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Abstract

A reaction network is a chemical system involving multiple reactions and chemical
species. The simplest stochastic models of such networks treat the system as a contin-
uous time Markov chain with the state being the number of molecules of each species
and with reactions modeled as possible transitions of the chain. This chapter is devoted
to the mathematical study of such stochastic models. We begin by developing much
of the mathematical machinery we need to describe the stochastic models we are most
interested in. We show how one can represent counting processes of the type we need
in terms of the Poisson process. This leads to a stochastic equation, usually termed
the random time change representation, for continuous time Markov chain models.
We include a discussion on the relationship between this stochastic equation and the
corresponding martingale problem and Kolmogorov forward (master) equation. Next,
we exploit the representation of the stochastic equation for chemical reaction networks
and, under what is often called the classical scaling, show how to derive the determin-
istic law of mass action from the Markov chain model. We also review the diffusion,
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or Langevin, approximation, include a discussion of first order reaction networks, and
present a large class of networks, those that are weakly reversible and have a deficiency
of zero, that induce product-form stationary distributions. Finally, we discuss models
in which the numbers of molecules and/or the reaction rate constants of the system
vary over several orders of magnitude. We show that one consequence of this wide
variation in scales is that different subsystems may evolve on different time scales and
this time-scale variation can be exploited to identify reduced models that capture the
behavior of parts of the system. We will discuss systematic ways of identifying the
different time scales and deriving the reduced models.

MSC 2000 subject classifications: 60J27, 60J28, 60J80, 60F17, 80A30, 92C40

Keywords: Reaction network, Markov chain, law of mass action, law of large numbers,
central limit theorem, diffusion approximation, Langevin approximation, stochastic
equations, multiscale analysis, stationary distributions

1 Introduction

The idea of modeling chemical reactions as a stochastic process at the molecular level dates
back at least to [12] with a rapid development beginning in the 1950s and 1960s. (See, for
example, [6, 7, 39].) For the reaction

A+B ⇀ C

in which one molecule of A and one molecule of B are consumed to produce one molecule
of C, the intuition for the model for the reaction is that the probability of the reaction
occurring in a small time interval (t, t + ∆t] should be proportional to the product of the
numbers of molecules of each of the reactants and to the length of the time interval. In other
words, since for the reaction to occur a molecule of A and a molecule of B must be close to
each other, the probability should be proportional to the number of pairs of molecules that
can react. A more systematic approach to this conclusion might be to consider the following
probability problem: Suppose k red balls (molecules of A) and l black balls (molecules of B)
are placed uniformly at random in n boxes, where n is much larger than k and l. What is
the probability that at least one red ball ends up in the same box as a black ball? We leave
it to the reader to figure that out. For a more physically based argument, see [22].

Our more immediate concern is that the calculation, however justified, assumes that the
numbers of molecules of the chemical species are known. That assumption means that what
is to be computed is a conditional probability, that is, a computation that uses information
that might not (or could not) have been known when the experiment was first set up.

Assuming that at time t there are XA(t) molecules of A and XB(t) molecules of B in our
system, we express our assumption about the probability of the reaction occurring by

P{reaction occurs in (t, t+ ∆t]|Ft} ≈ κXA(t)XB(t)∆t (1.1)

where Ft represents the information about the system that is available at time t and κ is
a positive constant, the reaction rate constant. Since Kolmogorov’s fundamental work [29],
probabilists have modeled information as a σ-algebra (a collection of sets with particular
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properties) of events (subsets of possible outcomes) in the sample space (the set of all possible
outcomes). Consequently, mathematically, Ft is a σ-algebra, but readers unfamiliar with this
terminology should just keep the idea of information in mind when we write expressions like
this, that is, Ft just represents the information available at time t.

One of our first goals will be to show how to make the intuitive assumption in (1.1)
into a precise mathematical model. Our model will be formulated in terms of XA, XB,
and XC which will be stochastic processes, that is, random functions of time. The triple
X(t) = (XA(t), XB(t), XC(t)) gives the state of the process at time t. Simple bookkeeping
implies

X(t) = X(0) +R(t)

 −1
−1
1

 , (1.2)

where R(t) is the number of times the reaction has occurred by time t and X(0) is the vector
giving the numbers of molecules of each of the chemical species in the system at time zero.
We will assume that two reactions cannot occur at exactly the same time, so R is a counting
process, that is, R(0) = 0 and R is constant except for jumps of plus one.

Our first task, in Section 2, will be to show how one can represent counting processes
of the type we need in terms of the most elementary counting process, namely, the Poisson
process. Implicit in the fact that the right side of (1.1) depends only on the current values
of XA and XB is the assumption that the model satisfies the Markov property, that is, the
future of the process only depends on the current value, not on values at earlier times. The
representation of counting processes in terms of Poisson processes then gives a stochastic
equation for a general continuous-time Markov chain. There are, of course, other ways of
specifying a continuous-time Markov chain model, and Section 2 includes a discussion of the
relationship between the stochastic equation and the corresponding martingale problem and
Kolmogorov forward (master) equation. We also include a brief description of the common
methods of simulating the models.

Exploiting the representation as a solution of a stochastic equation, in Section 3 we discuss
stochastic models for chemical reaction networks. Under what we will refer to as the classical
scaling, we show how to derive the deterministic law of mass action from the Markov chain
model and introduce the diffusion or Langevin approximation. We also discuss the simple
class of networks in which all reactions are unary and indicate how the large literature on
branching processes and queueing networks provides useful information about this class of
networks. Many of these networks have what is known in the queueing literature as product
form stationary distributions, which makes the stationary distributions easy to compute.
The class of networks that have stationary distributions of this form is not restricted to
unary networks, however. In particular, all networks that satisfy the conditions of the zero-
deficiency theorem of Feinberg [16, 17], well-known in deterministic reaction network theory,
have product-form stationary distributions. There is also a brief discussion of models of
reaction networks with delays.

The biological systems that motivate the current discussion may involve reaction networks
in which the numbers of molecules of the chemical species present in the system vary over
several orders of magnitude. The reaction rates may also vary widely. One consequence
of this wide variation in scales is that different subsystems may evolve on different time

3



scales and this time-scale variation can be exploited to identify reduced models that capture
the behavior of parts of the system. Section 4 discusses systematic ways of identifying the
different time scales and deriving the reduced models.

Although much of the discussion that follows is informal and is intended to motivate
rather than rigorously demonstrate the ideas and methods we present, any lemma or theorem
explicitly identified as such is rigorously justifiable, or at least we intend that to be the case.
Our intention is to prepare an extended version of this paper that includes detailed proofs
of most or all of the theorems included.

2 Counting processes and continuous time Markov chains

The simplest counting process is a Poisson process, and Poisson processes will be the basic
building blocks that we use to obtain more complex models.

2.1 Poisson processes

A Poisson process is a model for a series of random observations occurring in time.

x x x x x x x x
t

Let Y (t) denote the number of observations by time t. In the figure above, Y (t) = 6.
Note that for t < s, Y (s)−Y (t) is the number of observations in the time interval (t, s]. We
make the following assumptions about the model.

1) Observations occur one at a time.

2) Numbers of observations in disjoint time intervals are independent random variables,
i.e., if t0 < t1 < · · · < tm, then Y (tk)− Y (tk−1), k = 1, . . . ,m are independent random
variables.

3) The distribution of Y (t+ a)− Y (t) does not depend on t.

The following result can be found in many elementary books on probability and stochastic
processes. See, for example, Ross [41].

Theorem 2.1 Under assumptions 1), 2), and 3), there is a constant λ > 0 such that, for
t < s, Y (s)− Y (t) is Poisson distributed with parameter λ(s− t), that is,

P{Y (s)− Y (t) = k} =
(λ(s− t))k

k!
e−λ(s−t). (2.1)

If λ = 1, then Y is a unit (or rate one) Poisson process. If Y is a unit Poisson process
and Yλ(t) ≡ Y (λt), then Yλ is a Poisson process with parameter λ. Suppose Yλ(t) = Y (λt)
and Ft represents the information obtained by observing Yλ(s), for s ≤ t. Then by the
independence assumption and (2.1)

P{Yλ(t+ ∆t)− Yλ(t) > 0|Ft} = P{Yλ(t+ ∆t)− Yλ(t) > 0} = 1− e−λ∆t ≈ λ∆t. (2.2)
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The following facts about Poisson processes play a significant role in our analysis of the
models we will discuss.

Theorem 2.2 If Y is a unit Poisson process, then for each u0 > 0,

lim
n→∞

sup
u≤u0
|Y (nu)

n
− u| = 0 a.s.

Proof. For fixed u, by the independent increments assumption, the result is just the ordinary
law of large numbers. The uniformity follows by monotonicity. �

The classical central limit theorem implies

lim
n→∞

P{Y (nu)− nu√
n

≤ x} =

∫ x

−∞

1√
2π
e−y

2/2dy = P{W (u) ≤ x},

where W is a standard Brownian motion. In fact, the approximation is uniform on bounded
time intervals in much the same sense that the limit in Theorem 2.2 is uniform. This result
is essentially Donsker’s functional central limit theorem [13]. It suggests that for large n

Y (nu)− nu√
n

≈ W (u),
Y (nu)

n
≈ u+

1√
n
W (u)

where the approximation is uniform on bounded time intervals. One way to make this
approximation precise is through the strong approximation theorem of Komlós, Major, and
Tusńady [30, 31], which implies the following.

Lemma 2.3 A unit Poisson process Y and a standard Brownian motion W can be con-
structed so that

Γ ≡ sup
t≥0

|Y (t)− t−W (t)|
log(2 ∨ t)

<∞ a.s.

and there exists c > 0 such that E[ecΓ] <∞.

Proof. See Corollary 7.5.5 of [15]. �

Note that ∣∣∣∣Y (nt)− nt√
n

− 1√
n
W (nt)

∣∣∣∣ ≤ log(nt ∨ 2)√
n

Γ, (2.3)

and that 1√
n
W (nt) is a standard Brownian motion.
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2.2 Continuous time Markov chains

The calculation in (2.2) and the time-change representation Yλ(t) = Y (λt) suggest the pos-
sibility of writing R in (1.2) as

R(t) = Y (

∫ t

0

κXA(s)XB(s)ds)

and hence  XA(t)
XB(t)
XC(t)

 ≡ X(t) = X(0) +

 −1
−1
1

Y (

∫ t

0

κXA(s)XB(s)ds). (2.4)

Given Y and the initial state X(0) (which we assume is independent of Y ), (2.4) is an
equation that uniquely determines X for all t > 0. To see that this assertion is correct, let
τk be the kth jump time of Y . Then letting

ζ =

 −1
−1
1

 ,

(2.4) implies X(t) = X(0) for 0 ≤ t < τ1, X(t) = X(0) + ζ for τ1 ≤ t < τ2, and so
forth. To see that the solution of this equation has the properties suggested by (1.1), let
λ(X(t)) = κXA(t)XB(t) and observe that occurrence of the reaction in (t, t+∆t] is equivalent
to R(t+ ∆t) > R(t), so the left side of (1.1) becomes

P{R(t+ ∆t) > R(t)|Ft}
= 1− P{R(t+ ∆t) = R(t)|Ft}

= 1− P{Y (

∫ t

0

λ(X(s))ds+ λ(X(t))∆t) = Y (

∫ t

0

λ(X(s))ds)|Ft}

= 1− e−λ(X(t))∆t ≈ λ(X(t))∆t,

where the third equality follows from the fact that Y (
∫ t

0
λ(X(s))ds) and X(t) are part of

the information in Ft (are Ft-measurable in the mathematical terminology) and the inde-
pendence properties of Y .

More generally, a continuous time Markov chain X taking values in Zd is specified by
giving its transition intensities (propensities in much of the chemical physics literature) λl
that determine

P{X(t+ ∆t)−X(t) = ζl|FXt } ≈ λl(X(t))∆t, (2.5)

for the different possible jumps ζl ∈ Zd, where FXt is the σ−algebra generated by X (all the
information available from the observation of the process up to time t). If we write

X(t) = X(0) +
∑
l

ζlRl(t)

where Rl(t) is the number of jumps of ζl at or before time t, then (2.5) implies

P{Rl(t+ ∆t)−Rl(t) = 1|FXt } ≈ λl(X(t))∆t, l ∈ Zd.
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Rl is a counting process with intensity λl(X(t)) and by analogy with (2.4) we write

X(t) = X(0) +
∑

ζlYl(

∫ t

0

λl(X(s))ds), (2.6)

where the Yl are independent unit Poisson processes. This equation has a unique solution by
the same jump by jump argument used above provided

∑
l λl(x) < ∞ for all x. Unless we

add additional assumptions, we cannot rule out the possibility that the solution only exists
up to some finite time. For example, if d = 1 and λ1(k) = (1 + k)2, the solution of

X(t) = Y1(

∫ t

0

(1 +X(s))2ds)

hits infinity in finite time. To see why this is the case, compare the above equation to the
ordinary differential equation

ẋ(t) = (1 + x(t))2, x(0) = 0.

2.3 Equivalence of stochastic equations and martingale problems

There are many ways of relating the intensities λl to the stochastic process X, and we will
review some of these in later sections, but the stochastic equation (2.6) has the advantage
of being intuitive (λl has a natural interpretation as a “rate”) and easily generalized to take
into account such properties as external noise, in which (2.6) becomes

X(t) = X(0) +
∑

ζlYl(

∫ t

0

λl(X(s), Z(s))ds)

where Z is a stochastic process independent of X(0) and the Yl, or delays, in which (2.6)
becomes

X(t) = X(0) +
∑

ζlYl(

∫ t

0

λl(X(s), X(s− δ))ds),

or perhaps the λl become even more complicated functions of the past of X. We will also see
that these stochastic equations let us exploit well-known properties of the Poisson processes
Yl to study the properties of X.

The basic building blocks of our models remain the counting processes Rl and their
intensities expressed as functions of the past of the Rl and possibly some additional stochastic
input independent of the Yl (for example, the initial condition X(0) or the environmental
noise Z).

For the moment, we focus on a finite system of counting processes R = (R1, . . . , Rm)
given as the solution of a system of equations

Rl(t) = Yl(

∫ t

0

γl(s, R)ds), (2.7)

where the γl are nonanticipating in the sense that

γl(t, R) = γl(t, R(· ∧ t)), t ≥ 0,
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that is, at time t, γl(t, R) depends only on the past of R up to time t, and the Yl are
independent, unit Poisson processes. The independence of the Yl ensures that only one of
the Rl jumps at a time. Let τk be the kth jump time of R. Then any system of this form
has the property that for all l and k,

Mk
l (t) ≡ Rl(t ∧ τk)−

∫ t∧τk

0

γl(s, R)ds

is a martingale, that is, there exists a filtration {Ft} such that

E[Mk
l (t+ s)|Ft] = Mk

l (t), t, s ≥ 0.

Note that

lim
k→∞

E[Rl(t ∧ τk)] = lim
k→∞

E[

∫ t∧τk

0

γl(s, R)ds],

allowing ∞ =∞, and if the limit is finite for all l and t, then τ∞ =∞ and for each l,

Ml(t) = Rl(t)−
∫ t

0

γl(s, R)ds

is a martingale.
There is a converse to these assertions. If (R1, . . . , Rm) are counting processes adapted

to a filtration {Ft} and (λ1, . . . , λm) are nonnegative stochastic processes adapted to {Ft}
such that for each k and l,

Rl(t ∧ τk)−
∫ t∧τk

0

λl(s)ds

is a {Ft}-martingale, we say that λl is the {Ft}-intensity for Rl.

Lemma 2.4 Assume that R = (R1, . . . , Rm) is a system of counting processes with no com-
mon jumps and λl is the {Ft}-intensity for Rl. Then there exist independent unit Poisson
processes Y1, . . . , Ym (perhaps on an enlarged sample space) such that

Rl(t) = Yl(

∫ t

0

λl(s)ds).

Proof. See Meyer [40] and Kurtz [36]. �

This lemma suggests the following alternative approach to relating the intensity of a
counting process to the corresponding counting process. Again, given nonnegative, nonan-
ticipating functions γl, the intuitive problem is to find counting processes Rl such that

P{Rl(t+ ∆t) > Rl(t)|Ft} ≈ γl(t, R)∆t,

which we now translate into the following martingale problem. In the following definition
Jm[0,∞) denotes the set of m−dimensional cadlag counting paths.
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Definition 2.5 Let γl, l = 1, . . . ,m, be nonnegative, nonanticipating functions defined on
Jm[0,∞). Then a family of counting processes R = (R1, . . . , Rm) is a solution of the mar-
tingale problem for (γ1, . . . , γm) if the Rl have no simultaneous jumps and there exists a
filtration {Ft} such that R is adapted to {Ft} and for each l and k,

Rl(t ∧ τk)−
∫ t∧τk

0

γl(s, R)ds

is a {Ft}-martingale.

Of course, the solution of (2.7) is a solution of the martingale problem and Lemma 2.4
implies that every solution of the martingale problem can be written as a solution of the
stochastic equation. Consequently, the stochastic equation and the martingale problem are
equivalent ways of specifying the system of counting processes that corresponds to the γl.
The fact that the martingale problem uniquely characterizes the system of counting processes
is a special case of a theorem of Jacod [24].

2.4 Thinning of counting processes

Consider a single counting process R0 with {Ft}-intensity λ0, and let p(t, R0) be a cadlag
(right continuous with left limits at each t > 0), nonanticipating function with values in
[0, 1]. For simplicity, assume

E[R0(t)] = E[

∫ t

0

λ0(s)ds] <∞.

We want to construct a new counting process R1 such that at each jump of R0, R1 jumps with
probability p(t−, R0). Perhaps the simplest construction is to let ξ0, ξ1, . . . be independent,
uniform [0, 1] random variables that are independent of R0 and to define

R1(t) =

∫ t

0

1[0,p(s−,R0)](ξR0(s−))dR0(s).

Since with probability one,

R1(t) = lim
n→∞

bntc∑
k=0

1[0,p( k
n
,R0)](ξR0( k

n
))(R0(

k + 1

n
)−R0(

k

n
)),

where bzc is the integer part of z, setting R̃0(t) = R0(t)−
∫ t

0
λ0(s)ds, we see that

R1(t)−
∫ t

0

λ0(s)p(s, R0)ds =

∫ t

0

(1[0,p(s−,R0)](ξR0(s−))− p(s−, R0))dR0(s)

+

∫ t

0

p(s−, R0)dR̃0(s)

is a martingale (because both terms on the right are martingales). Hence, R1 is a counting
process with intensity λ0(t)p(t, R0). We could also define

R2(t) =

∫ t

0

1(p(s−,R0),1](ξR0(s−))dR0(s),
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so that R1 and R2 would be counting processes without simultaneous jumps having intensities
λ0(t)p(t, R0) and λ0(t)(1− p(t, R0)).

Note that we could let p be a nonanticipating function of both R0 and R1, or equivalently,
R1 and R2. With that observation in mind, let γ0(t, R) be a nonnegative, nonanticipating
function of R = (R1, . . . , Rm), and let pl(t, R), l = 1, . . . ,m, be cadlag nonnegative, nonantic-
ipating functions satisfying

∑m
l=1 pl(t, R) ≡ 1. Let Y be a unit Poisson process and ξ0, ξ1, . . .

be independent, uniform [0, 1] random variables that are independent of Y , and set q0 = 0
and for 1 ≤ l ≤ m set ql(t, R) =

∑l
i=1 pi(t, R). Now consider the system

R0(t) = Y (

∫ t

0

γ0(s, R)ds) (2.8)

Rl(t) =

∫ t

0

1(ql−1(s−,R),ql(s−,R)](ξR0(s−))dR0(s). (2.9)

ThenR = (R1, . . . , Rm) is a system of counting processes with intensities λl(t) = γ0(t, R)pl(t, R).
If, as in the time-change equation (2.7) and the equivalent martingale problem described

in Definition 2.5, we start with intensities γ1, . . . , γm, we can define

γ0(t, R) =
m∑
l=1

γl(t, R), pl(t, R) =
γl(t, R)

γ0(t, R)
,

and the solution of the system (2.8) and (2.9) will give a system of counting processes with
the same distribution as the solution of the time-change equation or the martingale problem.
Specializing to continuous-time Markov chains and defining

λ0(x) =
∑
l

λl(x), ql(x) =
l∑

i=1

λi(x)/λ0(x),

the equations become

R0(t) = Y (

∫ t

0

λ0(X(s))ds) (2.10)

X(t) = X(0) +
∑
l

ζl

∫ t

0

1(ql−1(X(s−)),ql(X(s−)](ξR0(s−))dR0(s).

2.5 The martingale problem and forward equation for Markov
chains

Let X satisfy (2.6), and for simplicity, assume that τ∞ =∞, that only finitely many of the
λl are not identically zero, and that

E[Rl(t)] = E[

∫ t

0

λl(X(s))ds] <∞, l = 1, . . . ,m.

Then for f a bounded function on Zd,

f(X(t)) = f(X(0)) +
∑
l

∫ t

0

(f(X(s−) + ζl)− f(X(s)))dRl(t)
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and defining

R̃l(t) = Rl(t)−
∫ t

0

λl(X(s))ds,

we see that

f(X(t))− f(X(0))−
∫ t

0

∑
l

λl(X(s))(f(X(s) + ζl)− f(X(s)))ds

=
∑
l

∫ t

0

(f(X(s−) + ζl)− f(X(s))dR̃l(t)

is a martingale.
Define

Af(x) =
∑
l

λl(x)(f(x+ ζl)− f(x)).

Allowing τ∞ <∞, define X(t) =∞ for t ≥ τ∞. If τ∞ <∞,

lim
k→∞
|X(τk)| =∞,

and this definition gives a “continuous” extension of X to the time interval [0,∞). Let f
satisfy f(x) = 0 for |x| sufficiently large, and define f(∞) = 0. Then for any solution of
(2.6),

f(X(t))− f(X(0))−
∫ t

0

Af(X(s))ds (2.11)

is a martingale.

Definition 2.6 A right continuous, Zd ∪ {∞}-valued stochastic process X is a solution of
the martingale problem for A if there exists a filtration {Ft} such that for each f satisfying
f(x) = 0 for |x| sufficiently large, (2.11) is a {Ft}-martingale. X is a minimal solution, if
in addition, X(t) =∞ for t ≥ τ∞.

The following lemma follows from Lemma 2.4.

Lemma 2.7 If X is a minimal solution of the martingale problem for A, then there exist
independent unit Poisson processes Yl (perhaps on an enlarged sample space) such that

Rl(t) = Yl(

∫ t

0

λl(X(s))ds).

The martingale property implies

E[f(X(t))] = E[f(X(0))] +

∫ t

0

E[Af(X(s))]ds

and taking f(x) = 1{y}(x), we have

P{X(t) = y} = P{X(0) = y}+
∫ t

0

(
∑
l

λl(y−ζl)P{X(s) = y−ζl}−
∑
l

λl(y)P{X(s) = y})ds
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giving the Kolmogorov forward or master equation for the distribution of X. In particular,
defining py(t) = P{X(t) = y} and νy = P{X(0) = y}, {py} satisfies the system of differential
equations

ṗy(t) =
∑
l

λl(y − ζl)py−ζl(t)− (
∑
l

λl(y))py(t), (2.12)

with initial condition py(0) = νy.

Lemma 2.8 Let {νy} be a probability distribution on Zd, and let X(0) satisfy P{X(0) =
y} = νy. The system of differential equations (2.12) has a unique solution satisfying py(0) =
νy and

∑
y py(t) ≡ 1 if and only if the solution of (2.6) satisfies τ∞ =∞.

2.6 Simulation

The stochastic equations (2.6) and (2.10) suggest methods of simulating continuous-time
Markov chains, and these methods are, in fact, well known. Equation (2.6) corresponds to
the next reaction (next jump) method as defined by Gibson and Bruck [19].

The algorithm obtained by simulating (2.10) is known variously as the embedded chain
method or Gillespie’s [20, 21] direct method or the stochastic simulation algorithm (SSA).

If we define an Euler-type approximation for (2.6), that is, for 0 = τ0 < τ1 < · · · ,
recursively define

X̂(τn) = X(0) +
∑
l

ζlYl

(
n−1∑
k=0

λl(X̂(τk))(τk+1 − τk)

)
,

we obtain Gillespie’s [23] τ -leap method.

2.7 Stationary distributions

We restrict our attention to continuous-time Markov chains for which τ∞ =∞ for all initial
values and hence, given X(0), the process is uniquely determined as a solution of (2.6), (2.10),
or the martingale problem given by Definition 2.6, and the one-dimensional distributions are
uniquely determined by (2.12). A probability distribution π is called a stationary distribution
for the Markov chain if X(0) having distribution π implies X is a stationary process, that
is, for each choice of 0 ≤ t1 < · · · < tk, the joint distribution of

(X(t+ t1), . . . , X(t+ tk))

does not depend on t.
If X(0) has distribution π, then since E[f(X(0))] = E[f(X(t))] =

∑
x f(x)π(x), the

martingale property for (2.11) implies

0 = E[

∫ t

0

Af(X(s))ds] = t
∑
x

Af(x)π(x),

and as in the derivation of (2.12),∑
l

λl(y − ζl)π(y − ζl)− (
∑
l

λl(y))π(y) = 0.

12



3 Reaction networks

We consider a network of r0 chemical reactions involving s0 chemical species, S1, . . . , Ss0 ,

s0∑
i=1

νikSi ⇀

s0∑
i=1

ν ′ikSi, k = 1, . . . , r0,

where the νik and ν ′ik are nonnegative integers. Let the components of X(t) give the numbers
of molecules of each species in the system at time t. Let νk be the vector whose ith component
is νik, the number of molecules of the ith chemical species consumed in the kth reaction, and
let ν ′k be the vector whose ith component is ν ′ik, the number of molecules of the ith species
produced by the kth reaction. Let λk(x) be the rate at which the kth reaction occurs, that is,
it gives the propensity/intensity of the kth reaction as a function of the numbers of molecules
of the chemical species.

If the kth reaction occurs at time t, the new state becomes

X(t) = X(t−) + ν ′k − νk.

The number of times that the kth reaction occurs by time t is given by the counting process
satisfying

Rk(t) = Yk(

∫ t

0

λk(X(s))ds),

where the Yk are independent unit Poisson processes. The state of the system then satisfies

X(t) = X(0) +
∑
k

Rk(t)(ν
′
k − νk)

= X(0) +
∑
k

Yk(

∫ t

0

λk(X(s))ds)(ν ′k − νk).

To simplify notation, we will write
ζk = ν ′k − νk.

3.1 Rates for the law of mass action

The stochastic form of the law of mass action says that the rate at which a reaction occurs
should be proportional to the number of distinct subsets of the molecules present that can
form the inputs for the reaction. Intuitively, the mass action assumption reflects the idea
that the system is well-stirred in the sense that all molecules are equally likely to be at any
location at any time. For example, for a binary reaction S1 +S2 ⇀ S3 or S1 +S2 ⇀ S3 +S4,

λk(x) = κkx1x2,

where κk is a rate constant. For a unary reaction S1 ⇀ S2 or S1 ⇀ S2 + S3, λk(x) = κkx1.
For 2S1 ⇀ S2, λk(x) = κkx1(x1 − 1).

For a binary reaction S1 + S2 ⇀ S3, the rate should vary inversely with volume, so it
would be better to write

λNk (x) = κkN
−1x1x2 = Nκkz1z2,

13



where classically, N is taken to be the volume of the system times Avogadro’s number and
zi = N−1xi is the concentration in moles per unit volume. For 2S1 → S2, since N is very
large,

1

N
κkx1(x1 − 1) = Nκkz1(z1 −

1

N
) ≈ Nκkz

2
1 .

Note that unary reaction rates also satisfy

λk(x) = κkxi = Nκkzi.

Although, reactions of order higher than binary may not be physical, if they were, the
analogous form for the intensity would be

λNk (x) = κk

∏
i νik!

N |νk|−1

∏
i

(
xi
νik

)
= Nκk

∏
i νik!

N |νk|

∏(
xi
νik

)
,

where |νk| =
∑

i νik. Again z = N−1x gives the concentrations in moles per unit volume,
and

λNk (x) ≈ Nκk
∏
i

zνiki ≡ Nλ̃k(z), (3.1)

where λ̃k is the usual deterministic form of mass action kinetics.

3.2 General form for the classical scaling

Setting CN(t) = N−1X(t) and using (3.1)

CN(t) = CN(0) +
∑
k

N−1Yk(

∫ t

0

λNk (X(s))ds)ζk

≈ CN(0) +
∑
k

N−1Yk(N

∫ t

0

λ̃k(C
N(s))ds)ζk

= CN(0) +
∑
k

N−1Ỹk(N

∫ t

0

λ̃k(C
N(s))ds)ζk +

∫ t

0

F (CN(s))ds,

where Ỹk(u) = Yk(u)− u is the centered process and

F (z) ≡
∑
k

κk
∏
i

zνiki ζk.

The law of large numbers for the Poisson process, Lemma 2.2, implies N−1Ỹ (Nu) ≈ 0, so

CN(t) ≈ CN(0) +
∑
k

∫ t

0

κk
∏
i

CN
i (s)νikζkds = CN(0) +

∫ t

0

F (CN(s))ds,

which in the limit as N →∞ gives the classical deterministic law of mass action

Ċ(t) =
∑
k

κk
∏
i

Ci(t)
νikζk = F (C(t)). (3.2)

14



(See [32, 34, 35].)
Since by (2.3),

1√
N
Ỹk(Nu) =

Yk(Nu)−Nu√
N

is approximately a Brownian motion,

V N(t) ≡
√
N(CN(t)− C(t))

≈ V N(0) +
√
N(
∑
k

1

N
Yk(N

∫ t

0

λ̃k(C
N(s))ds)ζk −

∫ t

0

F (C(s))ds)

= V N(0) +
∑
k

1√
N
Ỹk(N

∫ t

0

λ̃k(C
N(s))ds)ζk +

∫ t

0

√
N(F (CN(s))− F (C(s)))ds

≈ V N(0) +
∑
k

Wk(

∫ t

0

λ̃k(C(s))ds)ζk +

∫ t

0

∇F (C(s)))V N(s)ds,

where the second approximation follows from (3.1), and the limit as N goes to infinity gives
V N ⇒ V where

V (t) = V (0) +
∑
k

Wk(

∫ t

0

λ̃k(C(s))ds)ζk +

∫ t

0

∇F (C(s)))V (s)ds. (3.3)

(See [33, 35, 42] and Chapter 11 of [15].) This limit suggests the approximation

CN(t) ≈ ĈN(t) ≡ C(t) +
1√
N
V (t). (3.4)

Since (3.3) is a linear equation driven by a Gaussian process, V is Gaussian as is ĈN .

3.3 Diffusion/Langevin approximations

The first steps in the argument in the previous section suggest simply replacing the rescaled
centered Poisson processes 1√

N
Ỹk(N ·) by independent Brownian motions and considering a

solution of

DN(t) = DN(0) +
∑
k

1√
N
Wk(

∫ t

0

λ̃k(D
N(s))ds)ζk +

∫ t

0

F (DN(s))ds (3.5)

as a possible approximation for CN . Unfortunately, even though only ordinary integrals
appear in this equation, the theory of the equation is not quite as simple as it looks. Unlike
(2.6) where uniqueness of solutions is immediate, no general uniqueness theorem is known
for (3.5) without an additional requirement on the solution. In particular, setting

τNk (t) =

∫ t

0

λ̃k(D
N(s))ds,

we must require that the solution DN is compatible with the Brownian motions Wk in the
sense that Wk(τ

N
k (t) + u) −Wk(τ

N
k (t)) is independent of FDNt for all k, t ≥ 0, and u ≥ 0.
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This requirement is intuitively natural and is analogous to the requirement that a solution
of an Itô equation be nonanticipating. In fact, we have the following relationship between
(3.5) and a corresponding Itô equation.

Lemma 3.1 If DN is a compatible solution of (3.5), then there exist independent standard
Brownian motions Bk (perhaps on an enlarged sample space) such that DN is a solution of
the Itô equation

DN(t) = DN(0) +
∑
k

1√
N

∫ t

0

√
λ̃(DN(s)dBk(s)ζk +

∫ t

0

F (DN(s))ds. (3.6)

Proof. See [35, 36] and Chapter 11 of [15]. For a general discussion of compatibility, see
[37], in particular, Example 3.20. �

In the chemical physics literature, DN is known as the Langevin approximation for the
continuous-time Markov chain model determined by the master equation. Just as there are
alternative ways of determining the continuous-time Markov chain model, there are alterna-
tive approaches to deriving the Langevin approximation. For example, CN is a solution of
the martingale problem corresponding to

ANf(x) =
∑
k

Nλk(x)(f(x+N−1ζk)− f(x)),

and if f is three times continuously differentiable with compact support,

ANf(x) = LNf(x) +O(N−2),

where

LNf(x) =
1

2N

∑
k

ζ>k ∂
2f(x)ζ>k + F (x) · ∇f(x),

and any compatible solution of (3.5) is a solution of the martingale problem for LN , that is,
there is a filtration {FNt } such that

f(DN(t))− f(DN(0))−
∫ t

0

LNf(DN(s))ds

is a {FNt }-martingale for each twice continuously differentiable function having compact
support. The converse also holds, that is, any solution of the martingale problem for LN
that does not hit infinity in finite time can be obtained as a compatible solution of (3.5) or
equivalently, as a solution of (3.6).

Finally, the Langevin approximation can be derived starting with the master equation.
First rewrite (2.12) as

ṗN(y, t) =
∑
l

Nλl(y −N−1ζl)p
N(y −N−1ζl, t)− (

∑
l

Nλl(y))pN(y, t), (3.7)

where now
pN(y, t) = P{CN(t) = y}.

16



Expanding λl(y−N−1ζl)p
N(y−N−1ζl) in a Taylor series (the Kramers-Moyal expansion, or

in this context, the system-size expansion of van Kampen; see [42]) and discarding higher
order terms gives

ṗN(y, t) ≈ 1

2N

∑
l

ζ>l ∂
2(λl(y)pN(y, t))ζk −

∑
l

ζl · ∇(λl(y)pN(y, t)).

Replacing ≈ by = gives the Fokker-Planck equation

q̇N(y, t) =
1

2N

∑
l

ζ>l ∂
2(λl(y)qN(y, t))ζk −

∑
l

ζl · ∇(λl(y)qN(y, t))

corresponding to (3.6). These three derivations are equivalent in the sense that any solution
of the Fokker-Planck equation for which qN(·, t) is a probability density for all t gives the
one-dimensional distributions of a solution of the martingale problem for LN , and as noted
before, any solution of the martingale problem that does not hit infinity in finite time can
be obtained as a solution of (3.6) or (3.5). See [38] for a more detailed discussion.

The approximation (3.4) is justified by the convergence of V N to V , but the justification
for taking DN as an approximation of CN is less clear. One can, however, apply the strong
approximation result, Lemma 2.3, to construct DN and CN in such a way that in a precise
sense, for each T > 0,

sup
t≤T
|DN(t)− CN(t)| = O(

logN

N
).

3.4 First order reaction networks

If all reactions in the network are unary, for example,

S1 ⇀ S2

S1 ⇀ S2 + S3

S1 ⇀ S1 + S2

S1 ⇀ ∅,

then the resulting process is a multitype branching process, and if reactions of the form

∅⇀ S1

are included, the process is a branching process with immigration. Networks that only
include the above reaction types are termed first order reaction networks. For simplicity,
first consider the system

∅ ⇀ S1

S1 ⇀ S2

S2 ⇀ 2S1 .

The stochastic equation for the model becomes

X(t) = X(0) + Y1(κ1t)

(
1
0

)
+ Y2(κ2

∫ t

0

X1(s)ds)

(
−1
1

)
+ Y3(κ3

∫ t

0

X2(s)ds)

(
2
−1

)
,
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for some choice of κ1, κ2, κ3 > 0. Using the fact that E[Yk(
∫ t

0
λk(s)ds)] = E[

∫ t
0
λk(s)ds], we

have

E[X(t)] = E[X(0)] +

(
κ1

0

)
t+

∫ t

0

κ2E[X1(s)]ds

(
−1
1

)
+ κ3

∫ t

0

E[X2(s)]ds)

(
2
−1

)
= E[X(0)] +

(
κ1

0

)
t+

∫ t

0

(
−κ2 2κ3

κ2 −κ3

)
E[X(s)]ds

giving a simple linear system for the first moments, E[X(t)]. For the second moments, note
that

X(t)X(t)> = X(0)X(0)> +

∫ t

0

X(s−)dX(s)> +

∫ t

0

dX(s)X(s−)> + [X]t,

where [X]t is the matrix of quadratic variations which in this case is simply

[X]t = Y1(κ1t)

(
1 0
0 0

)
+Y2(κ2

∫ t

0

X1(s)ds)

(
1 −1
−1 1

)
+Y3(κ3

∫ t

0

X2(s)ds)

(
4 −2
−2 1

)
.

Since

X(t)−X(0)− κ1t

(
1
0

)
− κ2

∫ t

0

X1(s)ds

(
−1
1

)
− κ3

∫ t

0

X2(s)ds

(
2
−1

)
is a martingale,

E[X(t)X(t)>]

= E[X(0)X(0)>] +

∫ t

0

E

[
X(s)

((
κ1 0

)
+X(s)>

(
−κ2 2κ3

κ2 −κ3

)>)]
ds

+

∫ t

0

E

[((
κ1

0

)
+

(
−κ2 2κ3

κ2 −κ3

)
X(s)

)
X(s)>

]
ds

+

(
κ1 0
0 0

)
t+

∫ t

0

(
κ2E[X1(s)]

(
1 −1
−1 1

)
+ κ3E[X2(s)]

(
4 −2
−2 1

))
ds

= E[X(0)X(0)>] +

∫ t

0

(
E[X(s)]

(
κ1 0

)
+

(
κ1

0

)
E[X(s)>]

)
ds

+

∫ t

0

(
E[X(s)X(s)>]

(
−κ2 2κ3

κ2 −κ3

)>
+

(
−κ2 2κ3

κ2 −κ3

)
E[X(s)X(s)>]

)
ds

+

(
κ1 0
0 0

)
t+

∫ t

0

(
κ2E[X1(s)]

(
1 −1
−1 1

)
+ κ3E[X2(s)]

(
4 −2
−2 1

))
ds.

In general, the stochastic equation for first order networks will be of the form

X(t) = X(0) +
∑
k

Y 0
k (α0

kt)ζ
0
k +

s0∑
l=1

∑
k

Y l
k(αlk

∫ t

0

Xl(s)ds)ζ
l
k,
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where all components of ζ0
k are nonnegative and all components of ζ lk are nonnegative except

for the possibility that the lth component of ζ lk may be −1. The martingale properties of
the Y l

k imply that the expectation of X satisfies

E[X(t)] = E[X(0)] + at+

∫ t

0

AE[X(s)]ds (3.8)

where a =
∑

k α
0
kζ

0
k and A is the matrix whose lth column is Al =

∑
k α

l
kζ

l
k. Note that the

solution of (3.8) is given by

E[X(t)] = eAtE[X(0)] +

∫ t

0

eA(t−s)a ds,

and if A is invertible
E[X(t)] = eAtE[X(0)] + A−1(eAt − I)a, (3.9)

where I is the identity matrix.
Similarly to before, the matrix of second moments satisfies

E[X(t)X(t)>] = E[X(0)X(0)>] +

∫ t

0

(E[X(s)]a> + aE[X(s)]>)ds

+

∫ t

0

(AE[X(s)X(s)>] + E[X(s)X(s)>]A>)ds

+B0t+
∑
l

∫ t

0

E[Xl(s)]Blds ,

where
B0 =

∑
k

α0
kζ

0
kζ

0>
k , Bl =

∑
k

αlkζ
l
kζ

l>
k .

See [3], Section V.7.
A system that only includes reactions of the form

∅ ⇀ Si

Si ⇀ Sj

Si ⇀ ∅

can be interpreted as an infinite server queueing network, with ∅ ⇀ Si corresponding to an
“arrival”, Si ⇀ ∅, a “departure”, and Si ⇀ Sj the movement of a “customer” from station
i to station j. Customers (molecules) that start in or enter the system move (change type)
independently until they leave the system. This independence implies that if {Xi(0)} are
independent Poisson distributed random variables, then {Xi(t)} are independent Poisson
distributed random variables for all t ≥ 0. Since the Poisson distribution is determined by
its expectation, under the assumption of an independent Poisson initial distribution, the
distribution of X(t) is determined by E[X(t)], that is, by the solution of (3.8).

Suppose that for each pair of species Si and Sj, it is possible for a molecule of Si to
be converted, perhaps through a sequence of intermediate steps, to a molecule of Sj. In

19



addition, assume that the system is open in the sense that there is at least one reaction of
the form ∅ ⇀ Si and one reaction of the form Sj ⇀ ∅. Then A is invertible, so E[X(t)] is
given by (3.9), and as t→∞, eAt → 0 so E[X(t)]→ −A−1a. It follows that the stationary
distribution for X is given by a vector X of independent Poisson distributed random variables
with E[X] = −A−1a.

If the system is closed so that the only reactions are of the form Si ⇀ Sj and the initial
distribution is multinomial with parameters (n, p1(0), . . . , ps0(0)), that is, for k = (k1, . . . , ks0)
with

∑
i ki = n,

P{X(0) = k} =

(
n

k1, . . . , ks0

)∏
pi(0)ki ,

then X(t) has a multinomial distribution with parameters (n, p1(t), . . . , ps0(t)), where p(t) =
(p1(t), . . . , ps0(t)) is given by

p(t) = eAtp(0).

Note that if the intensity for the reaction Si ⇀ Sj is κijXi(t), then the model is equivalent
to n independent continuous-time Markov chains with state space {1, . . . , s0} and transition
intensities given by the κij. Consequently, if the independent chains have the same initial
distribution, p(0) = (p1(0), . . . , ps0(0)), then they have the same distribution at time t,
namely p(t). The multinomial distribution with parameters (n, p) with p = limt→∞ p(t) will
be a stationary distribution, but p is not unique unless the assumption that every chemical
species Si can be converted into every other chemical species Sj holds.

See [18] for additional material on first order networks.

3.5 Product form stationary distributions

The Poisson and multinomial stationary distributions discussed above for unary systems are
special cases of what are known as product form stationary distributions in the queueing
literature. As noted in Chapter 8 of [28] and discussed in detail in [2], a much larger class of
reaction networks also has product form stationary distributions. In fact, stochastic models
of reaction networks that satisfy the conditions of the zero deficiency theorem of Feinberg
[16] from deterministic reaction network theory have this property.

Let S = {Si : i = 1, . . . , s0} denote the collection of chemical species, C = {νk, ν ′k : k =
1, . . . , r0} the collection of complexes, that is, the vectors that give either the inputs or the
outputs of a reaction, and R = {νk → ν ′k : k = 1, . . . , r0} the collection of reactions. The
triple, {S, C,R} determines the reaction network.

Definition 3.2 A chemical reaction network, {S, C,R}, is called weakly reversible if for
any reaction νk → ν ′k, there is a sequence of directed reactions beginning with ν ′k as a source
complex and ending with νk as a product complex. That is, there exist complexes ν1, . . . , νr
such that ν ′k → ν1, ν1 → ν2, . . . , νr → νk ∈ R. A network is called reversible if ν ′k → νk ∈ R
whenever νk → ν ′k ∈ R.

Let G be the directed graph with nodes given by the complexes C and directed edges
given by the reactions R = {νk → ν ′k}, and let G1, . . . ,G` denote the connected components
of G. {Gj} are the linkage classes of the reaction network. Note that a reaction network is
weakly reversible if and only if the linkage classes are strongly connected.
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Definition 3.3 S = span{νk→ν′k∈R}{ν
′
k − νk} is the stoichiometric subspace of the network.

For c ∈ Rs0 we say c+ S and (c+ S) ∩Rs0
>0 are the stoichiometric compatibility classes and

positive stoichiometric compatibility classes of the network, respectively. Denote dim(S) =
s.

Definition 3.4 The deficiency of a chemical reaction network, {S, C,R}, is δ = |C| − ` −
s, where |C| is the number of complexes, ` is the number of linkage classes, and s is the
dimension of the stoichiometric subspace.

For x, c ∈ Zs0≥0, we define cx ≡
∏s0

i=1 c
xi
i , where we interpret 00 = 1, and x! ≡

∏s0
i=1 xi!. If

for each complex η ∈ C, c ∈ Rs0
>0 satisfies∑

k:νk=η

κkc
νk =

∑
k:ν′k=η

κkc
νk , (3.10)

where the sum on the left is over reactions for which η is the source complex and the sum
on the right is over those for which η is the product complex, then c is a special type
of equilibrium of the system (you can see this by summing each side of (3.10) over the
complexes), and the network is called complex balanced. The following is the Deficiency Zero
Theorem of Feinberg [16].

Theorem 3.5 Let {S, C,R} be a weakly reversible, deficiency zero chemical reaction net-
work governed by deterministic mass action kinetics, (3.2). Then, for any choice of rate
constants κk, within each positive stoichiometric compatibility class there is precisely one
equilibrium value c, that is

∑
k κkc

νk(ν ′k − νk) = 0, and that equilibrium value is locally
asymptotically stable relative to its compatibility class. Moreover, for each η ∈ C,∑

k:νk=η

κkc
νk =

∑
k:ν′k=η

κkc
νk . (3.11)

For stochastically modeled systems we have the following theorem.

Theorem 3.6 Let {S, C,R} be a chemical reaction network with rate constants κk. Suppose
that the deterministically modeled system is complex balanced with equilibrium c ∈ Rm

>0.
Then, for any irreducible communicating equivalence class, Γ, the stochastic system has a
product form stationary measure

π(x) = M
cx

x!
, x ∈ Γ, (3.12)

where M is a normalizing constant.

Theorem 3.5 then shows that the conclusion of Theorem 3.6 holds, regardless of the
choice of rate constants, for all stochastically modeled systems with a reaction network that
is weakly reversible and has a deficiency of zero.
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3.6 Models with delay

Modeling chemical reaction networks as continuous-time Markov chains is intuitively appeal-
ing and, as noted, consistent with the classical deterministic law of mass action. Cellular
reaction networks, however, include reactions for which the exponential timing of the simple
Markov chain model is almost certainly wrong. These networks typically involve assembly
processes (transcription or translation), referred to as elongation, in which an enzyme or
ribosome follows a DNA or RNA template to create a new DNA, RNA, or protein molecule.
The exponential holding times in the Markov chain model reflect an assumption that once
the molecules come together in the right configuration, the time it takes to complete the
reaction is negligible. That is not, in general, the case for elongation. While each step of the
assembly process might reasonably be assumed to take an exponentially distributed time,
the total time is a sum of such steps with the number of summands equal to the number of
nucleotides or amino acids. Since this number is large and essentially fixed, if the individual
steps have small expectations, the total time that the reaction takes once the assembly is ini-
tiated may be closer to deterministic than exponential. See [5, 8] for examples of stochastic
models of cellular reaction networks with delays.

One reasonable (though by no means only) way to incorporate delays into the models is
to assume that for a reaction with deterministic delay ξk that initiates at time t∗ the input
molecules are lost at time t∗ and the product molecules are produced at time t∗+ ξk. Noting
that the number of initiations of a reaction by time t can still be modeled by the counting
process Yk(

∫ t
0
λk(X(s))ds), we may let Γ1 denote those reactions with no delay and Γ2 those

with a delay, and conclude that the system should satisfy the equation

X(t) = X(0) +
∑
k∈Γ1

Yk,1(

∫ t

0

λk(X(s))ds)(ν ′k − νk)

−
∑
k∈Γ2

Yk,2(

∫ t

0

λk(X(s))ds)νk +
∑
k∈Γ2

Yk,2(

∫ t−ξk

0

λk(X(s))ds)ν ′k,

where we take X(s) ≡ 0, and hence λk(X(s)) ≡ 0, for s < 0. Existence and uniqueness of
solutions to this equation follow by the same jump by jump argument used in Section 2.2.

Simulation of reaction networks modeled with delay is no more difficult than simulat-
ing those without delay. For example, the above equation suggests a simulation strategy
equivalent to the next reaction method [1, 19]. There are also analogues of the stochastic
simulation algorithm, or Gillespie’s algorithm [8].

4 Multiple scales

The classical scaling that leads to the deterministic law of mass action assumes that all
chemical species are present in numbers of the same order of magnitude. For reaction
networks in biological cells, this assumption is usually clearly violated. Consequently, models
derived by the classical scaling may not be appropriate. For these networks some species
are present in such small numbers that they should be modeled by discrete variables while
others are present in large enough numbers to reasonably be modeled by continuous variables.
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These large numbers may still differ by several orders of magnitude, so normalizing all “large”
quantities in the same way may still be inappropriate. Consequently, methods are developed
in [4], [26], and [27] for deriving simplified models in which different species numbers are
normalized in different ways appropriate to their numbers in the system.

4.1 Derivation of the Michaelis-Menten equation

Perhaps the best known examples of reaction networks in which multiple scales play a role
are models that lead to the Michaelis-Menten equation. Darden [9, 10] gave a derivation
starting from a stochastic model, and we prove his result using our methodology.

Consider the reaction system

S1 + S2

κ′1


κ′2

S3
κ′3⇀S4 + S2,

where S1 is the substrate, S2 the enzyme, S3 the enzyme-substrate complex, and S4 the
product. Assume that the parameters scale so that

ZN
1 (t) = ZN

1 (0)−N−1Y1(N

∫ t

0

κ1Z
N
1 (s)ZN

2 (s)ds) +N−1Y2(N

∫ t

0

κ2Z
N
3 (s)ds)

ZN
2 (t) = ZN

2 (0)− Y1(N

∫ t

0

κ1Z
N
1 (s)ZN

2 (s)ds) + Y2(N

∫ t

0

κ2Z
N
3 (s)ds) + Y3(N

∫ t

0

κ3Z
N
3 (s)ds)

ZN
3 (t) = ZN

2 (0) + Y1(N

∫ t

0

κ1Z
N
1 (s)ZN

2 (s)ds)− Y2(N

∫ t

0

κ2Z
N
3 (s)ds)− Y3(N

∫ t

0

κ3Z
N
3 (s)ds)

ZN
4 (t) = N−1Y3(N

∫ t

0

κ3Z
N
3 (s)ds),

where κ1, κ2, κ3 do not depend upon N . Note that we scale the numbers of molecules of
the substrate and the product as in the previous section, but we leave the enzyme and
enzyme-substrate variables discrete. Note that M = ZN

3 (t) + ZN
2 (t) is constant, and define

ẐN
2 (t) =

∫ t

0

ZN
2 (s)ds = Mt−

∫ t

0

ZN
3 (s)ds.

Theorem 4.1 Assume that ZN
1 (0) → Z1(0). Then (ZN

1 , Ẑ
N
2 ) converges to (Z1(t), Ẑ2(t))

satisfying

Z1(t) = Z1(0)−
∫ t

0

κ1Z1(s)
˙̂
Z2(s)ds+

∫ t

0

κ2(M − ˙̂
Z2(s))ds (4.1)

0 = −
∫ t

0

κ1Z1(s)
˙̂
Z2(s)ds+

∫ t

0

(κ2 + κ3)(M − ˙̂
Z2(s))ds,

and hence
˙̂
Z2(s) = (κ2+κ3)M

κ2+κ3+κ1Z1(s)
and

Ż1(t) = − Mκ1κ3Z1(t)

κ2 + κ3 + κ1Z1(s)
. (4.2)
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Proof. Relative compactness of the sequence (ZN
1 , Ẑ

N
2 ) is straightforward, that is, at least

along a subsequence, we can assume that (ZN
1 , Ẑ

N
2 ) converges in distribution to a continuous

process (Z1, Ẑ2) (which turns out to be deterministic). Dividing the second equation by N

and passing to the limit, we see (Z1, Ẑ2) must satisfy

0 = −
∫ t

0

κ1Z1(s)dẐ2(s) + (κ2 + κ3)Mt−
∫ t

0

(κ2 + κ3)dẐ2(s). (4.3)

Since Ẑ2 is Lipschitz, it is absolutely continuous, and rewriting (4.3) in terms of the derivative
gives the second equation in (4.1). The first equation follows by a similar argument. �

Of course, (4.2) is the Michaelis-Menten equation.

4.2 Scaling species numbers and rate constants

Assume that we are given a model of the form

X(t) = X(0) +
∑
k

Yk(

∫ t

0

λ′k(X(s))ds)(ν ′k − νk)

where the λ′k are of the form

λ′k(x) = κ′k
∏
i

νik!
∏
i

(
xi
νik

)
.

Let N0 � 1. For each species i, define the normalized abundance (or simply, the abundance)
by

Zi(t) = N−αi0 Xi(t),

where αi ≥ 0 should be selected so that Zi = O(1). Note that the abundance may be the
species number (αi = 0) or the species concentration or something else.

Since the rate constants may also vary over several orders of magnitude, we write κ′k =
κkN

βk
0 where the βk are selected so that κk = O(1). For a binary reaction

κ′kxixj = N
βk+αi+αj
0 κkzizj,

and we can write
βk + αi + αj = βk + νk · α.

We also have,

κ′kxi = Nβk+νk·α
0 zi, κ′kxi(xi − 1) = Nβk+νk·α

0 zi(zi −N−αi0 ),

with similar expressions for intensities involving higher order reactions.
We replace N0 by N in the above expressions and consider a family of models,

ZN
i (t) = ZN

i (0) +
∑
k

N−αiYk(

∫ t

0

Nβk+νk·αλk(Z
N(s))ds)(ν ′ik − νik),
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where the original model is Z = ZN0 . Note that for reactions of the form 2Si ⇀ *, where ∗
represents an arbitrary linear combination of the species, the rate is Nβk+2αiZN

i (t)(ZN
i (t)−

N−αi), so if αi > 0, we should write λNk instead of λk, but to simplify notation, we will
simply write λk.

We have a family of models indexed by N for which N = N0 gives the “correct” or original
model. Other values of N and any limits as N →∞ (perhaps with a change of time-scale)
give approximate models. The challenge is to select the αi and the βk in a reasonable way,
but once that is done, the initial condition for index N is given by

ZN
i (0) = N−αi

⌊
Nαi

Xi(0)

Nαi
0

⌋
,

where bzc is the integer part of z and the Xi(0) are the initial species numbers in the original
model.

Allowing a change of time-scale, where t is replaced by tNγ, suppose limN→∞ Z
N
i (·Nγ) =

Z∞i . Then we should have
Xi(t) ≈ Nαi

0 Z∞i (tN−γ0 ).

4.3 Determining the scaling exponents

There are, of course, many ways of selecting the αi and βk, but we want to make this selection
so that there are limiting models that give reasonable approximations for the original model.
Consequently, we look for natural constraints on the αi and βk.

For example, suppose that the rate constants satisfy

κ′1 ≥ κ′2 ≥ · · · ≥ κ′r0 .

Then it seems natural to select
β1 ≥ · · · ≥ βr0 ,

although it may be reasonable to separate the binary reactions from the unary reaction.
To get a sense of the issues involved in selecting exponents that lead to reasonable limits,

consider a reaction network in which the reactions involving S3 are

S1 + S2 ⇀ S3 + S4 S3 + S5 ⇀ S6.

Then

ZN
3 (t) = ZN

3 (0) +N−α3Y1(Nβ1+α1+α2

∫ t

0

κ1Z
N
1 (s)ZN

2 (s)ds)

−N−α3Y2(Nβ2+α3+α5

∫ t

0

κ2Z
N
3 (s)ZN

5 (s)ds) ,

or scaling time

ZN
3 (tNγ) = ZN

3 (0) +N−α3Y1(Nβ1+α1+α2+γ

∫ t

0

κ1Z
N
1 (sNγ)ZN

2 (sNγ)ds)

−N−α3Y2(Nβ2+α3+α5+γ

∫ t

0

κ2Z
N
3 (sNγ)ZN

5 (sNγ)ds) .
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Assuming that for the other species in the system ZN
i = O(1), we see that ZN

3 = O(1) if

(β1 + α1 + α2 + γ) ∨ (β2 + α3 + α5 + γ) ≤ α3

or if
β1 + α1 + α2 = β2 + α3 + α5 > α3.

Note that in the latter case, we would expect ZN
3 (t) ≈ κ1ZN1 (t)ZN2 (t)

κ2ZN5 (t)
. If these conditions both

fail, then either ZN
3 will blow up as N →∞ or will be driven to zero.

With this example in mind, define ZN,γ
i (t) = ZN

i (tNγ) so

ZN,γ
i (t) = ZN

i (0) +
∑
k

N−αiYk(

∫ t

0

Nγ+βk+νk·αλk(Z
N,γ(s))ds)(ν ′ik − νik).

Recalling that ζk = ν ′k − νk, for θi ≥ 0, consider∑
i

θiN
αiZN,γ

i (t) =
∑
i

θiN
αiZN

i (0) +
∑
k

Yk(

∫ t

0

Nγ+βk+νk·αλk(Z
N,γ(s))ds)〈θ, ζk〉,

where 〈θ, ζk〉 =
∑

i θiζik, and define αθ = max{αi : θi > 0}. If all ZN,γ
i = O(1), then the left

side is O(Nαθ), and as in the single species example above, we must have

γ + max{βk + νk · α : 〈θ, ζk〉 6= 0} ≤ αθ. (4.4)

or
max{βk + νk · α : 〈θ, ζk〉 > 0} = max{βk + νk · α : 〈θ, ζk〉 < 0}. (4.5)

Note that (4.4) is really a constraint on the time-scale determined by γ saying that if (4.5)
fails for some θ, then γ must satisfy

γ ≤ αθ −max{βk + νk · α : 〈θ, ζk〉 6= 0}.

The value of γ given by

γi = αi −max{βk + νk · α : ζik 6= 0}

gives the natural time-scale for Si in the sense that ZN,γ

i is neither asymptotically constant
nor too rapidly oscillating to have a limit. The γi are values of γ for which interesting limits
may hold. Linear combinations 〈θ, ZN,γ〉 may have time-scales

γθ = αθ −max{βk + νk · α : 〈θ, ζk〉 6= 0}

that are different from all of the species time-scales and may give auxiliary variables (see,
for example, [14]) whose limits capture interesting properties of the system.

The equation (4.5) is called the balance equation, and together, the alternative (4.5) and
(4.4) is referred to as the balance condition. Note that it is not necessary to solve the balance
equations for every choice of θ. The equations that fail simply place restrictions on the time-
scales γ that can be used without something blowing up. The goal is to find αi and βk that
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give useful limiting models, and solving some subset of the balance equations can be a useful
first step. Natural choices of θ in selecting the subset of balance equations to solve include
those for which 〈θ, ζk〉 = 0 for one or more of the ζk. See Section 3.4 of [26] for a more
detailed discussion.

In the next subsection, we apply the balance conditions to identify exponents useful in
deriving a reduced model for a simple reaction network. For an application to a much more
complex model of the heat shock response in E. coli, see [25].

4.4 An application of the balance conditions

Consider the simple example

∅ κ
′
1⇀S1

κ′2


κ′3

S2, S1 + S2
κ′4⇀S3

Assume κ′k = κkN
βk
0 . Then a useful subset of the balance equations is

S2 β2 + α1 = (β3 + α2) ∨ (β4 + α1 + α2)
S1 β1 ∨ (β3 + α2) = (β2 + α1) ∨ (β4 + α1 + α2)
S3 β4 + α1 + α2 = −∞
S1 + S2 β1 = β4 + α1 + α2

where we take the maximum of the empty set to be −∞. Of course, it is not possible to
select parameters satisfying the balance equation for S3, so we must restrict γ by

γ ≤ α3 − (β4 + α1 + α2). (4.6)

Let α1 = 0 and β1 = β2 > β3 = β4, so balance for S1, S2, and S1 + S2 is satisfied if
α2 = β2 − β3, which we assume. Taking α3 = α2, (4.6) becomes

γ ≤ −β4 = −β3.

The system of equations becomes

ZN
1 (t) = ZN

1 (0) + Y1(κ1N
β1t)− Y2(κ2N

β2

∫ t

0

ZN
1 (s)ds)

+Y3(κ3N
β3+α2

∫ t

0

ZN
2 (s)ds)− Y4(κ4N

β4+α2

∫ t

0

ZN
1 (s)ZN

2 (s)ds)

ZN
2 (t) = ZN

2 (0) +N−α2Y2(κ2N
β2

∫ t

0

ZN
1 (s)ds)

−N−α2Y3(κ3N
β3+α2

∫ t

0

ZN
2 (s)ds)−N−α2Y4(κ4N

β4+α2

∫ t

0

ZN
1 (s)ZN

2 (s)ds)

ZN
3 (t) = ZN

3 (0) +N−α3Y4(κ4N
β4+α2

∫ t

0

ZN
1 (s)ZN

2 (s)ds)
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There are two time-scales of interest in this model, γ = −β1, the time-scale of S1, and
γ = −β3, the time-scale of S2 and S3. For γ = −β1, and recalling that α2 + β3 = α2 + β4 =
β1 = β2,

ZN,−β1
1 (t) = ZN

1 (0) + Y1(κ1t)− Y2(κ2

∫ t

0

ZN,−β1
1 (s)ds)

+Y3(κ3

∫ t

0

ZN,−β1
2 (s)− Y4(κ4

∫ t

0

ZN,−β1
1 (s)ZN,−β1

2 (s)ds)

ZN,−β1
2 (t) = ZN

2 (0) +N−α2Y2(κ2

∫ t

0

ZN,−β1
1 (s)ds)

−N−α2Y3(κ3

∫ t

0

ZN,−β1
2 (s)ds)−N−α2Y4(κ4

∫ t

0

ZN,−β1
1 (s)ZN,−β1

2 (s)ds)

ZN,−β1
3 (t) = ZN

3 (0) +N−α3Y4(κ4

∫ t

0

ZN,−β1
1 (s)ZN,−β1

2 (s)ds),

and the limit of ZN,−β1 satisfies

Z1(t) = Z1(0) + Y1(κ1t)− Y2(κ2

∫ t

0

Z1(s)ds) + Y3(κ3

∫ t

0

Z2(s))− Y4(κ4

∫ t

0

Z1(s)Z2(s)ds)

Z2(t) = Z2(0)

Z3(t) = Z3(0)

Note that the stationary distribution for Z1 is Poisson with E[Z1] = κ1+κ3Z2(0)
κ2+κ4Z2(0)

.
For γ = −β3,

ZN,−β3
1 (t) = ZN

1 (0) + Y1(κ1N
β1−β3t)− Y2(κ2N

β2−β3
∫ t

0

ZN,−β3
1 (s)ds)

+Y3(κ3N
α2

∫ t

0

ZN,−β3
2 (s)ds)− Y4(κ4N

α2

∫ t

0

ZN,−β3
1 (s)ZN,−β3

2 (s)ds)

ZN,−β3
2 (t) = ZN

2 (0) +N−α2Y2(κ2N
β2−β3

∫ t

0

ZN,−β3
1 (s)ds)

−N−α2Y3(κ3N
α2

∫ t

0

ZN,−β3
2 (s)ds)−N−α2Y4(κ4N

α2

∫ t

0

ZN,−β3
1 (s)ZN,−β3

2 (s)ds)

ZN,−β3
3 (t) = ZN

3 (0) +N−α3Y4(κ4N
α2

∫ t

0

ZN,−β3
1 (s)ZN,−β3

2 (s)ds),

and dividing the first equation by Nβ1−β3 = Nβ2−β3 = Nα2 , we see that∫ t

0

ZN,−β3
1 (s)(κ2 + κ4Z

N,−β3
2 (s))ds−

∫ t

0

(κ1 + κ3Z
N,−β3
2 (s))ds→ 0.

Since ZN,−β3
2 is well-behaved, this limit can be shown to imply∫ t

0

ZN,−β3
1 (s)ds−

∫ t

0

κ1 + κ3Z
N,−β3
2 (s)

κ2 + κ4Z
N,−β3
2 (s)

ds→ 0.
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We emphasize that Z1
N,−β3 is not converging, but it is oscillating rapidly and averages locally

so that this limit holds. It follows that (ZN,−β3
2 , ZN,−β3

3 ) converges to the solution of

Z2(t) = Z2(0) +

∫ t

0

(
(κ2 − κ4Z2(s))

κ1 + κ3Z2(s)

κ2 + κ4Z2(s)
− κ3Z2(s)

)
ds.

= Z2(0) +

∫ t

0

(
κ1 −

2κ4Z2(s)(κ1 + κ3Z2(s))

κ2 + κ4Z2(s)

)
Z3(t) = Z3(0) +

∫ t

0

κ4Z2(s)
κ1 + κ3Z2(s)

κ2 + κ4Z2(s)
ds.

4.5 Hybrid limits

If Zγ
i = limN→∞ Z

N,γ
i exists and is a well-behaved process for some choice of γ, then if αi = 0,

Z∞,γi will be an integer-valued, pure-jump process and if αi > 0, Zγ
i will have continuous

sample paths. In fact, if αi > 0, typically Zγ
i will satisfy an equation of the form

Zγ
i (t) = Zi(0) +

∫ t

0

Fi(Z
γ(s))ds.

Consequently, the natural class of limits will by hybrid or piecewise deterministic (in the
sense of Davis [11]) models in which some components are discrete and some are absolutely
continuous. See Section 3 of [4] and Section 6.3 of [26] for examples.

It is possible to obtain diffusion processes as limits, but these are not typical for reaction
networks. (Note that the diffusion approximations discussed in Section 3.3 do not arise as
limits of a sequence of processes.) One example that is more naturally interpreted as a model
in population genetics (a Moran model) but can be interpreted as a reaction network would
be

S1 + S2 ⇀ 2S1, S1 + S2 ⇀ 2S2,

where both reactions have the same rate constant. Suppose the normalized system has the
form

ZN
1 (t) = ZN

1 (0) +N−1/2Y1(κN

∫ t

0

ZN
1 (s)ZN

2 (s)ds)−N−1/2Y2(κN

∫ t

0

ZN
1 (s)ZN

2 (s)ds)

ZN
2 (t) = ZN

2 (0) +N−1/2Y2(κN

∫ t

0

ZN
1 (s)ZN

2 (s)ds)−N−1/2Y1(κN

∫ t

0

ZN
1 (s)ZN

2 (s)ds).

If we center Y1 and Y2, the centerings cancel, and assuming (ZN
1 (0), ZN

2 (0))⇒ (Z∞1 (0), Z∞2 (0)),
(ZN

1 , Z
N
2 ) converges to a solution of

Z1(t) = Z1(0) +W1(κ

∫ t

0

Z1(s)Z2(s)ds)−W2(κ

∫ t

0

Z1(s)Z2(s)ds)

Z2(t) = Z2(0) +W2(κ

∫ t

0

Z1(s)Z2(s)ds)−W1(κ

∫ t

0

Z1(s)Z2(s)ds).
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4.6 Central limit theorems and diffusion approximations

Note that in Section 4.1, ZN
2 and ZN

3 do not converge, but
∫ t

0
ZN

2 (s)ds and
∫ t

0
ZN

3 (s)ds do,
that is, the rapid fluctuations in ZN

2 and ZN
3 average out. Similarly, to obtain (4.7), we used

the fact that for γ = −β3, the rapid fluctuations in ZN,γ
1 = ZN

1 (·Nγ) average to something
well-behaved.

Both of these examples have deterministic limits, and it is natural to seek the same kind
of central limit theorem that holds under the classical scaling. For fluctuations around (4.7),
we have

V N(t) = Nα2/2(ZN,γ
2 (t)− Z2(t)) (4.7)

= V N(0) +N−α2/2Ỹ2(κ2N
α2

∫ t

0

ZN,γ
1 (s)ds)

−N−α2/2Ỹ3(κ3N
α2

∫ t

0

ZN,γ
2 (s)ds)−N−α2/2Ỹ4(κ4N

α2

∫ t

0

ZN,γ
1 (s)ZN,γ

2 (s)ds)

+Nα2/2

∫ t

0

(
ZN,γ

1 (s)
(
κ2 − κ4Z

N,γ
2 (s)

)
− κ1 + κ3Z2(s)

κ2 + κ4Z2(s)
(κ2 − κ4Z2(s))

)
−κ3

∫ t

0

V N(s))ds.

Assuming V N(0) converges, the convergence of ZN,γ
2 and

∫
ZN,γ

1 ds and the functional central
limit theorem for the renormalized Poisson processes imply the convergence of the first four
terms on the right and we would have a central limit theorem similar to that described in
Section 3.2 if it were not for the fifth term on the right.

To treat the fifth term, we exploit the martingale properties discussed in Section 2.5. In
particular, if

fN(z1, z2) = N−α2/2z1
κ2 − κ4z2

κ2 + κ4z2

and we define

F (z2) =
κ1 + κ3z2

κ2 + κ4z2

(κ2 − κ4z2)

as in (2.11),

MN(t) = fN(ZN,γ
1 (t), ZN,γ

2 (t))− fN(ZN,γ
1 (0), ZN,γ

2 (0)−
∫ t

0

ANfN(ZN,γ
1 (s), ZN,γ

2 (s))ds

= −Nα2/2

∫ t

0

(
ZN,γ

1 (s)(κ2 − κ4Z
N,γ
2 (s))− F (ZN,γ

2 (s))
)
ds+O(N−α2/2)
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is a martingale, and (4.7) becomes

V N(t) = V N(0) +N−α2/2Ỹ2(κ2N
α2

∫ t

0

ZN,γ
1 (s)ds)

−N−α2/2Ỹ3(κ3N
α2

∫ t

0

ZN,γ
2 (s)ds)−N−α2/2Ỹ4(κ4N

α2

∫ t

0

ZN,γ
1 (s)ZN,γ

2 (s)ds)

−MN(t) +Nα2/2

∫ t

0

(
F (ZN,γ

2 (s))− F (Z2(s))
)
ds

−κ3

∫ t

0

V N(s))ds+O(N−α2/2)

= V N(0) + M̂N(t) +Nα2/2

∫ t

0

(
F (ZN,γ

2 (s))− F (Z2(s))
)
ds

−κ3

∫ t

0

V N(s))ds+O(N−α2/2),

where M̂N is defined by the above equality. For MN above, the quadratic variation of MN is

[MN ]t =

∫ t

0

(fN(ZN,γ
1 (s−) + 1, ZN,γ

2 (s−))− fN(ZN,γ
1 (s−), ZN,γ

2 (s−))2dRN
1 (s)

+

∫ t

0

(fN(ZN,γ
1 (s−)− 1, ZN,γ

2 (s−) +N−α2)− fN(ZN,γ
1 (s−), ZN,γ

2 (s−))2dRN
2 (s)

+

∫ t

0

(fN(ZN,γ
1 (s−) + 1, ZN,γ

2 (s−)−N−α2)− fN(ZN,γ
1 (s−), ZN,γ

2 (s−))2dRN
3 (s)

+

∫ t

0

(fN(ZN,γ
1 (s−)− 1, ZN,γ

2 (s−)−N−α2)− fN(ZN,γ
1 (s−), ZN,γ

2 (s−))2dRN
4 (s).

Observing that each of the integrands is asymptotically

N−α2

(
κ2 − κ4Z

N,γ
2 (s)

κ2 + κ4Z
N,γ
2 (s)

)2

and that, for example,

N−α2RN
2 (t)→

∫ t

0

κ2
κ1 + κ3Z2(s)

κ2 + κ4Z2(s)
ds,

we have [MN ]t → C(t) where

C(t) =

∫ t

0

(
κ2 − κ4Z2(s)

κ2 + κ4Z2(s)

)2(
κ1 + κ2

κ1 + κ3Z2(s)

κ2 + κ4Z2(s)
+ κ3Z2(s) + κ4Z2(s)

κ1 + κ3Z2(s)

κ2 + κ4Z2(s)

)
ds,

which, by the martingale central limit theorem (see, for example, Theorem 7.1.4 of [15]),
implies MN ⇒ M where M can be written as the time change of a Brownian motion, that
is, M(t) = W (C(t)).
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Unfortunately, M is not independent of the limits of the three renormalized Poisson
processes, so rather than applying the martingale central limit theorem to MN , we need to
apply it to M̂N . The quadratic variation for M̂N is

[M̂N ]t =

∫ t

0

(fN(ZN,γ
1 (s−) + 1, ZN,γ

2 (s−))− fN(ZN,γ
1 (s−), ZN,γ

2 (s−))2dRN
1 (s)

+

∫ t

0

(N−α2/2 − fN(ZN,γ
1 (s−)− 1, ZN,γ

2 (s−) +N−α2) + fN(ZN,γ
1 (s−), ZN,γ

2 (s−))2dRN
2 (s)

+

∫ t

0

(−N−α2/2 − fN(ZN,γ
1 (s−) + 1, ZN,γ

2 (s−)−N−α2) + fN(ZN,γ
1 (s−), ZN,γ

2 (s−))2dRN
3 (s)

+

∫ t

0

(−N−α2/2 − fN(ZN,γ
1 (s−)− 1, ZN,γ

2 (s−)−N−α2) + fN(ZN,γ
1 (s−), ZN,γ

2 (s−))2dRN
4 (s),

and [M̂N ]t converges to

Ĉ(t) =

∫ t

0

(
κ1

(
κ2 − κ4Z2(s)

κ2 + κ4Z2(s)

)2

+

(
1 +

κ2 − κ4Z2(s)

κ2 + κ4Z2(s)

)2(
κ2
κ1 + κ3Z2(s)

κ2 + κ4Z2(s)
+ κ3Z2(s)

)

+

(
κ2 − κ4Z2(s)

κ2 + κ4Z2(s)
− 1

)2

κ4Z2(s)
κ1 + κ3Z2(s)

κ2 + κ4Z2(s)

)
ds.

Consequently, M̂N ⇒ W (Ĉ(t)) and V N ⇒ V satisfying

V (t) = V (0) +W (Ĉ(t)) +

∫ t

0

(F ′(Z2(s))− κ3)V (s)ds,

which, as in (3.3) is a Gaussian process.
Let

G(z2) =

(
κ1

(
κ2 − κ4z2

κ2 + κ4z2

)2

+

(
1 +

κ2 − κ4z2

κ2 + κ4z2

)2(
κ2
κ1 + κ3z2

κ2 + κ4z2

+ κ3z2

)

+

(
κ2 − κ4z2

κ2 + κ4z2

− 1

)2

κ4z2
κ1 + κ3z2

κ2 + κ4z2

)
.

Then the analysis above suggests the following diffusion or Langevin approximation for ZN,γ
2 :

DN(t) = DN(0) +N−α2/2W (

∫ t

0

G(DN(s))ds) +

∫ t

0

(F (DN(s))− κ3D
N(s))ds.

See [27] for a detailed discussion of the central limit theorem and diffusion approximations
for multiscaled models. In particular, that paper contains a systematic discussion of the
treatment of integral terms with rapidly oscillating integrands.
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