, then MD1 and MD2

(as defined by Equation (3.13)) are orthogonal martingales in the sense that
their product is a martingale. Consequently, if B1, B2 ∈ B(S1) are disjoint
and E[NΓ(B1)] + E[NΓ(B2)] <∞, then

E
[
(NΓ(B1) − µ(Γ ∩ (B1 × S2)))(NΓ(B2) − µ(Γ ∩ (B2 × S2)))

]
= 0.

(c) Let f : S1 × S2 → R+, and let If = {A ⊂ S1 × S2;
∫
A
|ef(z) − 1|µ(dz) <∞}.

Then,

Mf(A) = exp
{∫

A

f(z)N(dz)−
∫
A

(ef(z) − 1)µ(dz)
}

(3.16)
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is an {FA}-martingale for A ∈ If , and therefore, for g : S1 → R+ satisfying
E[exp{∫ g(x)NΓ(dx)}] <∞,

E

[
exp

{∫
g(x)NΓ(dx) −

∫
Γ

(eg(x) − 1)µ(dx× dy)
}]

= 1. (3.17)

Proof. Let {Dk} be as in the proof of Theorem 3.9. Then {N(Γ∩ (B×S1)∩Dk)−
µ(Γ ∩ (B × S1) ∩Dk)} are orthogonal random variables in L2, with

E[(N(Γ ∩ (B × S1) ∩Dk) − µ(Γ ∩ (B × S1) ∩Dk))2] = E[µ(Γ ∩ (B × S1) ∩Dk)].

Consequently, if E[µ(Γ∩ (B×S1))] <∞, the series converges in L2, giving (3.15).
Part (b) follows similarly.
The moment generating functional of N is given by

E[e
∫
f dN ] = exp

{∫
(ef(z) − 1)µ(dz)

}
,

which shows that (3.16) is a martingale. Observing that {Mf(· ∩Dk)} are orthog-
onal martingales, and hence that E[Mf (Γ ∩ ∪lk=1Dk)] = 1, (3.17) follows by the
dominated convergence theorem. �

Definition 3.11. Assume that S = S1 × [0,∞). A random function φ : S1 → [0,∞)
is a {FA}-stopping surface if the set Γφ = {(x, y);x ∈ S1, 0 ≤ y ≤ φ(x)} is a
{FA}-stopping set. (Note that the requirement that Γφ be closed implies φ is
upper semicontinuous.)

For simplicity, we will write Fφ in place of FΓφ
. Furthermore, since Γφ ⊂ A

if and only if for each x ∈ S1,

φ(x) ≤ f(x) = sup{z ≥ 0 : {x} × [0, z] ⊂ A},
we only need to consider A of the form Af = {(x, y) : y ≤ f(x)} for nonnegative,
upper semicontinuous f , that is, we only need to verify that {φ ≤ f} ∈ Ff for
each nonnegative, upper-semicontinuous f . Again we write Ff rather than FAf

.
Furthermore, since an upper-semicontinuous f is the limit of a decreasing sequence
of continuous fn and {φ ≤ f} = ∩n{φ ≤ fn} and Ff = ∩nFfn , it is enough to
verify {φ ≤ f} ∈ Ff for continuous f .

Lemma 3.12. Let φ be a stopping surface. Then
(i) For each x ∈ S1, φ(x) is Fφ- measurable.
(ii) For each compact K ⊂ S1, supx∈K φ(x) is Fφ-measurable.
(iii) If a ≥ 0 is deterministic and upper semicontinuous, then φ+ a is a stopping

surface.

Proof. Since {φ(x) < y} = {Γφ ∩ {(x, y)} = ∅} ∈ Fφ, by Lemma 3.6, φ(x) is
Fφ-measurable.

Since φ assumes its supremum over a compact set, for y ≥ 0,

{sup
x∈K

φ(x) < y} = {Γφ ∩K × {y}} ∈ Fφ.
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For Part (iii), first assume that a is continuous. Then for f continuous, {φ+
a ≤ f} = {φ ≤ f − a} ∈ Ff , and for f upper semicontinuous, there exists a
decreasing sequence of continuous fn converging to f , so

{φ+ a ≤ f} = ∩n{φ+ a ≤ fn} ∈ Fφ.
But this implies that for every nonnegative, upper-semicontinuous g,

{φ+ a ≤ f} ∩ {φ ≤ g} ∈ Fg,
so in particular, {φ+ a ≤ f} = {φ+ a ≤ f} ∩ {φ ≤ f} ∈ Ff , and hence, φ + a is
a stopping surface.

Finally, for a upper semicontinuous, there is a decreasing sequence of contin-
uous functions an converging to a, so Γφ+a = ∩nΓφ+an , and Γφ+a is a stopping
set by Lemma 3.7. �

For a signed measure γ, let T (γ,B) denote the total variation of γ over the
set B. Let φi : S1 → [0,∞), i = 1, 2, be stopping surfaces.

Corollary 3.13. Suppose µ = ν ×m, and write Nφi instead of NΓφi
. Then,

E[T (Nφ1 −Nφ2 , B)] = E

[∫
B

|φ1(x) − φ2(x)|ν(dx)
]
, (3.18)

and consequently,

E

[∣∣∣∣
∫
f(x)Nφ1(dx) −

∫
f(x)Nφ2(dx)

∣∣∣∣
]
≤ E

[∫
|f(x)||φ1(x) − φ2(x)|ν(dx)

]
.

Proof. Note that

T (Nφ1 −Nφ2 , B) = 2Nφ1∨φ2(B) −Nφ1(B) −Nφ2(B),

and since the union of two stopping sets is a stopping set, (3.12) gives (3.18). We
then have

E

[∣∣∣∣
∫
f(x)Nφ1(dx) −

∫
f(x)Nφ2(dx)

∣∣∣∣
]
≤ E

[∫
|f(x)|T (Nφ1 −Nφ2 , dx)

]
(3.19)

≤ E

[∫
|f(x)||φ1(x) − φ2(x)| ν(dx)

]
. �

4. Characterization of point processes as projections of
higher-dimensional Poisson processes

It would be interesting to know which point processes can be obtained as projec-
tions of higher-dimensional Poisson point processes. Gaver, Jacobs and Latouche
(1984) characterized finite birth and death models in randomly changing environ-
ments as Markov processes in a higher-dimensional space. Garcia (1995a) gener-
alizes this idea to other counting processes. We consider processes in Euclidean
space, although most results have analogs in more general spaces. We assume that
all processes are defined on a fixed probability space (Ω,F ,P).
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Let η be a point process on R
d × [0,∞), and let A(Rd) = {B ∈ B(Rd) :

m(B) < ∞}. Define ηt(B) = η(B × [0, t]), B ∈ A(Rd). Assume that ηt(B) is a
counting process for each B ∈ A(Rd) and if B1 ∩ B2 = ∅, that η(B1) and η(B2)
have no simultaneous jumps.

Let {Ft} be a filtration, and let λ : R
d× [0,∞)×Ω → [0,∞) be progressive in

the sense that for each t ≥ 0, λ : R
d× [0, t]×Ω is B(Rd)×B([0, t])×Ft-measurable.

Assume that λ is locally integrable in the sense that
∫
B×[0,t]

λ(x, s)ds < ∞ a.s.
for each B ∈ A(Rd) and each t > 0. Then η has {Ft}-intensity λ (with respect to
Lebesgue measure) if and only if for each B ∈ A(Rd),

ηt(B) −
∫
B×[0,t]

λ(x, s)dxds

is a {Ft}-local martingale.

Theorem 4.1. Suppose that η has {Ft}-intensity λ, λ is upper semicontinuous as a
function of x, and there exists ε > 0 such that λ(x, t) ≥ ε for all x, t, almost surely.
Then there exists a Poisson random measure N on R

d × [0,∞) such that for

Γt =
{

(x, s) : x ∈ R
d, 0 ≤ s ≤

∫ t

0

λ(x, s)ds
}

ηt(B) = N(Γt ∩ (B × [0,∞)), (4.1)

that is, setting φt(x) =
∫ t
0
λ(x, s)ds, ηt = Nφt.

Remark 4.2. The condition that λ is bounded away from zero is necessary to ensure
that γ(t, x) = inf{s; ∫ s0 λ(x, u)du ≥ t} is defined for all t > 0. If this condition does
not hold, we can define

ηεt (B) = ηt(B) + ξ(B × [0, εt]),

where ξ is a Poisson process on R
d × [0,∞) with Lebesgue mean measure that is

independent of ∨tFt. Then it is clear that

ηεt (B) −
∫ t

0

∫
B

(λ(x, s) + ε)dx ds

is a martingale for all B ∈ A(Rd). The theorem then gives the representation

ηεt (B) = N ε(Γεt ∩B × [0,∞))

where Γεt = {(x, s);x ∈ R
d, s ≤ ∫ t

0
(λ(x, u) + ε)du}. Letting ε→ 0, gives the result

without the lower bound on λ.

Proof. The proof is similar to that of Theorem 2.6 of Garcia (1995a). �
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5. Pure birth processes

The primary approach to building a model using a spatial, pure-birth process with
points in a set K (which we will take to be a subset of R

d) is to specify the intensity
in a functional form, that is, as a function of the desired process η and, perhaps,
additional randomness ξ in a space E. Assume we are given a jointly measurable
mapping

λ̃ : (x, z, u, s) ∈ K ×DN (K)[0,∞) × E × [0,∞) → λ̃(x, z, u, s) ∈ [0,∞).

Intuitively, in specifying λ̃, we are saying that in the next time interval (t, t +
∆t], the probability of there being a birth in a small region A is approximately∫
A λ̃(x, η, ξ, t)dx∆t. One can make this precise by requiring the process η to have

the property that there is a filtration {Gt} such that

ηt(B) −
∫ t

0

∫
B

λ̃(x, η, ξ, s)dx ds

is a {Gt}-martingale for each B ∈ A(K). For this martingale problem to make
sense, λ̃ must depend on η in a nonanticipating way, that is, λ̃(x, η, ξ, s) depends
on ηr only for r ≤ s.

The representation (4.1) suggests formulating a stochastic equation by re-
quiring η and a “stopping-surface-valued function” τ to satisfy

τ(t, x) =
∫ t

0

λ̃(x, η, ξ, s)ds (5.1)

ηt = Nτ(t).

If λ̃ is appropriately nonanticipating,
∫ t

0

∫
K

λ̃(x, z, u, s)dxds <∞ for all z ∈ DN (K)[0,∞), u ∈ E,

and ξ and N are independent, then the solution of (5.1) and verification of the
martingale properties are straightforward. (Just “solve” from one birth to the
next.) However, we are interested in situations, say with K = R

d, in which
∫ t

0

∫
Rd

λ̃(x, z, u, s)dx = ∞,

that is, there will be infinitely many births in a finite amount of time.

5.1. Existence and uniqueness of time-change equation

To keep the development as simple as possible, we will focus on λ̃ such that
λ̃(x, z, u, s) = λ(x, zs), λ : R

d × N (Rd) → [0,∞), that is, the intensity depends
only on the current configuration of points.
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In this setting, (5.1) becomes


τ̇(t, x) = λ(x,Nτ(t))
τ(0, x) = 0
Nτ(t)(B) = N(Γτ(t) ∩B × [0,∞))
Γτ(t) = {(x, y);x ∈ R

d, 0 ≤ y ≤ τ(t, x)}
(5.2)

where we write the system in this form to emphasize the fact that τ is the solution
of a random, but autonomous differential equation. For the earlier analysis to work,
the solution must also have the property that Γτ(t) be a stopping set with respect
to the filtration {FA}.

We need the following regularity condition.

Condition 5.1. For ζ ∈ N (Rd), x → λ(x, ζ) is upper semicontinuous. For ζ1, ζ2 ∈
N (Rd) and {yi} ⊂ R

d satisfying ζ2 = ζ1 +
∑∞

i=1 δyi and λ(x, ζ1) <∞,

λ(x, ζ2) = lim
n→∞λ

(
x, ζ1 +

n∑
i=1

δyi

)
. (5.3)

The following theorem extends conditions of Liggett for models on a lattice
(Liggett (1972), Kurtz (1980b)) to the present setting. Garcia (1995a) proves a
similar theorem for a general case of birth and death processes. However, this
theorem is not a particular case of the general case, since the conditions and
techniques used there are not directly applicable for the case in which the death
rate equals 0.

Theorem 5.2. Assume that Condition 5.1 holds. Let

a(x, y) = sup
ζ∈N (Rd)

|λ(x, ζ + δy) − λ(x, ζ)| (5.4)

and ā(x) = supζ1,ζ2 |λ(x, ζ1) − λ(x, ζ2)|. Suppose there exists a positive function c
such that supx c(x)ā(x) <∞ and

M = sup
x

∫
Rd

c(x)a(x, y)
c(y)

dy <∞.

Then, there exists a unique solution of (5.2) with τ(t, ·) a stopping surface for all
t ≥ 0.

Remark 5.3. For example, suppose a(x, y) = a(x−y) and
∫ |y|pa(y) dy <∞. Then

we can take c(x) = (1 + |x|p)−1. Setting c1 =
∫ |y|pa(y)dy and c2 =

∫
a(y)dy,∫

(1 + |z|p)a(x− z)dz =
∫
a(x− z)dz +

∫
|z|pa(x− z)dz

=
∫
a(y)dy +

∫
|y − x|pa(y)dy

≤ c2 + ap

∫
|y|pa(y)dy + ap|x|p)

∫
a(y)dy

≤ c2 + c1ap + c2ap|x|p ≤M(1 + |x|p),
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where ap satisfies |y − x|p ≤ ap(|y|p + |x|p) and M = max{c2 + c1ap, c2ap}. Con-
sequently,

sup
x

∫
(1 + |z|p)a(x− z)

1 + |x|p < M.

Outline of the proof: Let H be the space of real-valued, measurable processes
indexed by R

d, and let H0 be the subset of ξ ∈ H such that

‖ξ‖ ≡ sup
x∈Rd

c(x)E[|ξ(x)|] <∞.

Define H+ = {ξ ∈ H : ξ ≥ 0}, and similarly for H+
0 . Let F : φ ∈ H+ → φ̃ ∈ H+,

where φ̃(x) = λ(x,Nφ). That is,

Γφ = {(x, y);x ∈ R
d, 0 ≤ y ≤ φ(x)},

Nφ(B) = N(Γφ ∩B × [0,∞)),

and
F (φ)(x) = λ(x,Nφ). (5.5)

Then the system (5.2) is equivalent to

τ̇(t) = F (τ(t)). (5.6)

We are only interested in solutions for which τ(t) is a stopping surface. Let
τ1 and τ2 be two such solutions. We will show that F is Lipschitz, so that we
can find estimates of ‖τ1(t) − τ2(t)‖ in terms of

∫ t
0 ‖τ1(s) − τ2(s)‖ds and apply

Gronwall’s inequality to obtain the uniqueness of the solution. To prove existence,
we are going to construct a sequence of stopping surfaces τ (n)(t) whose limit is a
solution of the system.

The proof of the theorem relies on several lemmas.

Lemma 5.4. Let λ : R
d × N (Rd) → R

+ satisfy Condition 5.1, and define a(x, y)
as in (5.4). Then

sup
ζ

∣∣∣∣∣λ(x, ζ +
m∑
i=1

δyi) − λ(x, ζ)

∣∣∣∣∣ ≤
m∑
i=1

a(x, yi) (5.7)

sup
ζ

∣∣∣∣∣λ(x, ζ +
∞∑
i=1

δyi) − λ(x, ζ)

∣∣∣∣∣ ≤
∞∑
i=1

a(x, yi). (5.8)

Proof. The definition of a(x, y) and induction give (5.7), and (5.8) then follows by
Condition 5.1. �

Lemma 5.5. For γ1 and γ2 stopping surfaces,

E[|F (γ1)(x) − F (γ2)(x)|] ≤
∫

Rd

a(x, y)E[|γ1(y) − γ2(y)|]dy .
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Proof. Since N is a Poisson point processes with a σ-finite mean measure, it has
only countably many points almost surely. Let, {y1, y2, . . .} and {z1, z2, . . .} be
such that yi �= zj , for all i, j, and

Nγ2 = Nγ1 +
∑
i

δyi −
∑
j

δzj .

Then
T (Nγ1 −Nγ2 , B) =

∑
i

δyi(B) +
∑
j

δzj (B)

and

|λ(x,Nγ1)−λ(x,Nγ2 )|=
∣∣∣∣∣λ(x,Nγ1)−λ

(
x,Nγ1 +

∑
i

δyi

)

+ λ

(
x,Nγ1 +

∑
i

δyi

)
−λ

x,Nγ1 +

∑
i

δyi −
∑
j

δzj



∣∣∣∣∣∣

(by Lemma 5.4(b))≤
∑
i

a(x,yi)+
∑
j

a(x,zj)=
∫

Rd

a(x,y)T (Nγ1 −Nγ2 ,dy).

Therefore,

E[|F (γ1)(x) − F (γ2)(x)|] = E[|λ(x,Nγ1) − λ(x,Nγ2)]

≤ E

[∫
Rd

a(x, y)T (Nγ1 −Nγ2 , dy)
]

by Corollary 3.13 ≤ E

[∫
Rd

a(x, y) |γ1(y) − γ2(y)| dy
]
,

and the result follows by Fubini’s theorem. �

Lemma 5.6. The mapping F : H+ → H+ given by (5.5) is Lipschitz for stopping
surfaces in H+.

Proof. By Lemma 5.5,

‖F (γ1) − F (γ2)‖ = sup
x
c(x)E[|F (γ1)(x) − F (γ2)(x)|]

≤ sup
x
c(x)

∫
Rd

a(x, y) E[|γ1(y) − γ2(y)|] dy

≤ sup
x

∫
c(x)a(x, y)

c(y)
dy sup

y
c(y)E[|γ1(y) − γ2(y)|]

≤M‖γ1 − γ2‖. �
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Proof of Theorem 5.2. Uniqueness. By Lemma 5.6 we have

‖ τ1(t) − τ2(t) ‖ = sup
x
c(x)E[|τ1(t, x) − τ2(t, x)|]

≤ sup
x
c(x)E[

∫ t

0

|F (τ1(s))(x) − F (τ2(s))(x)|]

≤
∫ t

0

‖F (τ1(s)) − F (τ2(s))‖ds

≤ M

∫ t

0

‖τ1(s) − τ2(s)‖ds.

Note that |F (τ1(s))(x)−F (τ2(s))(x)| ≤ ā(x), so sups ‖F (τ1(s))−F (τ2(s))‖ <∞.
Consequently, uniqueness follows by Gronwall’s inequality.

Existence. Let λ(x) = infζ λ(x, ζ). Then |λ(x, ζ) − λ(x)| ≤ ā(x). Define

τ (n)(t) =
∫ t

0

F (sλ)ds, for 0 ≤ t ≤ 1/n (5.9)

τ (n)(t) = τ (n)

(
k

n

)
+
∫ t

k
n

F

(
τ (n)

(
k

n

)
+
(
s− k

n

)
λ

)
ds, for

k

n
< t ≤ k + 1

n
.

Set,

γ(n)(t) = τ (n)

(
[nt]
n

)
+
(
t− [nt]

n

)
λ.

Then,

τ (n)(t) =
∫ t

0

F (γ(n)(s))ds. (5.10)

Note that τ (n)(t) and γ(n)(t) are stopping surfaces (see the proof below).
Consequently,

‖ τ (n)(t) − γ(n)(t) ‖ =
∥∥∥τ (n)(t) − τ (n)([nt]/n) + τ (n)([nt]/n) − γ(n)(t)

∥∥∥
=

∥∥∥∥∥
∫ t

[nt]/n

F (γ(n)(s))ds− (t− [nt]/n)λ

∥∥∥∥∥
=

∥∥∥∥∥
∫ t

[nt]/n

(F (γ(n)(s)) − λ)ds

∥∥∥∥∥ ≤
∫ t

[nt]/n

‖ F (γ(n)(s)) − λ ‖ ds

≤
∫ t

[nt]/n

sup
x
c(x)E[|F (γ(n)(s))(x) − λ(x)|]ds

≤
∫ t

[nt]/n

sup
x
c(x)ā(x)ds ≤ supx c(x)ā(x)

n
.
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Also,

‖ γ(n)(t) − γ(m)(t) ‖ ≤ ‖ τ (n)(t) − γ(n)(t) ‖ + ‖ τ (m)(t) − γ(m)(t) ‖

+ ‖
∫ t

0

F (γ(n)(s))ds −
∫ t

0

F (γ(m)(s))ds ‖

≤ 2
supx c(x)ā(x)

n
+M

∫ t

0

‖ γ(n)(s) − γ(m)(s) ‖ ds

(by Gronwall’s inequality) ≤ 2
supx c(x)ā(x)

n
eMt.

Therefore,

‖ τ (n)(t) − τ (m)(t) ‖ ≤ ‖ τ (n)(t) − γ(n)(t) ‖ + ‖ γ(n)(t) − γ(m)(t) ‖
+ ‖ γ(m)(t) − τ (m)(t) ‖

≤ 2
supx c(x)ā(x)

n
+ 2

supx c(x)ā(x)
n

eMt.

Then, fixing l, {τ (n)(t) − τ (l)(t)} is a Cauchy sequence in H0. Completeness
of H0 follows by standard arguments, and so there exists τ∗(t) ∈ H0

τ∗(t) = lim
n→∞(τ (n)(t) − τ (l)(t)).

Then, taking τ(t) = τ∗(t) + τ (l)(t) = minm supn≥m τ
(n)(t), τ(t) is a stopping

surface by Lemma 3.7,

lim
n→∞ ‖τ (n)(t) − τ(t)‖ = lim

n→∞ ‖γ(n)(t) − τ(t)‖ = 0,

and since∥∥∥∥
∫ t

0

F (γ(n)(s)ds−
∫ t

0

F (τ(s))ds
∥∥∥∥ ≤

∫ t

0

‖F (γ(n)(s)) − F (τ(s))‖ds → 0,

τ̇(t) = F (τ(t)).

Proof that τ (n)(t) and γ(n)(t) are stopping surfaces. By definition, τ (n)(t) is a
stopping surface if and only if {τ (n)(t) ≤ f} ∈ Ff for each nonnegative, upper-
semicontinuous f .

(i) 0 ≤ t ≤ 1/n

τ (n)(t) =
∫ t

0

F (sλ)ds τ (n)(t, x) =
∫ t

0

λ(x,Nsλ)ds

Nsλ(B) = N(Γsλ ∩B × [0,∞)) Γsλ = {(x, u);x ∈ R
d, 0 ≤ u ≤ sλ(x)}.

By the measurability of λ, the mapping

(x, s, ω) ∈ R
d × [0, t] × Ω → λ(x,Nsλ)

is B(Rd)×B([0, t])×Ftλ-measurable, and hence, (x, ω) → τ (n)(t, x) is B(Rd)×Ftλ-
measurable. By the completeness of Ftλ,

{τ (n)(t) ≤ f}c = {ω : ∃x � τ (n)(t, x) > f(x)} ∈ Ftλ.
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Note that τ (n)(t, x) ≥ λ(x)t for all x, by the definition of λ. Consequently,
if f ≥ tλ, {τ (n)(t) ≤ f} ∈ Ftλ ⊂ Ff , and if f(x) < tλ(x) for some x, {τ (n)(t) ≤
f} = ∅ ∈ Ff .

(ii) k/n < t ≤ (k + 1)/n.
Proceeding by induction, assume that τ (n)(k/n) is a stopping surface. Then

for k/n ≤ s < (k + 1)/n, by Lemma 3.12, γ(n)(s) is a stopping surface. By the
definition of τ (n)(t, x) we have

τ (n)(t, x) = τ (n)(k/n, x) +
∫ t

k/n

λ(x,Nτ (n)(k/n)+(s−k/n)λ)ds,

and by the definition of λ
τ (n)(t) ≥ γ(n)(t)

Therefore, since {τ (n)(t) ≤ f} ∈ Fγ(n)(t)

{τ (n)(t) ≤ f} = {τ (n)(t) ≤ f} ∩ {γ(n)(t) ≤ f} ∈ Ff . �
An immediate consequence of the existence proof is:

Corollary 5.7. Let τ (n)(t) be defined by (5.9) and let

ηnt (B) = Nτn(t) = N(Γτ (n)(t) ∩B × [0,∞)).

Then ηnt → ηt, in probability as n→ ∞, uniformly in t ≤ T .

Another important characteristic of the solution of the time-change problem
is that two births cannot occur at the same time.

Theorem 5.8. Under the conditions of Theorem 5.2, for each B ∈ A(Rd), the
process t→ ηt(B) is a counting process with intensity

∫
B
λ(x, ηt)dx. If B ∩C = ∅,

then ηt(B) and ηt(C) have no simultaneous jumps.

Proof. Since

MB(D) = N(D ∩B × [0,∞)) −
∫
D∩B×[0,∞)

du dx

and
MC(D) = N(D ∩ C × [0,∞)) −

∫
D∩C×[0,∞)

du dx

are orthogonal martingales with respect to {FA}, that is MB, MC , and MBMC are
all martingales, The optional sampling theorem impliesMB(Γτ(t)), MC(Γτ(t)), and
MB(Γτ(t))MC(Γτ(t)) are all martingales with respect to the filtration {Fτ(t), t ≥
0}. Noting that

MB(τ(t)) = ηt(B) −
∫ t

0

∫
B

τ(x, s)dxds

and

MC(τ(t)) = ηt(C) −
∫ t

0

∫
C

τ(x, s)dxds,

the result follows. �
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5.2. Equivalence between time change solution and the solution
of the martingale problem

Usually, Markov processes are described through their infinitesimal generator. The
pure birth process described in the beginning of this section can be characterized as
the solution of the martingale problem corresponding to the generator defined by

AF (ζ) =
∫

Rd

(F (ζ + δy) − F (ζ))λ(y, ζ) dy, (5.11)

for F ∈ D(A) = {F : N (Rd) → R;F (ζ) = exp{− ∫ g dζ}, g ≥ 0, g ∈ Bc(Rd)},
where Bc(Rd) is the set of bounded functions on R

d with compact support. Our
goal in this section is to prove that the two characterizations are equivalent, that is,
the solution of the time change problem is the solution of the martingale problem
and vice-versa. To avoid issues of integrability and explosion, we assume that for
each compact K ⊂ R

d, supx∈K,ζ∈N (Rd) λ(x, ζ) <∞.
Theorem 5.2 gives conditions for existence and uniqueness of random time

changes in the strong sense, that is, given the process N . This result will imply the
existence and uniqueness of the solution for the martingale problem. However, ex-
istence and uniqueness of the solution of the martingale problem implies existence
and uniqueness of the time change solution in the weak sense.

Let N be a Poisson point process with Lebesgue mean measure in R
d× [0,∞)

defined on a complete probability space (Ω,F ,P). Let λ : R
d×N (Rd) → R be non-

negative Borel measurable function. We are interested in solutions of the system:



τ(0, x) = 0
τ̇(t, x) = λ(x,Nτ(t))
Γτ(t) = {(x, y);x ∈ R

d, 0 ≤ y ≤ τ(t, x)}
Nτ(t)(B) = N(Γτ(t) ∩B × [0,∞)),

(5.12)

where τ(t, ·) is a stopping surface with respect to the filtration {FA, A ∈ C(Rd)}
as defined in Section 3.3.

Definition 5.9. An N (Rd)-valued process η is a weak solution of (5.12) if there
exists a probability space (Ω∗,F∗,P∗) on which are defined processes N∗ and τ∗

such that N∗ is a version of N , (5.12) is satisfied with (N, τ) replaced by (N∗, τ∗),
and N∗

τ∗ has the same distribution as η.

Theorem 5.10. Let N be Poisson point process in R
d× [0,∞) with Lebesgue mean

measure defined in (Ω,F ,P). Let λ : R
d × N (Rd) → R be a non-negative Borel

function, and let A be given by (5.11).

(a) If τ and N satisfy (5.12), then η(t) = Nτ(t) gives a solution of the martingale
problem for A.

(b) If η is a N (Rd)-valued process which is a solution of the DN (Rd)[0,∞)-
martingale problem for A, then η is a weak solution of (5.12).
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Proof. (a) We want to prove that for each F ∈ D(A)

M(t) = F (Nτ(t)) −
∫ t

0

AF (Nτ(s))ds

is a martingale with respect to the filtration {Gτt } = {FΓτ(t) , t ≥ 0}. We have as a
direct consequence of Theorem 3.9 that for B ∈ B(Rd) with compact closure,

M(B × [0, t]) = Mt(B) = Nτ(t)(B) −
∫
B

τ(t, x) dx

is a martingale. Hence, for g ∈ Bc(Rd), that is, g ≥ 0, bounded and with compact
support, we have∫

Rd×[0,t]

e−
∫
g(y)Nτ(s−)(dy)(e−g(x) − 1)M(dx× ds)

= e−
∫
g(y)Nτ(t)(dy) − 1

−
∫ t

0

∫
Rd

λ(x,Nτ(s))(e−
∫
g(y)Nτ(s)(dy)+g(x) − e−

∫
g(y)Nτ(s)(dy))dx

= F (Nτ(t)) − 1 −
∫ t

0

AF (Nτ(s))ds

is a martingale with respect to the filtration {Gτt }.
(b) Conversely, if η is a solution of the martingale problem, then there exists

a filtration {Gt} such that for B ∈ B(Rd) with compact closure,

ηt(B) −
∫ t

0

∫
B

λ(x, ηs)ds

is a martingale with respect to {Gt}.
Therefore, by the characterization theorem (Theorem 4.1) there exists a Pois-

son random measure N such that

ηt(B) = N(Γt ∩B × [0,∞))

where Γt = {(x, y);x ∈ R
d, y ≤ ∫ t

0
λ(x, ηs)ds}. �

5.3. Stationarity and ergodicity

In the classical theory of stochastic processes, stationarity and ergodicity play
important roles in applications. For example, the ergodic theorem asserts the
convergence of averages to a limit which is invariant under measure preserving
transformations. In the case that the process is ergodic, the ergodic limit is a con-
stant. Important applications arise in establishing consistency of non-parametric
estimates of moment densities, and in discussing the frequency of specialized con-
figurations of points (see Example 10.2(a), Daley and Vere-Jones (1988)).

In our case, we are interested in stationarity and invariance under transla-
tions (or shifts) in R

d. Our objective is to prove that the process obtained by the
time change transformation is stationary and spatially ergodic if λ is translation
invariant.



292 N.L. Garcia and T.G. Kurtz

Definition 5.11. λ is translation invariant, if for all x, z ∈ R
d, ζ ∈ N (Rd),

λ(x + z, ζ) = λ(x, Szζ). (5.13)

For a general discussion about stationary point processes, see Chapter 10 of
Daley and Vere-Jones (1988).

We have a point process Nτ(t) defined on R
d, and we would like to study

invariance properties with respect to translations (or shifts) in R
d. For arbitrary

x, z ∈ R
d and A ∈ B(Rd), write

Txz = x+ z and TxA = A+ x = {z + x; z ∈ A}.
Then, Tx induces a transformation Sx of N (Rd) through the equation

(Sxζ)(A) = ζ(TxA), ζ ∈ N (Rd), A ∈ B(Rd). (5.14)

Note that if ζ =
∑
i δxi , then Sxζ =

∑
i δxi−x.

By Lemma 10.1.I (Daley and Vere-Jones (1988)), if x ∈ R
d, the mapping

Sx : N (Rd) → N (Rd) defined at (5.14) is continuous and one-to-one. And we
have:

(i) (Sxδz)(·) = δz−x (where δ is the Dirac measure);
(ii)

∫
f(z)(Sxµ)(dz) =

∫
f(z)µ(d(z + x)) =

∫
f(z − x)µ(dz).

Definition 5.12. A point process ξ with state space R
d is stationary if, for all

u ∈ R
d, the finite-dimensional distributions of the random measures ξ and Suξ

coincide.

Let ψ ∈ N (Rd×[0,∞)), and let τ (n)(t, ψ) be defined by (5.9) with the sample
path of the Poisson process N replaced by the counting measure ψ. That is, with
reference to (5.5), F (φ)(x) is replaced by λ(x, ψφ), and (5.10) becomes

τ (n)(t, x, ψ) =
∫ t

0

λ(x, ψ
(τ (n)( [ns]

n ,ψ)+(s− [ns]
n )λ)

)ds. (5.15)

For n = 1, 2, . . ., define ξn by ξn = ψτ (n)(t,ψ), that is,

ξn(B, t, ψ) = ψ(Γτ (n)(t,ψ) ∩B × [0,∞)). (5.16)

Lemma 5.13. If λ is translation invariant, then for ψ ∈ N (Rd × [0,∞)),

τ (n)(t, x+ z, ψ) = τ (n)(t, Tzx, ψ) = τ (n)(t, x, S(z,0)ψ) (5.17)

and
Szξn(·, t, ψ) = ξn(·, t, S(z,0)ψ). (5.18)

Proof. Since ψφ(B) = ψ{(x, y) : x ∈ B, 0 ≤ y ≤ φ(x)},
Sz(ψφ)(B) = ψ{(x, y) : x ∈ TzB, 0 ≤ y ≤ φ(x)}

= ψ{(x, y) : x− z ∈ B, 0 ≤ y ≤ φ(Tz(x− z))}
= S(z,0)ψ{(x, y) : x ∈ B, 0 ≤ y ≤ φ(Tzx)},

and (5.17) implies (5.18).
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To verify (5.17), note that by (5.13),

λ(x + z, ψφ) = λ(Tzx, ψφ) = λ(x, Sz(ψφ)) = λ(x, [S(z,0)ψ]φ◦Tz)

and that by translation invariance of λ, λ is constant. Then (5.15) gives

τ (n)(t, x+ z, ψ) =
∫ t

0

λ(x, Sz(ψ(τ (n)( [ns]
n ,ψ)+(s− [ns]

n )λ)
))ds

=
∫ t

0

λ(x, [S(z,0)ψ]
(τ (n)( [ns]

n ,Tz·,ψ)+(s− [ns]
n )λ)

))ds.

Proceeding by induction, (5.17) trivially holds for t = 0. Assume that it holds for
s ≤ k/n. Then for k/n ≤ t ≤ (k + 1)/n, we have

τ (n)(t, x+ z, ψ) =
∫ t

0

λ(x, [S(z,0)ψ]
(τ (n)( [ns]

n ,Tz ·,ψ)+(s− [ns]
n )λ)

))ds

=
∫ t

0

λ(x, [S(z,0)ψ]
(τ (n)( [ns]

n ,S(z,0)ψ)+(s− [ns]
n )λ)

))ds

= τ (n)(t, x, S(z,0)ψ),

and the conclusion follows. �
Theorem 5.14. Suppose that λ is translation invariant and that the solution of
(5.2) is weakly unique. Then for each t ≥ 0, Nτ(t) is stationary under spatial shifts.

Remark 5.15. Weak uniqueness is the assertion that all solutions have the same
distribution.

Under the assumptions of Theorem 5.2, the conclusion of the theorem follows
by Lemma 5.13, the fact that the distribution of N is invariant under shifts, and
the convergence of Nτ (n)(t) to Nτ(t).

Proof. By Theorem 5.10, weak existence and uniqueness for the stochastic equa-
tion is equivalent to existence and uniqueness of solutions of the martingale prob-
lem. If λ is translation invariant and η is a solution of the martingale problem,
then Szη is also a solution, so η and Szη must have the same distribution. �

In practice, the useful applications of the ergodic theorem are to those situ-
ations where the ergodic limit is a constant.

A stationary process is ergodic if and only if the invariant σ-algebra is trivial.
Due to the independence properties of the Poisson process on R

d × [0,∞), it is
ergodic for the measure preserving transformations S(x,0). That is, let (N (Rd ×
[0,∞)),B(N (Rd × [0,∞))), P ) be the probability space corresponding to the un-
derlying Poisson process N . Let I be σ-algebra of invariant sets under S(x,0),

I = {E ∈ B(N (Rd × [0,∞)));P (S(x,0)E �E) = 0, ∀x ∈ R
d}.

Then, I is a trivial σ-algebra, that is, P (E) = 0 or 1 if E ∈ I.
Under any conditions that allow us to write ηt = H(t,N) for some H :

[0,∞)×N (Rd× [0,∞)) → N (Rd) so that Szηt = H(t, S(z,0)N), the spatial ergod-
icity of ηt follows from the ergodicity of N . Theorem 5.2 give such conditions.
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Theorem 5.16. Let λ be translation invariant, and suppose that the conditions of
Theorem 5.2 are satisfied. Then for each t ≥ 0, Nτ(t) is spatially ergodic.

Proof. For τ (n)(t, x, ψ) given by (5.15), τ (n)(t) in (5.10) is given by τ (n)(t, x,N),
and

SzNτ (n)(t) = S(z,0)Nτ (n)(t,S(z,0)N). (5.19)

At least along a subsequence {nk}, τ (nk)(t) converges almost surely to τ(t). Define
G(t, ψ) = limk→∞ τ (nk)(t, ψ) if the limit exists, and define G(t, ψ) ≡ 0 otherwise.
(Note that the collection of ψ for which the limit exists is closed under S(z,0), z ∈
R
d.) Then τ(t) = G(t,N) almost surely. Define H(t, ψ) = ψG(t,ψ), and by (5.19),

SzH(t, ψ) = H(t, S(z,0)ψ). Finally, Nτ(t) = H(t,N), and the theorem follows. �

6. Birth and death processes – constant birth rate,
variable death rate

6.1. Gibbs distribution

Consider a spatial point process on K ⊂ R
d given by a Gibbs distribution corre-

sponding to a pairwise interaction potential ρ(x1, x2) ≥ 0. The process in which
we are interested has a distribution that is absolutely continuous with respect to
the spatial Poisson process with mean measure λm on K, with Radon-Nikodym
derivative

L(ζ) = C exp
{
−1

2

[∫ ∫
ρ(x, y)ζ(dx)ζ(dy) −

∫
ρ(x, x)ζ(dx)

]}

= C exp


−

∑
i<j

ρ(xi, xj)


 ,

where x1, x2, . . . are the locations of the point masses in ζ ∈ N (K) and C is a
normalizing constant depending only on λ and ρ.

The usual approach to simulating this process is to first identify a spatial
birth-death process for which the desired Gibbs distribution is the stationary dis-
tribution and then to simulate the birth-death process over a “sufficiently long”
time. A significant difficulty with this approach is the need to know what “suf-
ficiently long” is. It is desirable to find a new approach for determining when to
terminate the simulation or, if possible, to design a perfect simulation scheme.

There are a variety of birth-death processes which give the same stationary
distribution. Consider the process in which points are “born” at a rate λ uniformly
over the region, that is, the probability of a birth occurring in a region of area ∆A
in a time interval of length ∆t is approximately λ∆A∆t. The intensity for the
death of a point at x is exp{∑i ρ(x, xi)}, where the sum is over all points other
than the one at x.
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The generator for the process takes the form

Af(ζ) =
∫
K

(f(ζ + δy) − f(ζ))λdy +
∑
i

(f(ζ − δxi) − f(ζ))e
∑

j �=i ρ(xi,xj).

To see that the Gibbs distribution is the stationary distribution of this process,
let ξ be a Poisson process on K with mean measure λm and apply (2.1) to obtain

E

[∫
K

(f(ξ − δx) − f(ξ))e
∫
ρ(x,y)ξ(dy)−ρ(x,x)ξ(dx)L(ξ)

]

= E

[∫
K

(f(ξ) − f(ξ + δx))e
∫
ρ(x,y)ξ(dy)L(ξ + δx)λdx

]

= E

[∫
K

(f(ξ) − f(ξ + δx))λdxL(ξ)
]

which implies ∫
Af(ζ)L(ζ)ηλ(dζ) = 0

where ηλ is the distribution of the Poisson process with mean measure λm on K. It
follows by Echeverria’s theorem (Ethier and Kurtz (1986), Theorem 4.9.17) that
L(ζ)ηλ(dζ) is a stationary distribution for the birth-death process. Uniqueness
follows by a regeneration argument (see Lotwick and Silverman (1981)).

The following problem was proposed and solved by Kurtz (1989) for the
case when K is compact. One motivation for this work was to solve the following
problem for infinite regions K, particularly K = R

d. However, we could not obtain
the desired result and a slightly different problem was considered. Our hope is that
the same technique can be applied to obtain the general result.

6.2. Embedding of birth and death process in Poisson process

Given a Poisson process on K × [0,∞)2, we want to construct a family of random
sets Γt in such way that the birth-death process is obtained by projecting the
points of a Poisson process lying in Γt onto R

d. We use a Poisson process N on
K× [0,∞)× [0,∞) with mean measure md×m×e (md is Lebesgue measure on R

d,
m is Lebesgue measure on [0,∞), e is the exponential distribution on [0,∞)). For
f : R

d × [0,∞) → [0,∞) and t ≥ 0, let F(f,t) be the completion of the σ-algebra
generated by N(A), where either A ∈ B(K × [0,∞)2) and A ⊂ {(x, y, s) : s ≤
f(x, y), y ≤ λt} or A = A1 × [0,∞) with A1 ∈ B(K × [0, λt]).

Let
α(x, ζ) = e

∫
ρ(x,z) ζ(dz) (6.1)

with ρ(x, x) = 0, and consider the following system:


τ(x, y, t) = 0, if λt < y
τ̇(x, y, t) = α(x,Nt), if λt ≥ y
Γt = {(x, y, s);x ∈ K, 0 ≤ y ≤ λt, s > τ(x, y, t)}
Nt(B) = N(Γt ∩B × R × [0,∞))

(6.2)
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where (τ(·, t), t) is a stopping time with respect to the filtration {F(f,t)} in the
sense that {τ(·, t) ≤ f, t ≤ r} ∈ F(f,r).

Interpretation. Each point (x, y, s) ofN corresponds to an “individual” who is born
at time y/λ and is located at x. The individual dies at time t satisfying τ(x, y, t) =
s. Note that in N , conditioned on the (x, y)-coordinates, the s-coordinates are
independent and exponentially distributed random variables. Consequently, the
probability that a point at x which was born at time y/λ and is still alive at time
t, dying in the interval (t, t+ ∆t) is approximately α(x,Nt)∆t.

6.3. Backwards simulation of Gibbs processes

Fix T > 0, and consider the following modification of the system (6.2):


τT (x, y, t) = 0, if λ(t − T ) < y
τ̇T (x, y, t) = α(x,NT

t ), if λ(t − T ) ≥ y
ΓTt = {(x, y, s);x ∈ K,−λT ≤ y ≤ λ(t− T ), s > τT (x, y, t)}
NT
t (B) = N(ΓTt ∩B × R × [0,∞))

(6.3)
Note that the system (6.3) is essentially the same as (6.2), except that it is

defined using the Poisson process on K × [−λT,∞) × [0,∞) while the system in
(6.2) uses the Poisson process on K × [0,∞)× [0,∞). That is, the construction is
simply shifted to the left by λT . In particular, NT

t has the same distribution as
Nt. A regeneration argument shows that NT converges in distribution as T → ∞
to the desired Gibbs process. The process NT

T converges almost surely as T → ∞,
since for almost every ω there exists a T0 such that NT

T is fixed for T > T0. To see
this, let Ht = {(x, y, s);x ∈ K, y ≤ −λt, s ≥ t − y/λ}, and let T0 be the smallest
t > 0 such that N(Ht) = 0, (T0 < ∞ with probability 1). Note that ΓTt ⊂ HT−t
so that for T > T0 , NT

T−T0
= 0.

Notice that “backward simulation” is the key idea behind the original CFTP
(Coupling from the Past) algorithm proposed by Propp and Wilson (1996) and all
related work on perfect simulation. However, the basic CFTP algorithm, sometimes
called vertical CFTP, is in general not applicable to processes with infinite state
space. To deal with this situation, Kendall (1997 and 1998) introduced dominated
CFTP (also called horizontal CFTP and coupling into and from the past). This
extension also requires the state space to have a partial order, as well as the
existence of a monotone coupling among the target process and two reversible
sandwiching processes, which must be easy to sample. Algorithms of this type are
available for attractive point processes and, through a minor modification, also for
repulsive point processes (Kendall, 1998). Similarly, Häggström, van Lieshout and
Møller (1999) combined ideas from CFTP and the two-component Gibbs sampler
to perfectly simulate from processes in infinite spaces which do not have maximal
(or minimal) elements.

In our case, we sample directly from a time stationary realization of the
process. There is no coalescence criterion, either between coupled realizations or
between sandwiching processes. The scheme neither requires nor takes advantage
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of monotonicity properties. Our construction has the same spirit as the clan of
ancestors algorithm proposed by Fernández, Ferrari and Garcia (2002) where the
stopping time T0 at which we know that the invariant measure is achieved is a
regeneration time for the process.

The existence and uniqueness of the process for R
d is obtained by refining

the arguments of Section 5 (see Garcia, 1995a), but convergence to the invariant
measure is not at all clear. The above backward argument does not work for the
infinite case since T0 = ∞ with probability 1. At this point we have no general
results for R

d; however, we hope that some of the theory developed here may be
useful in giving such results.
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