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Particle Representations for Measure-Valued Population
Processes with Spatially Varying Birth Rates

Thomas G. Kurtz

ABSTRACT. Representations of measure-valued processes in terms of countable
systems of particles are constructed for models with spatially varying birth and
death rates. In previous constructions for models with birth and death rates
not depending on location or type, the particles were assigned integer-valued
“levels”, the joint distributions of the particle types were exchangeable, and
the measure-valued process K was given by K(t)- = P(t)Z(t), where P was
the “total mass” process and Z(t) was the de Finetti measure for the ex-
changeable particle types at time ¢. In the present construction, particles are
assigned real-valued levels and for each time t the joint distribution of locations
and levels is conditionally Poisson distributed with mean measure K (t) X m.
The representation gives an explicit construction of the boundary measure in
Dynkin’s probabilistic solution of the nonlinear partial differential equation
Az)v(z)? — Bu(z) = p(z), ¢ € D, v(z) = f(z), z € 8D. The representa-
tion also provides a way of generalizing Perkins’s models for measure-valued
processes in which the individual particle motion depends on the distribution
of the population. Questions of uniqueness, however, remain open for most of
the models in this larger class.

1. Exchangeable population models

‘We begin by considering a class of finite population models. Let N(t) denote
the total population size at time ¢, and let X () = (X1(t),... ,Xn)(t)) denote
the locations of population members in a complete, separable metric space E. The
state space for the models is then £ = U E¥, where E? denotes the single state
in which the population size is zero. If the state z is in E*, we will sometimes write
(z, k) to emphasize the length of the vector. We will refer to individual population
members as particles. The behavior of each particle will depend on the others only
through the empirical measure

N(t)

Z(t) =Y 5x,
=1
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that is, the order of the particles is not significant.

The models we consider will be Markov, specified by their generators, that is,
the operators that characterize the processes as solutions of martingale problems.
To specify a model, we must define the operator Af for f in an appropriate domain
D(A).

For k =1,2,..., let 'y, be the collection of all permutations of {1,...,k}. For
z€ E*Fand o € I‘k, let z; = (4,,-.. ,%5,). Let B be the generator of a Markov
process on E. B will determine the individual particle motion. For 1 < i < k,
B; f(x, k) will denote the operator B applied to f as a function of z;. For example,
for g; € D(B), i = 1,2,... with g; = 1 for i sufficiently large, define

k
(1.1) f(z,k) =] 93(zs).
Then
Bif@ k) =Bo(w) [[ oz = 220 pia ).

1<j<k,j#i 9:(:)
Let A_1(z;,z) denote the “death rate” for the ith particle, and for m > 1, let
Am(Zi,x) be the intensity for a birth event in which the ith particle gives birth
to m “offspring”. We assume that offspring are initially placed at the location of
the “parent”. For m = —1 and m > 1, we assume that for z € E* and ¢ € Tk,
A (i, %) = A (%o, %o), Whenever z; = To;- In particular, the birth and death
rates for a particle depend only on its location and the empirical measure E -
In terms of these parameters, we have the generator

’E

(12) Aof(z, k) = EBif(x,k)
=1

k oo
+Z Z Am (s, ) s k+m Z
=1 m=1 ( ) 1<j1 < <Im <k+m

(fOs,... m (|23), K+ m) — f(2,k))

k
+Z)‘—1(xux)(f(dz(x)a k— 1) - f(wv k))
i=1
For z € E*, 0;, ;. (x|2) is the element 2’ € E*+™ obtained from x by setting
31 = 2,1 =1,...,m, and defining the remaining k components of z’ to be the
components of z, preserving the order, and d;(z) = (z1,... ,%;1,%i41,... ,2%) €

. We take D(Ao) to be the hnear space generated by functions of the form
(1 1).

For simplicity, we assume that

(1.3) sup sup Zm)\m(zz,x) < o0.

k zeEk
This condition states that the per particle birth rate is uniformly bounded and,
in particular, implies that the population size cannot blow up in finite time. If

uniqueness holds for the martingale problem of B, then this fact implies uniqueness
will hold for Ag.
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The following theorem (Corollary 3.5 from Kurtz (1998)) plays an essential role
in our construction. Let (S,d) and (Sp,dp) be complete, separable metric spaces.
An operator A C B(S) x B(9) is dissipative if || f1 — f2 — €(g1 — g2)|| = | fr — foll
for all (f1,91), (f2,92) € A and € > 0; A is a pre-generator if A is dissipative and
there are sequences of functions u, : S — P(S) and A, : § — [0, 00) such that for
each (f,g) € A

(14) (@) = lim An(a) [ (F(0) = F@)pnlar )

for each x € S. A is graph separable if there exists a countable subset {gx} C
D(A)NC(S) such that the graph of A is contained in the bounded, pointwise closure
of the linear span of {(gk, Agr)}. (More precisely, we should say that there exists
{(gx,hx)} € ANC(S) x B(S) such that A is contained in the bounded pointwise
closure of {(gx, hi)}, but typically A is single-valued, so we use the more intuitive
notation Agg.) These two conditions are satisfied by essentially all operators A
that might reasonably be thought to be generators of Markov processes.

For an Sy-valued, measurable process Y, .7:',,Y will denote the completion of the
o-algebra o(fy h(Y (s))ds,r < t,h € B(Sp)). For almost every ¢, Y (t) will be FY-
measurable, but in general, F} does not contain FY = o(Y(s):s <t). Let TV =
{t: Y (t) is ¥ measurable}. If Y is cadlag and has no fixed points of discontinuity
(that is, for every ¢, Y(t) = Y (t—) a.s.), then T¥ = [0,00). Dg[0,00) denotes
the space of cadlag S-valued functions with the Skorohod topology and Mg[0, c0)
denotes the space of Borel measurable functions, z : [0,00) — S, topologized by
convergence in Lebesgue measure.

THEOREM 1.1. Let (S, d) and (So, do) be complete, separable metric spaces. Let
A c C(S) x C(S) be a graph separable, pre-generator, and suppose that D(A) is
closed under multiplication and is separating. Let vy : S — Sy be Borel measurable,
and let o be a transition function from Sy into S (y € So — oy, ) € P(9) is
Borel measurable) satisfying [ hoy(z)a(y,dz) = h(y), y € So, h € B(So), that s,
o(y,7*(y)) = 1. Define

c={( /S f(Zal- dz), /S Af(2)a(-d2)) : f € D(A)} .

Let pg € P(So), and define vy = [ a(y, -)uo(dy).

a) IfY is a solution of the martingale problem for (C, uo), then there exists a
solution X of the martingale problem for (A,vo) such that Y has the same
distribution on Mg, [0,00) as Y =~yoX. IfY and Y are cadlag, then' Y and
Y have the same distribution on Dg,[0,00).

b) Forte TY,

(1.5) P{X(t) eT|F} = a(Y(t),T), T eB(S).

c) If, in addition, uniqueness holds for the martingale problem for (A, vy), then
uniqueness holds for the Mg, [0, 00)-martingale problem for (C,po). If Y
has sample paths in Dg,[0,00), then uniqueness holds for the Dg,[0,0c0)-
martingale problem for (C, po).

d) If uniqueness holds for the martingale problem for (A, 1), then Y restricted
to TY is a Markov process.
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REMARK 1.2. Theorem 1.1 can be extended to cover a large class of generators
whose range contains discontinuous functions. (See Kurtz (1998), Corollary 3.5
and Theorem 2.7.) In particular, suppose Aj,...,A,, satisfy the conditions of
Theorem 1.1 for a common domain D = D(A;) =--- =D(A;,) and B4,... , By, are
nonnegative functions in B(S). Then the conclusions of Theorem 1.1 hold for

1.1. Example: Empirical measure process. Let A = A defined in (1.2),
let S = E, and let Sy = M/ (E), the space of finite counting measures on E. Define
v:8 — So by

k
Y(z, k) = Z‘Swi-
i=1

Note that each p € MS(E) is of the form p = 21;1 8z, for some k and z € EF,
and for y of this form, define

1
aO(/"’? ') = E Z 63:,,-

occEk
Define
) Co = {(anf, 0 Aof) : f € D(Ao)}.

We can interpret aof as a function on M (E) or as a function on E, hs(z,k) =
aof (Zi;l dz,), that is symmetric in the sense that h¢(z, k) = hs(z,, k) for all o €
I'x. Note that if f is symmetric, then hs(z, k) = f(z,k) and apAo f(Zi;l 0z,) =
Ao f(x, k). It follows that if X is a solution of the martingale problem for Ay, then
Zf’z(f) 0x,(t) is a solution of the martingale problem for Cp.

Conversely, if B C C(E) x C(E) is a graph separable pregenerator and D(B) is
closed under multiplication and separates points and the A, satisfy (1.3) and are
continuous, then Ag satisfies the conditions of Theorem 1.1 and hence any solution
of the martingale problem for Cy corresponds to a solution of the martingale prob-
lem for Ag. Consequently, the two martingale problems are essentially equivalent.

(Note that there are variations of Theorem 1.1 that apply under less restrictive
conditions. See Kurtz (1998).)

2. Marked population models

Next, we introduce a family of “marked” population processes. F will denote
the space of marks, so the new state space S will be a subset of Mf(E x F). In
all of the examples F' C [0, 0), and with order in mind, we will sometimes refer to
the marks as “levels”.

With reference to Theorem 1.1, let So = MJ(E), and let v be defined by v(¢£) =
£(- x F), £ € MI(E x F). For each u € M{(E), let é(u,-) be an exchangeable
distribution on F#E), Let pu = Z?zl 0z;, and define a;(u,-) € P(E x F) by

k
a1(p, G) = a(p, {u € F*: Y 84, ) €GY), G €BMI(E x F)).

i=1
Let A; C C(S) x C(S) and define
Cr={(a1f,141f) : f € D(A1)}.
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Assuming that A; ¢ C(S) x C(S) is a graph separable, pre-generator, and that
D(A;) is closed under multiplication and is separating, then Theorem 1.1 applies.

2.1. Example: Neutral model. Let F = {1,2,...}, and for yu = Zle Oy
let &(p,-) satisfy &(p,T'x) = 1, that is, &(u, -) is just the distribution of a random
permutation. To simplify notation, we identify p with z as above and define the
generator in terms of functions of (z,u). If we ensure that all functions involved
have the property that h(z,u) = h(zs,u,) for all permutations o, the functions
will depend only on the measures Zle Oz us)-

Ifu = (uy,...,ux) is a permutation of (1,... ,k) and 1 <! <m < k+1, define

m U; U < m
Ti (u)_{ui+1 u; > m.
Mmm(u) = j if u; = [, and no(u) = j where j is the unique index such that u; = k.

Assume that B ¢ C(B) x C(E), that D(B) is an algebra (that is, a linear
subspace that is closed under multiplication) that separates points and contains

the constant functions, and that the martingale problem for B is well posed. Let
D(A3) be the collection of functions of the form

flz,u,k) = Hg(xz,uz),

where g(-,j) € D(B) and for some j, > 0, g(-,j) = 1 for j > j,. Assume that
Am : UgER — [0,00), m = —1,1, satisfy Ap(z) = An(z5) and sup, A (z) < o0.
Define

(21) Af (9c u, k)

-Z (@, u, k) 29T

9(zisus)

k

22X (z

+ k:-(l) Z (g(xnzm(u)vm)Hg Ti, T zm(u) _f('ra u, k))
1<l<m<k+1 i=1

Ao (@)kf (@, k))(m —1).

Note that when there is a “death”, it is the particle with the highest level that is
eliminated. When there is a “birth”, particles with lower levels are more likely to
become parents.

If a(z,k,du) = 1 > ,er, 9o(du), then defining

k
AOf(xa k) = ZBzf(xyk)
i=1

k k+1

@)Yy Ul -+ D)~ f(o )

k
+)\_1($) Z(f(dz(x)7 k— 1) - f((L‘, k)),

i=1
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we have adsf = Apaf. Note that Ag is a special case of Ay defined in (1.2) in
Section 1. Here Ag is the generator for a model that is neutral in the sense that
the birth and death rates are the same for all particles regardless of location.

Let (X,U) be a solution of the martingale problem for A;. Suppose that
U(0) is independent of X (0) and is uniformly distributed over all permutations of
(1,...,N(0)). Let po denote the distribution of X (0). Then, by Theorem 1.1, X
is a solution of the martingale problem for (Ag, uo).

Assume that A\; and A_; are bounded and continuous on S. It follows that
the martingale problem for A is well-posed. For f € D(A;), define f(x,k) =
flz1,-.. ,28,1,... ,k, k) and set

k
=1

1<l<m<k+1

+A_1(2) (f(di(2), k — 1)) - F(z,w)),

where for 1 <l<m<k+1landz € Ek; &' = O, (z|2;) € E*¥t is given by

Z; 1< m
IE;= Ti—1 m<i<k+1
x] T =m.

Let (X,U) be as above. Let V;(t) = j if U;(t) = i, that is, Uy, (t) = i, and
define (Y1(t),...,Yn () = (Xvy 1) (), - .. s XV (1)(t))- Then Y is a solution of
the martingale problem for As.

Define v : E¥ — M(E), by y(z) = Ele 0z, and for p = Zi.;l 0g,, define
ao(p,dz) = 21 ¥ yer, Oz, Then for f € D(Ao) = D(As),

apAsf = apAof.

Let €' = {(aof,a0dof) : f € D(Ao)} = {(aof,0Asf) : f € D(43)}. By the
discussion in Section 1, if X° is a solution of the martingale problem for A, then
¥(X?) is a solution of the martingale problem for C. But by Theorem 1.1, any
solution of the martingale problem for C corresponds to a solution of the martingale
problem for A3. Consequently, for each solution X of the martingale problem for
Ay, there exists a solution X of the martingale problem for A3 such that y(X0)
and 7(X) have the same distribution. The process corresponding to As is a special
case of Model II of [2]. :
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3. Models with location/type dependent birth and death rates
3.1. Critical models. Let F = [0,n]. Define

(3.1)  A"f(z,u,k)

k
- ZBzf(x) u, k)
k41
+;2)\ ml,x)k+ 1 Z (f (0(z, ulz;,v), k+ 1) — f(z,u,k))dv

-I-Z2/\(a:i,x)ui(f(d,~(m,u),k - 1) — f(=z,u,k))

i=1

for f in an appropriate domain. Assume that for z € E*, and 0 € T, k= 1,2,...
and i and j such that z; = 5, A(2i,2) = A(Zs;, To)-
If o™(z, k, du) = n"*du; - - - dug, then o A" f = AZa™ f, where

of(z,k)

k
i=1
k+1

+2m(x,,x) ! Z(f(e (alz), k+1) — F(=, k)

+an 70,2)(f(ds(2), K — 1) = f(2,8)).

Here, A7 is again a special case of (1.2). In particular, if A(z;,z) = A(z;), then Af
is the generator of a critical branching Markov process and the scaling in n is such
that a sequence of solutions X™ should satisfy

L Va0

(3.2) Z Sxp = Z,

where Z is a Dawson-Watanabe process.

In the remainder of the paper, we concentrate on the Dawson-Watanabe setting,
that is, we assume that A\(x;,z) = A(x;). We will see that this assumption makes
existence and uniqueness for the limiting model easy. The relationship between A™
and AZ, however, insures that the particle representation will be valid for more
general models.

With (3.2) in mind, consider (3.1) as n — oo. To be specific, let D(A) be the
collection of functions of the form

k
f(xa U, k) = Hg(xiyui)7
=1

where 0 < g < 1 is bounded away from zero and there exists ug such that g(z;, u;) =
1if u; > Ug-
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If n > ugy, then A™ becomes

(3.3) Af(z,u) = Z f(z, U)Bg(xuuz)

u;<ug (x“uz)
+ ) 2X(m) / f(z,u)(g(zi,v) — 1)dv
u;<ug
1
+u;g 2X(z;)us f (z, u)(g(x,,uz) - 1),

and the convergence of A” is immediate. Assuming that the martingale problem for
B is well-posed and (for simplicity) A is bounded and continuous, the martingale
problem for A is well-posed. We identify the process with the counting measure

U(t) = Z 80x5(8), U3 (1))
Define v : M.(E X [0,00)) = MS(E) by
1
7(537 'LL) = rlg{.lo ; Z I[O,r] (ul)étc,,
if the limit exists. Set
.1
K(t) = lim ~ > Tom(Ui()8x, = Y(X (1), U)).

If ¥(0) is a Poisson random measure with mean measure K (0) x m, then we claim
that, conditioned on Ff = o(K(s),s < t), ¥(t) is a Poisson random measure with
mean measure K(t) x m.

Let (S,S) be a measurable space, and let v be a o-finite measure on S. We
need the following facts about a Poisson random measure, £, with mean measure
v:

a) ¢ is a random counting measure on S.

b) For each A € S with v(A4) < oo, £(A) is Poisson distributed with parameter

v(4).
c) For Ay, As,... € S disjoint, £(A;),£(As),... are independent.
If £ is a Poisson random measure with mean measure v

Ele/ HOHCY) . ef(ef-1)5y7
or letting £ =), dy;,
B[] o(vi)] = e/ o=,

Similarly,

B0 w(v) [T (V)] = / hgdyel 6=V,

We define o so that if u € M7 (E), then a(u,-) € P(M(E x [0,00)) is the
distribution of a Poisson random measure on E X [0, 00) with mean measure p X m,
that is

/ e ap, dz) = eJ (7 —1)u(dz)du_
M (Ex[0,00))
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Therefore, if f(z,u) =[] g(z:,u;), then
(3'4) af(u) — efE fooo(g(mvu)“l)du“(d:c)

and
aAf(u)

~af() [ B [ (oton) - Dduntie)
+af(y) [E 2A(x) /0 ” /u ” oz, 0) gz, v) — 1)dvdugs(dz)
+af() [ 20@) [ ult = o(o,u)duna)
~af() [ B [ (a0 - Daus(a)
+af) [ 20 [ [ alew) - Do) = Do)
~af() [ B [ (otou) - Dduntao)
+a1 [ 3@ ([ e - 1>du)2 (de).

Consequently, for f(u) = e~»*) and C = {(af,aAf): f € D(A)},
(3.5) Cf(u) = f(u){—Bh + Ah?, ).

But C of this form is the generator for a Dawson-Watanabe process. (See, for ex-
ample, [5], Section 9.4.3.) Since, as defined, Af need not be a bounded function,
Theorem 1.1 does not immediately apply; however, Theorem 1.1 can be extended
to cover certain operators whose range includes unbounded functions and this ex-
tension would apply in the current setting. Alternatively, we could take F' to be
the space consisting of copies of the closed intervals [k, k+ 1], k = 0,1,..., that is,
F includes two copies of each integer. Writing F' = W$° [k, k + 1], assume that the
domain of A consists of functions of the form

f(fIZ, 'U,) = Hg(xi7ui)7

where 0 < g(z;,u;) < pg < 1 for u; GALJ:J],:g:O{k,k + 1] and g(z4,u;) = 1 for u; €
Wik, 411k, k+1]. Then, under the assumption that A is bounded, Af is bounded.
In any case, we have the following theorem.

THEOREM 3.1. Suppose that K is a solution of the martingale problem for C
gwen by (8.5), and let vy = E[a(Z(0),-)]. Then there exists a solution

V(t) =Y 6(xu.0:)
of the martingale problem for (A,vg) such that K defined by

1
K(t) = lim - D T (Ust))6x,0)

has the same distribution as K.



308 THOMAS G. KURTZ

3.2. Subcritical models. The particle construction above can be extended
easily to subcritical models of the form

A5 f(z, k)

k

i=1

k
+Y_nM@) (f(@, @), k+1) = f(2, k)

i=1
k
+Y n(A@:) + -71;/\0 (@:))(f(vi(2), k — 1) — (=, k).
i=1

For f(z,u) = [] g(:,u:), the limit for the corresponding marked model is given by

Af(z,u)
Bg(zs, u:)
u;gf ) glen ) 9(x:, ;)
+ Z 2)\(.’[:7,)/ flz,w)(g(zs,v) — D)dv
+ ) QM@ +)\o(wi))f(x, U)(m - 1),

and we have af(u) = elo” (90u)=1)du.p) 5ng

adf(w) = of)] [ B / "~ (9(w) — 1)dup(da)

o 2
+ [ 36 ([ (ot - 1)) uta)
B 0
[ xole)(1 = gta,u))dun(aa)].
EJo
Taking b = [;°(1 — g(-,u))du in this formula, for f(u) = e=*#), we have
Cf(p) = f(u){(=Bh+ Ah® + Ao, ).
3.3. Ordered model. The indexing of the above particle models has no sig-

nificance. If we order the particles according to increasing level, the generator
becomes

Af(z,u)
= ZBif(xv U)

D@L [ 0ol ) — S

+Z (2 (@s)us + Ao(z:) (F(di(z, ) — F(z,u)).
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For this ordering, P(t) = |K(t)| is given by
m
P(t)= lim —,
m—00 um

and

. 1 &
K(t) = lim P Zl Ox:(t)-

Assume that B is the generator for a diffusion process satisfying an Itd equation
X(8) = X(0) + /O o (X())ds + /0 b (5))ds.
Then we can write a system of equations for the particle model.
Xi(t) = Xi(0) + /0 o (Xe(s))dWi(s) + /0 b(Xa(s))ds

+ ) (Xkoa(s—) — Xx(s—))dLY(s)

1<i<j<k
+ D (Xi(s—) — Xi(s—))dLb(s)
i<k
D (Xega(s—) — Xi(s—))dLE(s),
i<k

Ust) = Ur(0)4+ > (Ue-1(s—)— U(s—))dLE;(s)

1<i<j<k
+ / U= Un(s=)) 1w, _1(s—),0x (s—)) (U
sz [O,m)x[O,oo)x[o,t}( ( )) [Uk—1(s=),Ui(s ))( )
0,27 (X (s—)) (0) N (du x dv x ds)

+ 3" ks (s-) - Ui(s=))dL(s),
i<k

and
L’ZL)J (t) = / I[Uj_l(s—),Uj(s—)) (u)
[0,00) % [0,00) x[0,¢]
I 20 (x; (s—))) (W) Ni(du x dv x ds)
L) = / Tjo,v:(s—y) ()
[0,00) % [0,00) X [0,]

Tip 22 (x: (s—)) (V) N (du x dv x ds)

+/ Tj0,50(x:(s))) (V) NP (dv % ds).
[0,00) X [0,¢]

3.4. Model with population dependent motion and birth and death
rates. In the system of equations above it is simple to introduce dependence on
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the total mass distribution K in the motion and birth and death rates.

Xp(t) = Xk(D)+/Ota(Xk(s),K(s))de(s)

+/t b(Xx(s), K(s))ds

0

+ > (Xe—1(s—) — Xu(s—))dLY(s)
1<i<i<k

+) (Xi(s— s—))dLE(s)

i<k

+ Y (Xeqa(s—) = Xi(s—))dLL(s),

i<k

Ust) = Us(O)+ > (Uk-1(s—) = Ur(s—))dL%(s)

1<i<j<k

+3° / (= Uk (=)0 (s-) Ui (s-) (@)

i<k ¥ [0,00)x[0,00) x[0,t]
Ti,27(x;(s—), K (s—))) (V) Ni(du x dv x ds)
+ D (Urs1(s—) — Ur(s=))dLL(s),

i<k

and

Ly(t) = / T, s (s=),0; (s—)) (W)
[0,00) x[0,00) X [0,t]
T0.22(x:(s-), K (s—)) (V) Ni(du x dv x ds)

O Tote-p(®
[0,00) % [0,00) % [0,t]

Tjo.2x(x(s—), K (s—))) (V) Ni(du x dv x ds)

+ Tjo,n0(X:(s), K (s—)) (V) N7 (dv x ds).
[0,00) % [0,t]

The generator for K becomes
(36) Cf(u) = F()(~BE)h+ A, K)R? + Mo, K)h, ),

for f(u) = e~ ™#), where

B(u)h(z) = 22‘1’1] 7/1' +Zb z, 1) zih(z)

for a(z, p) = o(z, p)o(z,m)".

In the case A and A¢ constant, models with generators of the form (3.6) were
introduced by Perkins [7]. In this setting, the analog of the system was given in
Donnelly and Kurtz [2]. For A and Ao constant, uniqueness of the above system
can be proved under Lipshitz assumptions on o and b. If A and )y depend on z
and/or p, uniqueness is open.
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4. Models with simultaneous births

The models above can be extended to allow for multiple simultaneous births.
In particular, for f of the form

k
f(x, u, k) = Hg(xz,uz)a
=1

let
e - By
f@,u)) Z(k + AR (ze)n "
i k=1

k
/[ ]k(HQ(%,vz) —1)dvy ---dvg
Ui, M =1

() 33k + DA @) (- (1 By (1),

i k=1 9(@i; us)

Note that if AT(z) = nAi(z) and A} = 0 for & > 1, then A™ conincides with
(3.3). If a™(z, k,du) = n"*duy - - - duy, then ™A™ f = APa™f, where for f(z,k) =
TTi, 9(e),

A f(z, k)
k

=1

+f(z, u) Z Z)‘Z(xi)(g(xi)k -1

i k=1

+f(z, U)ZZ/\ (z:)k(—— ( 3 1).

i k=1

We see that AZ(z;) is the mtensn:y for the birth of & offspring for a particle located
at z;, and setting

Ay () = ) kAR (),
k=1

AZ(z;) is the death rate that makes the process critical.

Assume that for u; > wug, g(z;,u;) = 1, and define h(z;,u;) = f“g(l
9(z;,v))dv. Then

k
/{ L (T o(@iw) = Ddvs - dvg = (n — w; — h(=i,w))* = (n - w)*
Ui, ™ 1=
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and
A" f(z,u)
=3 st )
+f(z,u Zkz_: (k + DAZ () ((1 _ BT ML) +hr(:””’“"))k ~1- %)k>
Fl@u) YD (b + DA (1 — (1 - )k)( —-1).
i k=1 g(x,,uz)
Consequently, if
1) Jm S+ DN - (- B9 = Aes 00,
k=1
A"f — Af given by
M) = 3 sl Peme)
g(zs, u;)

f(z,u) Z(A Tiy ui) — A5, u; + h(zs,u5)))

+f(z, u)ZA(z,,u,)( pes u) —1).

We assume that the convergence in (4.1) is uniform in z; € E and in u; on
bounded intervals. Assumption (4.1) is essentially equivalent to (9.4.36) of Ethier
and Kurtz (1986).

Let A™(z;,u;), n =1,2,... denote the sequence on the left of (4.1), and observe
that

om
A

NCESVLEN(E mA1) v

nm

) = ()™ S ()

k=m

=)

The fact that the derivatives alternate in sign and decrease in absolute value implies
that

lim i—A"(mz,u,) = 51-2?—1

n—o0 6'U/
for each m, where the convergence is uniform in u; on bounded intervals that are
bounded away from u; = 0. It also follows that 8*A(z;,-) is completely monotone
and hence must be of the form

O A(z;,v) = / e i(z;,dz).
0

A(.'Il.i, Ui) = BmA(:cz, ’U,i)

Writing 2(z;,-) = A(zi)do + v(z;,-) where the support of v(z;,-) is in (0, 00), we
have

(4.2) Az, v) = A(z)v + /000 271 — e (x, d2).
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Since A{z;,v) < 0o, we must have

/(; 1\1/ v(z;,dz) < oo.

In terms of v,

Bg(xuuz)
£z, u) Zf( ) e )

+f(z,u) Z)\(%’) /%(g(wi,v) —1)dv
+f($, u) Z/‘00 (ezftf:(g(:z:,;,v)—l)dv _ 1) z—le—uizy(xi’ dz)

+f(z,u ZA iy Us) (————— — 1).

9(z zauz)

The fourth term on the right indicates that at rate A(z;, u;), a particle at location
z; and level u; dies. The second term on the right corresponds to single births. For
u; < a < b, at rate A(z;)(b — a), a particle at location z; and level u; gives birth
to a single particle with level in the interval (a,b]. The third term corresponds
to multiple births. When such a birth occurs to the particle at level wu;, a positive
random variable ( is generated, and the levels of the offspring form a Poisson process
on [u;,00) with intensity {. To be precise, suppose that a particle with level u;
lives from time 77 until time 7¢ and that X;(t) gives the location of the particle
for 7 <t < 7&. Then v and X; determine a point process & on [12,78) x [0, 00)
through the requirement that

t
&((Tf,t] xG)— /b /Gz‘le_“"zu(Xi(s),dz)ds, Tib <t< Tid,

is a martingale for each G € B(E). Writing
& = Z‘S(Sk,Ck)’
k

at time Sy, there is a birth event in which new particles are created whose levels
form a Poisson process with intensity ¢x on [u;, c0). Note that

o0
/ 2 le %5y (x;, dz)
0

may be infinite, so that a particle may have infinitely many such birth events in
a finite amount of time; however, during a finite time interval, only finitely many
births will have levels in a bounded interval. In particular, let u; < a < b. Noting
that for a Poisson process with intensity z, z(b—a) is the expected number of points
in the interval (a, b],

Az;)(b—a) + Aw z(b—a)z ey (z;, dz) = (b— )0 A(zi, u;) < 00,

is the expected number of births with levels in the interval (a,b] per unit time
occuring to a parent at level u; and location ;.
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4.1. Example: Offspring distribution with finite variance. Suppose
AZ(x) = nAg(z) and

= (k+1)kXi(z) < oo.
k=1

Then
Az, ug) = i(k + 1)kAk(z:)us,
and -
e = T

@) S M) / (9(ai,v) — 1)dv

ui<ug u.,,,’u,g

+f(x,u)/\($i)ui(m -1,

which is essentially the same as (3.3).
4.2. Example: Offspring distribution in domain of attraction of sta-

ble law. For 1 < 8 < 2, let

 nPiN(=)
k(@) = (—m

Then

Ug

A (zg,u;) = nf1 Z (k + 1)ﬁ 1- }:)k) o A(z) /000 z_ﬂ(l — e %)y

which gives

) = ML= B)
A(:I,‘,,,'I.L@)-—-A(i?z)ui B—1 "

v(zi,dz) = Mx;)z~P~Vdz, and

At = 3 syt

9(xi,us)

I'(2 - _
+f(z, u)—%_—l Z/\(mi)(uf Y (g + (s, u))P Y
1" 2 1
e ]
4.3. Generator for measure-valued process. Let ho(z;) = h(z;,0) =

Jo° (1 = g(zs,v))dv. With a as in (3.4) and f(z,u) =T], g(=i, u;), we have

af(u) = e~ o)
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and

aAf (k)

/ / (9(z,v) — 1)dvu(dz)

+af( [ /O 9(@,v)(A(z,v) — Az, 0 + h(z,v)))dup(de)
+of) [ [ A0 - gte ) doutao)
— af(u) ( (Bho, 1) / / 9(z, v)A(z, v+ h(z, v)))dvu(da:))

ho(x)
= af(u) (—(Bho,u) + /E/o A(z, v)dv,u(dx)) ,

where the last equality follows from the fact that
0
= (v+ h(,v) = g(,).

For the example of Section 4.2, we have

aAf(s) = af (1) (—<Bho,u>+ ﬂgz "i R, >)-

5. Dynkin’s boundary value problem

We now consider a particle model in which the motion process is absorbing
on the boundary of an open set D C E. Let By C C(E) x C(E) be a graph
separable, pre-generator, and suppose that D(Bp) is closed under multiplication
and is separating. (In particular, By satisfies the conditions of Theorem 1.1.) Define

Bf = IpBof.

(Then B satisfies the conditions of Remark 1.2.) If X is a solution of the martingale
problem for By and 7 = inf{t : X(¢) ¢ D}, then X (- A 7) is a solution of the
martingale problem for B. We assume that 7 < oo a.s. and write X (co) for X (7).

For f(z,u) =[1, 9(zs, u;), let

u = Bg :vz,uz)
.’17 ) - Zf( g(m“uz)

+f(z,u) Z(A iy us) — A(wq, us + h(zi, u)))

+f(=z, u)zA(xz,u,)( o “uz) -1),

where A is as in Section 4, that is, A is of the form (4.2). We assume that A is
bounded on D x [0, a] for each a > 0 and that A(z;,u;) = 0 for z; ¢ D. We do not
require A to be continuous; however, A still satisfies the conditions of Remark 1.2.
Consequently, each solution of the martingale problem for C = {(af,aAf) : f €
D(A)} has a particle representation given by a solution of the martingale problem
for A. Define

Y(z,r) = /Or Az, v)dv,




316 THOMAS G. KURTZ

so that

aAf(p) = af(u){—Bh+9(- h),p).
Following Dynkin [4], suppose that V satisfies

(5.1) —BV(z) + ¢(z, V(z)) =p(z), z€D

(5.2) V(z) =¢(z), €D,

where p > 0 and V is nonnegative and bounded. We define p(x) = 0 for z ¢ D,
so (5.1) holds for all z. Let g(z;,u;) = 1 — V(2;)go(u;), where J5° 9o(v)dv = 1 and
0<Vgo <1. Set f(z,u) =[], 9(zi,u;) and g1 (u;) = fuoj go(v)dv. Then

—g0(us) BV (z;)

T— go(u)V(my) T @ u) = Mi, ui + V(@) g1 (w:)))

Af(ww) = flzw)(

1=V (z:)go(u;

of () = e~V and QA (1) = {p, phe=Vm.
Assume that X;(0) = z for all ¢ and that {U;(0)} is a Poisson random measure
with mean measure m. Then

eVE) = Bl (VKO
Ele~ (VE®)=Jg oK (s))ds)

= B[]t - V(Xi(t))go(Us(t))e™ Jo (PH (o]

= E[H(l - @(Xz(oo))go(Uz(oo)))e* fow<P;K(s))ds]
= E[6_<(P’K(°°))_fow<P:K(S))ds]’

where {(X;(c0), U;(00))} are the boundary absorption points and the levels for all
particles that exit D before dying and

.1
K(c0) = r]i{go - Z I[O,r}(Ui(oo))éXi(oo)'
The second equality follows from the fact that e~ (V:E ()= Jo (0. K(s))ds ig 5 martingale.
The third equality follows from (1.5), that is,
P{¥(t) € GIFf} = a(K (1), G),

where a(u,-) is the distribution of a Poisson random measure with mean measure
p x m. The fourth equality follows by the bounded convergence theorem.
Taking logs, we have

V(z) = —logEle(®KE)=J (pK()ds]
= —log E[[ J(1 ~ p(Xi(00))go(Ui(c0)))e™ /i~ (K (o],

The first equality is just (1.11) of Dynkin [4].
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