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These lectures are offered on the basis of need or interest to graduate/ Ph.D. students,
post-docs and other researchers of the University of Wisconsin (Madison), from June 23rd
to July 2nd 2009. The recommended prior knowledge is an advance probability course.
Some familiarity with Itô stochastic calculus is also recommended.

The aim of these lectures is to give an introduction to the stochastic calculus of varia-
tions, known as Malliavin calculus, and give one of its applications in Mathematical Finance
to the computations of “Greeks”, sensitivity parameters of opcion prices.

The Malliavin calculus is an infinite-dimensional differential calculus on the Wiener
space, that was first introduced by Paul Malliavin in the 70’s, with the aim of giving a
probabilistic proof of Hörmander’s theorem. This theory was then further developed, and
since then, many new applications of this calculus have appeared.

We will start these lectures by defining in an abstract setting the concepts of isonormal
Gaussian process, derivative operator and Sobolev spaces associated to differentiable ran-
dom variables. We will then study the particular case of stochastic integrals with respect
to Brownian motion. Secondly, we will define the dual operator, known as the Sokorohod
integral, that will take us to one of the main tools of the Malliavin calculus which is the
integration by parts formula. We will recall some of its applications to the study of prob-
ability laws of random variables on an abstract Wiener space. In particular we will study
the case of diffusion processes and state Hörmander’s theorem.

The second part of this course will discuss one of the applications of this calculus in
Mathematical Finance. This application consists on using the integration by parts formula
to give a probabilistic method for numerical computations of price sensitivities known as
Greeks. We will particulary study the case where the option price process follows a Black-
Scholes model, that will be previously introduced.

I would like to express my gratitude to Professor Thomas G. Kurtz for his kind invitation
to give these lectures.
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1 Introduction to Malliavin calculus

1.1 The isonormal Gaussian process

An isonormal Gaussian process is the set of :

a real and separable Hilbert space H (if h, g ∈ H, we denote its scalar product as
〈f, g〉H and its norm as ‖h‖H);

a complete probability space (Ω,F ,P);

a Gaussian process on H, W = {W (h), h ∈ H}, that is, W is a centered Gaussian
family of random variables such that E[W (h)W (g)] = 〈f, g〉H , for all h, g ∈ H.

We remark that :

1. By Kolmogorov’s theorem, given H, we can always construct (Ω,F ,P) and W with
the conditions above.

2. Under the above conditions, the mapping h 7→ W (h) is linear. Indeed, let h, g ∈ H
and λ, µ ∈ R. We have that

E[(W (λh+ µg)− λW (h)− µW (g))2] = ‖λh+ µg‖H + λ2‖h‖2H + µ2‖g‖2H
− 2λ〈λh+ µg, h〉H − 2µ〈λh+ µg, g〉H + 2λµ〈h, g〉H = 0.

Hence, there is a linear isometry of H onto a closed sub-space of L2(Ω,F ,P) that will
be denoted by H1, whose elements are centered Gaussian random variables. Moreover, the
linearity implies that it suffices to assume that each random variable W (h) is centered and
Gaussian in the definition of the Gaussian process W .

Example 1.1 The isonormal Gaussian process associated to the Brownian mo-
tion: Let (B(t) = (B1(t), ..., Bd(t)), t ≥ 0) be a d-dimensional Brownian motion defined on
its canonical probability space (Ω,F ,P). That is, Ω = C0(R+; Rd), P is the d-dimensional
Wiener measure, and F is the completion of the Borel σ-field of Ω with respect to P. In
this case, the underlying Hilbert space is H = L2(R+; Rd), and for each h ∈ H, we define
W (h) to be the Wiener integral

W (h) =
d∑
i=1

∫
R+

hi(s)dBi(s).

Example 1.2 The isonormal Gaussian process associated to the fractional Brow-
nian motion: Fix T > 0 and let Bγ = (Bγ(t), t ∈ [0, T ]) be a fractional Brownian motion
with Hurst parameter γ ∈ (0, 1) defined on its canonical probability space (Ω,F ,P), that is,
Bγ is a centered Gaussian process with covariance

Rγ(t, s) = E[Bγ(t)Bγ(s)] =
1
2

(s2γ + t2γ − |t− s|2γ).

We denote by E the step functions on [0, T ]. Let H be the Hilbert space defined as the
closure of E with respect to the scalar product

〈1[0,t],1[0,s]〉H = Rγ(t, s).
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The mapping 1[0,t] → Bγ(t) can be extended to an isometry between H and the Gaussian
space H1 associated with Bγ. We denote this isometry by ϕ → Bγ(ϕ). Then {Bγ(ϕ), ϕ ∈
H} is a Gaussian process on H.

Observe that when γ < 1
2 , H contains the set of Hölder continuous functions Cα([0, T ])

with α > 1
2 − γ, and when γ > 1

2 , H contains distributions and contains the space
L1/γ([0, T ]). For a detailed definition and properties of this isonormal Gaussian processes
see [N06, Chapter 5] and [N09, Section 8.2].

Example 1.3 The isonormal Gaussian process associated to the Brownian sheet:
Let W = (W (t) ∈ RN

+ ) be an N -parameter Brownian sheet, that is, a centered Gaussian
process with covariance

E[W (s)W (t)] =
N∏
i=1

(si ∧ ti), s, t ∈ RN
+ ,

defined on its canonical probability space (Ω,F ,P). Let H be the Hilbert space H =
L2(RN

+ ,B(RN
+ ), λ), where λ is the Lebesgue measure in RN

+ . For each h ∈ H we define
W (h) to be the multi-parameter Wiener integral

∫
RN

+
h(s)dW (s). Recall that multi-parameter

Wiener integrals are constructed as in the one-parameter case.

1.2 The Wiener chaos

We define the Hermite polynomial of degree n and parameter λ > 0 by:

H0(x, λ) = 1,

Hn(x, λ) =
(−λ)n

n!
ex

2/2λ d
n

dxn
(e−x

2/2λ), n ≥ 1, x ∈ R.

We will use the notation Hn(x) := Hn(x, 1).
We note that H1(x, λ) = x y H2(x, λ) = 1

2(x2 − λ). Moreover, the following properties
hold:

∂

∂x
Hn(x, λ) = Hn−1(x, λ), n ≥ 1; (1.1)

(n+ 1)Hn+1(x, λ) = xHn(x, λ)− λHn−1(x, λ), n ≥ 1; (1.2)
Hn(−x, λ) = (−1)nHn(x, λ), n ≥ 1; (1.3)
∂

∂λ
Hn(x, λ) = −1

2
∂2

∂x2
Hn(x, λ), n ≥ 1. (1.4)

In particular, (1.2) implies that the highest order term of Hn(x, λ) is xn

n! .
In order to prove these properties it suffices to note that the Hermite polynomials are

the coefficients of the expansion in powers of t of the function:

exp(tx− t2λ

2
) =

∞∑
n=0

tnHn(x, λ).

For each n ≥ 1, we define the Wiener chaos of order n, Hn, as the closed linear sub-space
of L2(Ω,F ,P) generated by the family of random variables

{Hn(W (h)), h ∈ H, ‖h‖H = 1}.
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H0 will be the set of constants. Note that H1 = W .

The next lemma shows that Hn and Hm are orthogonal if n 6= m.

Lemma 1.4 Let X y Y two centered random variables with variance 1 and Gaussian joint
distribution. Then, for all n,m ≥ 0,

E[Hn(X)Hm(Y )] =

{
0, if n 6= m,
1
n!(E[XY ])n, if n = m.

Proof. For all s, t ∈ R, we have

E
[
exp(sX − s2

2
) exp(tY − t2

2
)
]

= exp(stE[XY ]).

Taking the (n + m)-th partial derivative ∂n+m

∂sn∂tm at s = t = 0 in both sides of the above
equality, we obtain:

E[n!Hn(X)m!Hm(Y )] =

{
0, if n 6= m,

n!(E[XY ])n, if n = m.

4
Moreover, the following orthogonal decomposition holds.

Theorem 1.5 Let G be the σ-algebra generated by W . Then,

L2(Ω,G,P) = ⊕∞n=0Hn.

Proof. Let X ∈ L2(Ω,G,P) be orthogonal to Hn for all n ≥ 0. That is, E[XHn(W (h))] = 0
for all h ∈ H such that ‖h‖H = 1. We note that xn can be expressed as linear combina-
tion of Hr(x), 0 ≤ r ≤ n. This implies that E[XW (h)n] = 0 for all n ≥ 0, and hence
E[X exp(W (h))] = 0 for all h ∈ H such that ‖h‖H = 1. The linearity of the mapping
h 7→ W (h) implies that for all t1, ..., tm ∈ R and h1, ..., hm ∈ H such that ‖hi‖H = 1,
m ≥ 1,

E[X exp(
m∑
i=1

tiW (hi))] = 0. (1.5)

We next show that (1.5) implies that X = 0. Write X = X+−X− and define the measures

ν+,−(B) = E[X+,−1B(W (h1), ...,W (hm))], B ∈ B(Rm).

Then ν+ and ν− are finite measures on Rm and their Laplace transforms are given by

ϕν+,−(λ) =
∫

Rm

exp(λ · x)ν+,−(dx) = E[X+,− exp(
m∑
i=1

λiW (hi))], λ ∈ Rm.

Hence, (1.5) implies that the Laplace transform of the signed measure

ν(B) = E[X1B(W (h1), ...,W (hm))], B ∈ B(Rm)

is zero. Consequently, this measure is zero and thus E[X1G] = 0, for all G ∈ G. So X = 0
and the proof is completed. 4
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Example 1.6 We consider H = R, (Ω,F ,P) = (R,B(R), µ), where µ is the Gaussian
law N(0, 1). For each h ∈ H, we define W (h) = hX, where X is a Gaussian random
variable N(0, 1). From property (1.3) we deduce that Hn has dimension one and is generated
by Hn(X). Moreover, Lemma 1.4 and Theorem 1.5 imply that the Hermite polynomials
{
√
n!Hn(x), n ≥ 0} form a complete orthonormal system in L2(R, µ).

1.3 Multiple stochastic integrals

Tha aim of this section is to define multiple Wiener-Itô integrals with respect to a Brownian
motion. Multiple Wiener-Itô integrals can also be defined for a general white noise based
on a general measured space (T,B, µ), where µ is a σ-finite measure without atoms (see
[N06, Section 1.1.2]). To simplify the exposition, in these lectues we will consider a one-
dimensional Brownian motion (B(t), t ∈ T ), T = [a, b], where 0 ≤ a < b < ∞, and its
isonormal Gaussian process defined in Example 1.1, that is, H = L2([a, b]; R) and W (h) =∫

[a,b] h(s)dB(s), for each h ∈ H.

We recall the definition of the Itô integral with respect to the Brownian motion:

For each t ≥ 0, let Ft be the σ-algebra generated by the random variables {B(s), 0 ≤
s ≤ t} and the P-measure zero sets of F . We say that a stochastic process {u(t), t ≥ 0} is
adapted to Ft if u(t) is Ft-measurable for all t ≥ 0.

Let L2
a(T × Ω,B(T )× F , λ× P) be the set of square integrable and adapted processes.

Consider the set of elementary and adapted processes E :

E = {u(t) =
n∑
i=1

Fi1(ti,ti+1](t), 0 ≤ t1 < · · · < tn+1, ti ∈ T, Fi ∈ Fti square integrable}.

The set E is dense in L2
a(T × Ω). We define the Itô integral of u ∈ E with respect to the

Brownian motion by: ∫
T
u(t)dB(t) =

n∑
i=1

Fi(B(ti+1)−B(ti)).

This is a linear functional with the following properties:

E
[∫

T
u(t)dB(t)

]
= 0, E

[(∫
T
u(t)dB(t)

)2]
= E

[∫
T
u2(t)dt

]
.

Using the isometry property we can extend the Itô integral to the class L2
a(T × Ω) as the

limit in L2(Ω) of the integral of processes in E with the same properties above.

The goal of this section is to define the multiple Wiener-Itô integral with respect to B:∫
Tn

f(t1, t2, ..., tn)dB(t1)dB(t2) · · · dB(tn),

of a function f ∈ L2(Tn). The crucial idea of Itô (1951) was to define an integral for
elementary functions that vanish on the diagonal and then approximate a function f ∈
L2(Tn) by a function of this type and pass to the limit of the corresponding integral.
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Consider the diagonal set of Tn:

D = {(t1, t2, ..., tn) ∈ Tn;∃ i 6= j : ti = tj}.

Let En be the vector space formed by the set of elementary functions on Tn that vanish
over D:

f(t1, ..., tn) =
k∑

i1,...,in=1

ai1···in1[τi1−1,τi1 )×···×[τin−1,τin )(t1, ..., tn), (1.6)

where a = τ0 < τ1 < τ2 < · · · < τk = b, such that

ai1···in = 0 if ip = iq for some p 6= q. (1.7)

For f ∈ En, we define

In(f) =
k∑

i1,...,in=1

ai1···inξi1 · · · ξin , (1.8)

where ξip = B(τip)−B(τip−1) for p = 1, ..., n. We observe that In(f) is well-defined, that is,
its definition does not depend on the particular representation of f . Moreover, it is linear
over En.

We define the symmetrization f̃ of f by

f̃(t1, ..., tn) =
1
n!

∑
σ∈Sn

f(tσ(1), ..., tσ(n)),

where Sn is the set of all permutations {1, ..., n}. Because the Lebesgue measure is sym-
metric, we have that for all σ ∈ Sn∫

Tn

|f(t1, ..., tn)|2dt1 · · · dtn =
∫
Tn

|f(tσ(1), ..., tσ(n))|2dt1 · · · dtn.

Therefore, from the triangle inequality, we deduce that

‖f̃‖L2(Tn) ≤
1
n!

∑
σ∈Sn

‖f‖L2(Tn) = ‖f‖L2(Tn). (1.9)

The following properties hold:

Lemma 1.7 If f ∈ En, then In(f) = In(f̃).

Proof. Because In is linear, it suffices to prove the lemma for a function of the form

f = 1
[t

(1)
1 ,t

(2)
1 )×···×[t

(1)
n ,t

(2)
n )
,

where the intervals [t(1)
i , t

(2)
i ) ⊂ T , i = 1, ..., n, are disjoint. We have that

In(f) =
n∏
i=1

(B(t(2)
i )−B(t(1)

i )).

On the other hand,

In(f̃) =
1
n!

∑
σ∈Sn

n∏
i=1

(B(t(2)
σ(i))−B(t(1)

σ(i))).

We observe that for all σ ∈ Sn,
∏n
i=1(B(t(2)

σ(i)) − B(t(1)
σ(i))) =

∏n
i=1(B(t(2)

i ) − B(t(1)
i )). The

result is now proved. 4
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Lemma 1.8 Let f ∈ En and g ∈ Em, n,m ≥ 1. Then E[In(f)] = 0 and

E[In(f)Im(g)] =

{
0, if n 6= m,

n!〈f̃ , g̃〉L2(Tn), if n = m.
(1.10)

Proof. Let f ∈ En defined in equation (1.6). Then In(f) is given in equation (1.8).
Because the function f satisfies condition (1.7), the coefficients ai1i2···in are 0 if the inter-
vals [τi1−1, τi1), ..., [τin−1, τin) are not disjoint. On the other hand, when these intervals
are disjoint, the corresponding product ξi1 · · · ξin has zero mean. Thus, we deduce that
E[In(f)] = 0.

By Lemma 1.8 it suffices to assume that f and g are symmetric to prove (1.10). Let
f ∈ En defined as in (1.6). It suffices to assume that f ∈ En and g ∈ Em are associated to
the same partition [τi1−1, τi1), ..., [τik−1, τik), that is,

g(t1, ..., tm) =
k∑

i1,...,im=1

bi1···im1[τi1−1,τi1 )×···×[τim−1,τim )(t1, ..., tm),

where bi1···im = 0 if ip = iq for some p 6= q.
On the other hand, for all σ ∈ Sn, we have that ai1i2···in = aσ(i1)σ(i2)···σ(in), and hence,

In(f) = n!
∑

1≤i1<...<in≤k
ai1···inξi1 · · · ξin ,

and the same holds for g.
Therefore,

E[In(f)Im(g)] = n!m!
∑

1≤i1<...<in≤k

∑
1≤j1<...<jm≤k

ai1···inbj1···jmE[ξi1 · · · ξinξj1 · · · ξjm ].

We observe that for a fixed set of indices i1 < ... < in,

E[ξi1 · · · ξinξj1 · · · ξjm ] =

{∏n
p=1(τip − τip−1), if n = m y j1 = i1, ..., jn = in,

0, else.

We deduce that, if n 6= m, E[In(f)Im(g)] = 0, and if n = m,

E[In(f)In(g)] = (n!)2
∑

1≤i1<...<in≤k
ai1···inbi1···in

n∏
p=1

(τip − τip−1)

= n!
∑

1≤i1,...,in≤k
ai1···inbi1···in

n∏
p=1

(τip − τip−1)

= n!
∫
Tn

f(t1, ..., tn)g(t1, ..., tn)dt1 · · · dtn.

4
The next result will allow to extend the integral In(f) to L2(Tn).

Lemma 1.9 The space En is dense in L2(Tn). That is, for all f ∈ L2(Tn), there exists a
sequence {fk}k≥1, fk ∈ En, that converges towards f in L2(Tn), that is

lim
k→∞

∫
Tn

|fk(t1, ..., tn)− f(t1, ..., tn)|2dt1 · · · dtn = 0.
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Proof. Because the usual set of elementary functions is dense in L2(Tn), and the set D
has Lebesgue measure zero, the proof is immediate. 4

Let f ∈ L2(Tn) and fk ∈ En as in Lemma 1.9. Using Lemma 1.8 and inequality (1.9),
we have that

E[(In(fp)− In(fq))2] = n!‖f̃p − f̃q‖2L2(Tn) ≤ n!‖fp − fq‖2L2(Tn) → 0,

as p, q →∞. Therefore, the sequence {In(fk)}k≥1 is Cauchy in L2(Ω).

We define the Wiener-Itô integral as the limit of the sequence {In(fk)}k≥1 in L2(Ω) and
we denote it by

In(f) =
∫
Tn

f(t1, t2, ..., tn)dB(t1)dB(t2) · · · dB(tn).

We observe that the definition does not depend on the choosed sequence. Note also that
I1(f) = W (f). Moreover, Lemmas 1.7 and 1.8 can be extended to functions in L2(Tn)
using Lemma 1.9:

Theorem 1.10 Let f ∈ L2(Tn) and g ∈ L2(Tm), n,m ≥ 1. We have that

(i) In(f) = In(f̃),

(ii) E[In(f)] = 0,

(iii)

E[In(f)Im(g)] =

{
0, if n 6= m,

n!〈f̃ , g̃〉L2(Tn), if n = m.

The next result will allow us to write the Wiener-Itô integral as an iterated Itô integral:

Theorem 1.11 Let f ∈ L2(Tn), n ≥ 1. Then

In(f) = n!
∫ b

a
· · ·
∫ tn−2

a

(∫ tn−1

a
f̃(t1, ..., tn)dB(tn)

)
dB(tn−1) · · · dB(t1).

Proof. We observe that it suffices to show the theorem in the case where f is a characteristic
function on a disjoint rectangle with the set D. That is,

f(t1, ..., tn) = 1
[t

(1)
1 ,t

(2)
1 )×···×[t

(1)
n ,t

(2)
n )

(t1, ..., tn),

where t(1)
n < t

(2)
n ≤ t(1)

n−1 < t
(2)
n−1 ≤ · · · ≤ t

(1)
2 < t

(2)
2 ≤ t(1)

1 < t
(2)
1 . Then,

In(f) =
n∏
i=1

(B(t(2)
i )−B(t(1)

i )).

On the other hand, we note that f̃ = 1
n!f on the set tn < tn−1 < · · · < t1. Therefore,∫ tn−1

a
f̃(t1, ..., tn)dB(tn) =

1
n!

1
[t

(1)
1 ,t

(2)
1 )×···×[t

(1)
n−1,t

(2)
n−1)

(t1, ..., tn−1)(B(t(2)
n )−B(t(1)

n )),
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which is an F
t
(1)
n−1

-measurable random variable and can be considered as a ”constant”

stochastic process by integrating on the interval [t(1)
n−1, t

(2)
n−1] with respect to dB(tn−1).

Iterating this procedure, we obtain that∫ b

a
· · ·
∫ tn−2

a

(∫ tn−1

a
f̃(t1, ..., tn)dB(tn)

)
dB(tn−1) · · · dB(tn) =

1
n!

n∏
i=1

(B(t(2)
i )−B(t(1)

i )).

4

The following relationship between the Wiener-Itô integral and the Hermite polynomials
holds:

Theorem 1.12 For all f ∈ L2(T ) and n ≥ 1,

In(f⊗n) = n!Hn(W (f), ‖f‖2L2(T )),

where f⊗n is the n variables (symmetric) function f⊗n(t1, ..., tn) = f(t1) · · · f(tn).

Proof. We prove this result by induction over n. The case n = 1 is immediate. We assume
that the result holds for 1, ..., n. Using Theorem 1.11 we get that

In+1(f⊗n+1) = (n+ 1)!
∫ b

a
f(t1)Xt1 dB(t1),

where

Xt =
∫ t

a
· · ·
(∫ tn

a
f(t2) · · · f(tn+1) dB(tn−1)

)
· · · dB(t2).

Appealing again to Theorem 1.11 and the induction hypothesis, we have that

Xt =
1
n!

∫
[a,t]n

f(t2) · · · f(tn+1)dB(t2) · · · dB(tn+1)

= Hn

(∫ t

a
f(s)dB(s),

∫ t

a
f2(s)ds

)
.

Hence, we obtain the equality

In+1(f⊗n+1) = (n+ 1)!
∫ b

a
f(t1)Hn

(∫ t1

a
f(s)dB(s),

∫ t1

a
f2(s)ds

)
dB(t1). (1.11)

On the other hand, if we apply Itô’s formula to the function Hn+1(x, λ), it yields that

dHn+1

(∫ t

a
f(s)dB(s),

∫ t

a
f2(s)ds

)
=
(
∂

∂x
Hn+1

)
f(t)dB(t) +

1
2

(
∂2

∂x2
Hn+1

)
f2(t)dt

+
(
∂

∂λ
Hn+1

)
f2(t)dt.

Using properties (1.1) and (1.4), we obtain that

dHn+1

(∫ t

a
f(s)dB(s),

∫ t

a
f2(s)ds

)
= f(t)Hn

(∫ t

a
f(s)dB(s),

∫ t

a
f2(s)ds

)
dB(t).
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Integrating over [a, b], we get that

Hn+1(W (f), ‖f‖L2(T )) =
∫ b

a
f(t)Hn

(∫ t

a
f(s)dB(s),

∫ t

a
f2(s)ds

)
dB(t). (1.12)

Using inequalities (1.11) and (1.12) together, we conclude the desired result for n+ 1. 4

As a consequence of Theorem 1.12 we obtain the following version of Theorem 1.5 on
the Wiener chaos expansion.

Theorem 1.13 Any random variable F ∈ L2(Ω,G,P) admits a decomposition of the form
F =

∑∞
n=0 In(fn), where f0 = E[F ], I0 is the identity mapping on the constants, and the

functions fn ∈ L2(Tn) are symmetric and uniquely determined by F .

1.4 The derivative operator

The goal of this chapter is to define the notion of derivative operator DF of a square
integrable random variable F : Ω 7→ R, where the derivative is taken with respect to the
parameter ω ∈ Ω. We will use a notion of derivative in a weak sense, without assuming any
topological structure on the space Ω.

1.4.1 Definition and properties of the derivative operator

We consider the set of smooth random variables S:

S = {F = f(W (h1), ...,W (hn)), f ∈ C∞p (Rn), hi ∈ H,n ≥ 1},

where C∞p (Rn) is the set of functions f : Rn → R that are C∞ and such that f and all its
partial derivatives have polynomial growth. We will use the notation Sb for the case where
f ∈ C∞b (Rn), that is, f and all its partial derivatives are bounded. Observe that Sb ⊂ S
and Sb is dense in L2(Ω).

If F ∈ S we define the derivative of F , DF , as the H-valued random variable:

DF =
n∑
i=1

∂if(W (h1), ...,W (hn))hi.

For example: D(W (h)) = h.
The derivative DF can be interpreted as the a directional derivative: for any h ∈ H, we

have
〈DF, h〉H = lim

ε→0

1
ε

(f(W (h1) + ε〈h1, h〉H , ...,W (hn) + ε〈hn, h〉H)− F ),

that is, 〈DF, h〉H is the derivative at ε = 0 of F composed with the shifted process {W (g)+
ε〈g, h〉H , g ∈ H}.

Example 1.14 Let (B(t), t ∈ [0, 1]) be a one-dimensional Brownian motion defined on its
canonical probability space (Ω,F ,P). Let H = L2([0, 1],B([0, 1]), λ), where λ is the Lebesgue
measure in [0, 1]. For each h ∈ H, set W (h) =

∫
[0,1] h(s)dB(s).

Let F = f(W (1[0,t1]), ...,W (1[0,tn])) ∈ S, 0 ≤ t1 < · · · < tn ≤ 1. Then, for each h ∈ H,

〈DF, h〉H =
n∑
i=1

∂if(B(t1), ..., B(tn))
∫ ti

0
h(t)dt =

d

dε
F

(
ω + ε

∫ ·
0
h(t)dt

)∣∣∣∣
ε=0

.
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We define the Cameron-Martin space as the subspace H1 of Ω:

H1 = {h̃ : [0, 1] 7→ R continuous : h̃(t) =
∫ t

0
h(s)ds, h ∈ H}.

Then, for any h ∈ H, the product 〈DF, h〉H is the directional derivative of F in the direction
of the element

∫ ·
0 h(s)ds ∈ H1. We observe that H1 is a Hilbert space isomorphic to H,

writing

〈h̃, g̃〉H1 = 〈h, g〉H =
∫ 1

0
h(s)g(s)ds.

The following integration by parts formula holds:

Lemma 1.15 Let F ∈ S and h ∈ H. Then,

E[〈DF, h〉H ] = E[FW (h)].

Proof. It is sufficient to consider the case where ‖h‖H = 1. There exists and orthonormal
family of H, {e1, ...en} such that h = e1 y F = f(W (e1), ...,W (en)), where f ∈ C∞p (Rn).
Let φ(x) denote the standard normal distribution on Rn standard, that is,

φ(x) = (2π)−n/2 exp(−1
2

n∑
i=1

x2
i ).

Then, using the usual integration by parts formula, we have

E[〈DF, h〉H ] =
∫

Rn

∂1f(x)φ(x)dx =
∫

Rn

f(x)φ(x)x1dx = E[FW (e1)] = E[FW (h)].

4
Applying the previous result to FG and using that D(FG) = DFG+FDG, we obtain:

Lemma 1.16 Let F,G ∈ S and h ∈ H. Then,

E[G〈DF, h〉H ] = −E[F 〈DG,h〉H ] + E[FGW (h)].

As a consequence of the above lemma we obtain the following result:

Proposition 1.17 For any p ≥ 1, the operator D is closable from Lp(Ω) to Lp(Ω;H).

Proof. Let {FN , N ≥ 1} be a sequence of random variables in S such that FN converges
to zero in Lp(Ω) and the sequence of derivatives DFN converges to η in Lp(Ω;H).

Then, for any h ∈ H and F ∈ Sb such that FW (h) is bounded (for example, F =
Ge−εW (h)2 , where G ∈ Sb and ε > 0), we have that

E[F 〈η, h〉H ] = lim
N→∞

E[F 〈DFN , h〉H ] = lim
N→∞

E[−FN 〈DF, h〉H + FNFW (h)] = 0,

because FN converges to zero in Lp(Ω) when N converges to infinity and the random
variables 〈DF, h〉H and FW (h) are bounded. This implies that η = 0. 4

From now on, we will denote the closed extension of the derivative operator D̄ also by
D. For any p ≥ 1, the domain of this operator D is the space D1,p, defined as the completion
of S with respect to the norm:

‖F‖1,p =
{

E[|F |p + E[‖DF‖pH ]
} 1

p

.
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We observe that D1,2 is a Hilbert space with respect to the scalar product

〈F,G〉1,2 = E[FG] + E[〈DF,DG〉H ].

We define the second iterated derivative of F ∈ S, D2F = D(DF ), as the H⊗H-valued
random variable defined by

D2F =
n∑

i,j=1

∂2
ijf(W (h1), ...,W (hn))(hi ⊗ hj),

where ⊗ denotes the tensor product.
In general, we define the k-th iterated derivative of F , DkF , for any natural number

k ≥ 1, as the H⊗k-valued random variable obtained iterating k times the operator D.

We have the following extension of Proposition 1.17, which can be proved in the same
way iterating Lemma 1.16 (see Exercise 1.40):

Proposition 1.18 For any p ≥ 1 and k ≥ 1 natural number, the operator Dk is closable
from S to Lp(Ω;H⊗k).

Again, we will use the notation Dk for the closed extension of the iterated derivative
D̄k. The domain of the operator Dk is the space Dk,p defined as the completion of S with
respect to the norm:

‖F‖k,p =
{

E[|F |p +
k∑
j=1

E[‖DjF‖p
H⊗j ]

} 1
p

.

For k = 0 we write ‖ · ‖0,p = ‖ · ‖p and D0,p = Lp(Ω).

The following property holds:

Lemma 1.19 For any F ∈ S, 1 ≤ p ≤ q and 0 ≤ k ≤ j, k, j ∈ N, ‖F‖k,p ≤ ‖F‖j,q. In
particular, Dk+1,p ⊂ Dk,q for all k ≥ 0 y p > q.

Proof. The case p = q is trivial. If k = j, we use Hölder’s inequality. 4

The next result is the chain rule:

Proposition 1.20 Let g : Rd 7→ R be a function in C1 with bounded partial derivatives.
Let p ≥ 1 and F = (F 1, ..., F d) a random vector such that F i ∈ D1,p for any i = 1, ..., d.
Then g(F ) ∈ D1,p and

D(g(F )) =
d∑
i=1

∂ig(F )DF i. (1.13)

Proof. We will only prove the case d = 1. The case d > 1 can be proved in the same way.
Let gε(x) = g ∗ ψε(x), where ψε is an approximation of the identity, that is, ψε(x) =

ε−1ψ(xε ), ε > 0, x ∈ R, where ψ is a C∞ positive function with support in [−1, 1] and
such that

∫
R ψ(x)dx = 1. We observe that gε ∈ C∞, and is bounded with bounded partial

derivatives.
On the other hand, because F ∈ (D1,p)d, there exists a sequence {Fk}k≥1, Fk ∈ S

(Fk = fk(W (h1), ...,W (hnk
)), fk ∈ C∞p (Rn)) that converges to F in Lp(Ω) as k → ∞, and
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the sequence DFk converges to DF in Lp(Ω;H) as k → ∞. Then, using the definition of
the derivative, we have that

D(gε(Fk)) =
nk∑
i=1

∂i(gε ◦ fk)(W (h1), ...,W (hnk
))hi = g′ε(Fk)DFk.

On the other hand, using the triangle inequality, it yields that

‖g′ε(Fk)DFk − g′(F )DF‖Lp(Ω;H) ≤ ‖g′ε(Fk)(DFk −DF )‖Lp(Ω;H)

+ ‖(g′ε(Fk)− g′(Fk))DF‖Lp(Ω;H) + ‖(g′(Fk)− g′(F ))DF‖Lp(Ω;H) := (1) + (2) + (3).

We observe that for any ε > 0 and k ≥ 1 g′ε(Fk) is bounded a.s. by a constant not
depending on ε and k, and hence, (1) converges to zero as k →∞. On the other hand, the
dominated convergence theorem implies that for any k ≥ 1, (2) converges to zero as ε→ 0.
In the same way, (3) converges to zero as k →∞.

Thus, D(gε(Fk)) converges to g′(F )DF in Lp(Ω;H) as ε→ 0 and k →∞. On the other
hand, g′ε(Fk) converges to g(F ) in Lp(Ω) as ε → 0 and k → ∞. Finally, the closability of
the operator D (Proposition 1.17) implies that g(F ) ∈ D1,p and that D(g(F )) = g′(F )DF ,
which concludes the proof of the proposition for d = 1. 4

The chain rule can be extended in the case where g is a Lipschitz function (see Propo-
sition 1.23).

The definition of the derivative operator can be extended to a family of smooth random
variables taking values on a real separable Hilbert space V :

SV =
{
u =

n∑
j=1

Fjhj : Fj ∈ S, hj ∈ V, n ≥ 1
}
.

For each k ≥ 1, we define the derivative Dk of u ∈ SV by

Dku =
n∑
j=1

F kFj ⊗ hj .

Then Dk is a closable operator from SV to Lp(Ω;H⊗k ⊗ V ), for any p ≥ 1 and we will
note the closed extension also by Dk. The domain of the operator Dk is the space Dk,p(V )
defined as the completion of SV with respect to the norm:

‖u‖k,p,V =
{

E[|u|pV +
k∑
j=1

E[‖Dju‖p
H⊗j⊗V ]

} 1
p

.

For k = 0 we write ‖u‖0,p,V = {E[‖u‖V ]}1/p and D0,p(V ) = Lp(Ω;V ).

1.4.2 The derivative operator in the white noise case

As in Section 1.3 we will restrict ourselves in the case of a one-dimensional Brownian motion
(B(t), t ∈ T ), T = [a, b], H = L2(T ), and W (h) =

∫
[a,b] h(s)dB(s) for h ∈ H (see [N06,

Section 1.2.1] for the general white noise case).
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Using the identification L2(Ω;H) ∼= L2(T ×Ω) we have that the derivative of a random
variable F ∈ D1,2 is a stochastic process {DtF, t ∈ T} defined almost surely with respect to
the measure λ× P. In this case, we observe that

‖DF‖2L2(Ω;H) = E
[∫

T
(DtF )2dt

]
=
∫
T

E[(DtF )2]dt = E[‖D·F‖2H ].

For example, Dt(W (h)) = h(t), h ∈ H, t ∈ T , and

‖D(W (h))‖2L2(Ω;H) =
∫
T
h(t)2dt = ‖h‖2H .

In the same way, we have that DkF = {Dk
t1,...,tk

F, ti ∈ T} is a T k × Ω-measurable function
defined λk × P-almost everywhere.

The next result gives the decomposition of the derivative in the Wiener chaos (see
Exercise 1.41 for the iterated derivative case).

Proposition 1.21 Let F ∈ D1,2 be a square integrable random variable with the Wiener
chaos decomposition of Theorem 1.13, that is, F =

∑∞
n=0 In(fn), where fn ∈ L2(Tn) are

symmetric. Then, F belongs to D1,2 if and only if

∞∑
n=1

nn!‖fn‖2L2(Tn) < +∞, (1.14)

and in this case we have that

DtF =
∞∑
n=1

nIn−1(fn(·, t)).

Proof. Assume first that F = In(fn), with fn ∈ En symmetric. Then

DtF =
n∑
j=1

k∑
i1,...,in=1

ai1···inξi1 · · · 1[τij−1,τij )(t) · · · ξin = nIn−1(fn(·, t)), (1.15)

where ξip = B(τip)−B(τip−1) for p = 1, ..., n. Note that the symmetry is used in the second
equality.

Let F ∈ D1,2, F =
∑∞

n=0 In(fn), fn ∈ L2(Tn) symmetric. Consider the sequence of
partial sums FN =

∑N
n=0 In(fn), N ≥ 0. Then FN converges to F in L2(Ω) as N → ∞.

This implies that the sequence DFN converges to DF in L2(Ω;H) as N → ∞. On the
other hand, for each n ≥ 1, In(fn) is the limit in L2(Ω) of the sequence {In(fkn)}k≥1,
where fkn ∈ En and the sequence fkn converges to fn in L2(Tn) as k → ∞. Hence, the
sequence D(In(fkn)) converges to D(In(fn)) in L2(Ω;H) as k →∞. Moreover, the sequence
In−1(fkn(·, ∗)) converges to In−1(fn(·, ∗)) in L2(Ω;H) as k →∞. Finally, using the linearity
of the operator D and (1.15) we obtain the desired result. 4

We now prove the following technical result.

Lemma 1.22 Let {Fk, k ≥ 1} be a sequence of random variables in D1,2 that converges to
F in L2(Ω) and such that

sup
k

E[‖DFk‖2H ] < +∞.
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Then F belongs to D1,2, and the sequence of derivatives {DFk, k ≥ 1} converges to DF in
the weak topology of L2(Ω;H) (that is, for any G ∈ L2(Ω;H), 〈DFk, G〉L2(Ω;H) converges
to 〈DF,G〉L2(Ω;H)).

Proof. By Proposition 1.21, to show that F ∈ D1,2 it suffices to check that (1.14) holds
true. Consider the Wiener chaos decompositions F =

∑∞
n=0 In(fn) and Fk =

∑∞
n=0 In(fn,k).

Then, because Fk converges to F in L2(Ω) as k →∞, for all n ≥ 1, fn,k converges to fn in
L2(Tn) as k →∞ (as n!‖fn,k − fn‖2L2(Tn) ≤ E[(Fk − F )2]). Hence, by Fatou’s lemma,

∞∑
n=1

nn!‖fn‖2L2(Tn) =
∞∑
n=1

nn! lim
k→∞

‖fnk
‖2L2(Tn)

≤ liminfk→∞
∞∑
n=1

nn!‖fn,k‖2L2(Tn) ≤ sup
k

E[‖DFk‖2H ] < +∞,

which proves (1.14), and thus F ∈ D1,2.
Moreover, because the sequence DFk is bounded in L2(Ω;H), there exists a subsequence

{Fk(j), j ≥ 1} such that the sequence of derivatives DFk(j) converges in the weak topology
of L2(Ω;H) to some element α ∈ L2(Ω;H). We claim that α = DF . Indeed, it suffices to
prove that for any random variable G in the Nth Wiener chaos, N ≥ 0, and for any h ∈ H,

E[〈α, h〉HG] = E[〈DF, h〉HG],

as the set of linear combinations of the form
∑p

i=1 hiGi is dense in L2(Ω;H).
Set G =

∑N
m=0 Im(gm). Then, using Proposition 1.21, the isometry of Theorem 1.10

(iii) and the convergence of Fk(j) towards F in L2(Ω), we get that

E[〈α, h〉HG] = lim
j→∞

E[〈DFk(j), h〉HG]

= lim
j→∞

E
[( ∞∑

n=1

nIn−1

(∫ b

a
fn,k(j)(·, t)h(t)dt

))( N∑
m=0

Im(gm)
)]

= lim
j→∞

N∑
n=1

n(n− 1)!
〈∫ b

a
fn,k(j)(·, t)h(t)dt, gn−1

〉
L2(Tn−1)

=
N∑
n=1

n!
〈∫ b

a
fn(·, t)h(t)dt, gn−1

〉
L2(Tn−1)

= E[〈DF, h〉HG].

Hence, DF = α. Finally, for any weakly convergent subsequence of {DFn, n ≥ 1} the limit
must be equal to DF by the preceeding argument, which implies the weak convergence of
the whole sequence to DF (recall that a bounded sequence with a unique accumulation
point converges to this point in a Banach metric space). 4

The next result is the extension of the chain rule for Lipschitz functions in the Brownian
motion case.

Proposition 1.23 Let g : Rd 7→ R be a Lipschitz function, that is, for some constant
K > 0,

|g(x)− g(y)| ≤ K‖x− y‖, for all x, y ∈ Rd.
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Suppose that F = (F 1, ..., F d) is a random vector such that F i ∈ D1,2 for any i = 1, ..., d.
Then g(F ) ∈ D1,2, and there exists a random vector G = (G1, ..., Gd) bounded by K such
that

D(g(F )) =
d∑
i=1

GiDF
i. (1.16)

Proof. If g ∈ C1(Rd), then the result reduces to that of Proposition 1.20 with Gi = ∂ig(F ).
For all n ≥ 1, let αn(x) = ndα(nx), where α is a nonnegative function in C∞(Rd) whose

support is the unit ball and such that
∫

Rd α(x)dx = 1. Set gn = g ∗ αn. Then

(i) limn→∞ gn(x) = g(x) uniformly with respect to x. Indeed,

|gn(x)− g(x)| ≤
∫

Rd

|g(x− y)− g(x)|αn(y)dy ≤ K
∫

Rd

‖y‖αn(y)dy ≤ K.

(ii) For all n ≥ 1, gn ∈ C∞ which follows trivially by the definition of αn.

(iii) For all n ≥ 1 and x ∈ Rd, ‖∇gn(x)‖ ≤ K. Indeed, we first observe that because g is
Lipschitz,

|g(x)− gn(y)| ≤
∫

Rd

|g(x− z)− g(y − z)|αn(z)dz ≤ K‖x− y‖.

Hence,

‖∇gn(x)‖ = sup
‖ξ‖=1

|∇gn(x) · ξ| = sup
‖ξ‖=1

lim
h→0

∣∣∣∣gn(x)− gn(x+ hξ)
h

∣∣∣∣ ≤ K.
Then for any n ≥ 1, we have that

D(gn(F )) =
d∑
i=1

∂ign(F )DF i. (1.17)

On the other hand, the sequence gn(F ) converges to g(F ) in L2(Ω) as n tends to infinity,
and the sequence {D(gn(F )), n ≥ 1} is bounded in L2(Ω;H). Hence, by Lemma 1.22,
g(F ) ∈ D1,2 and D(gn(F )) converges in the weak topology of L2(Ω;H) to D(g(F )).

Furthermore, the sequence {∇gn(F ), n ≥ 1} is bounded by K. Hence, there exists a
subsequence {∇gn(k)(F ), k ≥ 1} that converges to some random vector G = (G1, ..., Gd) in
the weak topology σ(L2(Ω; Rd)). This implies that G is bounded by K a.s. Indeed, for any
ξ ∈ Rd, ‖ξ‖ = 1 and A ∈ B(R),∫

A
|G · ξ| dP = lim

k→∞

∫
A
|gn(k)(F ) · ξ| dP ≤ KP(A).

This implies that
‖G‖ = sup

‖ξ‖=1
|G · ξ| ≤ K, a.s.

Finally, taking the limit in (1.17), we obtain (1.16). 4

Remark 1.24 If the law of the random vector is absolutely continuous with respect to the
Lebesgue measure on Rd, then Gi = ∂g(F ) in (1.16).
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We will also need the following technical result which is an extension of Lemma 1.22
(see [N06, Lemma 4.6]).

Lemma 1.25 Let {Fn, n ≥ 1} be a sequence of random variables converging to F in Lp(Ω)
for some p > 1. Suppose that supn ‖Fn‖k,p < +∞, for some k ≥ 1. Then F ∈ Dk,p.

We next prove a local property of the derivative operator. For any interval [c, d] ⊂ [a, b],
let F[c,d] be the σ-algebra generated by the random variables {B(s), s ∈ [c, d]}.

Lemma 1.26 Let F be a random variable such that F ∈ D1,2 ∩ L2(Ω,F[c,d]c ,P). Then
DtF = 0, (λ× P)-for almost every (t, ω) ∈ [c, d]× Ω.

Proof. Let F ∈ S, F = f(W (|1[a1,b1]), ...,W (1[an,bn])), where f ∈ C∞p (Rn), [ai, bi] ⊂ [c, d]c,
and i = 1, ..., n. Then,

DtF =
n∑
i=1

∂if(W (1[a1,b1]), ...,W (1[an,bn]))1[ai,bi](t),

and hence, DtF = 0, for all (t, ω) ∈ [c, d]× Ω.
In general, if F ∈ D1,2 ∩ L2(Ω,F[c,d]c ,P), there exists a sequence of random variables

{Fk}k≥1, Fk ∈ S of the above type that converge to F in L2(Ω) as k →∞. In particular, the
sequence DFk converges to DF in L2(Ω, H) as k →∞. Using the argument above we have
that DtFk = 0, for all (t, ω) ∈ [c, d]×Ω, k ≥ 1, and hence DtF = 0 for all (t, ω) ∈ [c, d]×Ω.
4

For example, DtW ([c, d]c) = 0, (λ × P)-for almost all (t, ω) ∈ [c, d] × Ω. Moreover, if
h ∈ H, DtW (h) = 0, (λ× P)-for almost every (t, ω) ∈ [a, b]c × Ω.

We end this section by computing the derivative of the supremum of the Brownian
motion on an interval. We start proving that a Brownian motion in [0, 1] attains it maximum
a.s. on a unique point.

Lemma 1.27 With probability one the Brownian motion attains it maximum on [0, 1] on
a unique point.

Proof. We want to show that the set

G =
{
ω : sup

t∈[0,1]
B(t) = B(t1) = B(t2) for some t1 6= t2

}
has probability zero. For each n ≥ 0, we denote by In, the class of dyadic intervals of the
form [(j − 1)2−n, j2−n], with 1 ≤ j ≤ 2n. The set G is included in the countable union⋃

n≥1

⋃
I1,I2∈In,I1∩I2=∅

{
sup
t∈I1

B(t) = sup
t∈I2

B(t)
}
.

Finally, it suffices to check that for each n ≥ 1 and for any couple of disjoint intervals I1, I2

P
{

sup
t∈I1

B(t) = sup
t∈I2

B(t)
}

= 0.
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Fix a rectangle [a, b] ⊂ [0, 1]. Then it suffices to show that the law of the random variable
supt∈[a,b]B(t) conditioned on Fa is continuous. Note that by the reflection principle we
have that for all y > 0,

P
{

sup
t∈[0,b]

B(t) ≥ y
}

= 2P{B(b) > y} = 2− 2Φ
(
y√
b

)
, (1.18)

where Φ(·) denotes the cdf of the standard normal distribution. Hence, on the set {B(a) =
x}, writing

sup
t∈[a,b]

B(t) = sup
t∈[a,b]

(B(t)−B(a)) + x,

we conclude the desired result. 4

Lemma 1.28 Let B = {B(t), t ∈ [0, 1]} be a Brownian motion. Consider the random
variable M = supt∈[0,1]B(t). Then M ∈ D1,2 and DtM = 1[0,T ](t), where T is the a.s.
unique point where B attains its maximum.

Proof. We start proving that M ∈ D1,2. Consider the approximation of M defined by

Mn = max{B(t1), ..., B(tn)},

where (tn, n ≥ 1) is a countable and dense subset of [0, 1]. Because the function gn : Rn → R
defined as gn(x1, ..., xn) = max{x1, ..., xn} is Lipschitz, Proposition 1.23 implies that Mn

belongs to D1,2, for all n ≥ 1. On the other hand, the sequence Mn converges to M in
L2(Ω). Thus, by Lemma 1.22, it suffices to show that the sequence DMn is bounded in
L2(Ω;H). In order to evaluate the derivatives of Mn, we introduce the following sets:

A1 = {Mn = B(t1)},
· · ·

Ak = {Mn 6= B(t1), ...,Mn 6= B(tk−1),Mn = B(tk)}, 2 ≤ k ≤ n.

By the local property of the operator D (Lemma 1.26), on the set Ak, DMn = DB(tk).
Hence, we can write

DMn =
n∑
k=1

1Ak
DB(tk).

Consequently,

E[‖DMn‖2H ] ≤ E
[

sup
t∈[0,1]

‖DB(t)‖2H
]

= 1,

and by Lemma 1.22 we conclude that M ∈ D1,2.
In order to prove the second statement, consider the sequence Tn =

∑n
k=1 1Ak

tk of
bounded random variables taking values in [0, 1]. Then Tn converges to T a.s, and DMn

converges to DM = DB(t)|t=T , where T is the unique point where B attains it maximum.
4

Remark 1.29 Recall that Lemmas 1.27 and 1.28 also hold for the Brownian sheet defined
in Example 1.3, but in this case the explicit form of the density of M is unknown. One
can show that this density exists and is infintely differentiable using general criterium of the
Malliavin calculus for existence and smoothness of densities that will be studied in Section
2.2. See [N06, Section 2.1.7] for the proof of all this facts.
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1.5 The divergence operator

In this section we introduce the divergence operator which is the dual of the derivative
operator and the divergence operator in the white noise case which is called the Skorohod
integral.

1.5.1 Definition and properties of the divergence operator

The divergence operator δ is the adjoint of the operator D. That is, δ is an unbounded
operator from L2(Ω;H) to L2(Ω) such that:

(i) The domain of δ, Dom δ, is the set of random variables u ∈ L2(Ω;H) such that for
all F ∈ D1,2, |E[〈DF, u〉H ]| ≤ cu‖F‖L2(Ω).

(ii) If u ∈ Dom δ, then δ(u) ∈ L2(Ω) and the following duality relation holds: for any
F ∈ D1,2,

E[Fδ(u)] = E[〈DF, u〉H ]. (1.19)

The following properties of the divergence operator hold:

Proposition 1.30 (i) If u ∈ Dom δ, then E[δ(u)] = 0.

(ii) δ is a linear and closed operator in Dom δ.

(iii) If u ∈ SH , then u ∈ Dom δ and

δ(u) =
n∑
j=1

FjW (hj)−
n∑
j=1

〈DFj , hj〉H .

(iv) Let u ∈ SH , F ∈ S and h ∈ H. Then

〈D(δ(u)), h〉H = 〈u, h〉H + δ

( n∑
j=1

〈DFj , h〉Hhj
)
.

Proof. (i) is immediate applying (1.19) with F = 1. The operator δ is closed as the adjoint
of an unbounded and densely defined operator. The linearity can be easily deduced from
(1.19). This proves (ii). In order to prove (iii) we first observe that if u ∈ SH , using Lemma
1.16 we have that for all F ∈ D1,2,∣∣∣∣E[〈DF, u〉H ]

∣∣∣∣ =
∣∣∣∣ n∑
j=1

E[Fj〈DF, hj〉H ]
∣∣∣∣

≤
n∑
j=1

(∣∣∣∣E[F 〈DFj , hj〉H ]
∣∣∣∣+
∣∣∣∣E[FFjW (hj)]

∣∣∣∣)
≤ cu‖F‖L2(Ω).

Hence, u ∈ Dom δ. Moreover, using again Lemma 1.16 and (1.19), we obtain that for all
F ∈ D1,2,

E[Fδ(u)] = E[〈DF, u〉H ] = E
[
F

( n∑
j=1

FjW (hj)−
n∑
j=1

〈DFj , hj〉H
)]
,
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which implies (iii). Finally, in order to prove (iv), we use (iii) to get that

〈D(δ(u)), h〉H =
n∑
j=1

Fj〈hj , h〉H +
n∑
j=1

(
W (hj)〈DFj , h〉H − 〈D(〈DFj , h〉H), hj〉H

)
,

and using again (iii) we conclude the proof of (iv). 4

The next result shows that the set of H-valued random variables D1,2(H) is in the
domain of the divergence. We observe that if u ∈ D1,2(H), then Du is an H ⊗ H-valued
square integrable random variable, and the Hilbert space H ⊗ H can be identified as the
space of Hilbert-Schmidt operators from H to H.

Proposition 1.31 If u ∈ D1,2(H), then

‖δ(u)‖20,2 = E[δ(u)2] ≤ ‖u‖21,2,H . (1.20)

In particular, D1,2(H) ⊂ Dom δ and δ is continuous from D1,2(H) into L2(Ω).

Proof. Let u ∈ SH and let {ei, i ≥ 1} a complete orthonormal system in H. Using the
duality relation and Proposition 1.30(iv) it yields that

E[δ(u)2] = E[〈D(δ(u)), u〉H ]

= E
[ ∞∑
i=1

〈D(δ(u)), ei〉H〈u, ei〉H
]

= E
[ ∞∑
i=1

{
〈u, ei〉H + δ

( n∑
j=1

〈DFj , ei〉Hhj
)}
〈u, ei〉H

]

= E[‖u‖2H ] + E
[ ∞∑
i=1

δ

( n∑
j=1

〈DFj , ei〉Hhj
)
〈u, ei〉H

]

= E[‖u‖2H ] + E
[ ∞∑
i,k=1

〈D(〈u, ek〉H), ei〉H〈D(〈u, ei〉H), ek〉H
]
.

Applying the Cauchy-Schwarz inequality, the above expression is

≤ E[‖u‖2H ] + E
[ ∞∑
i,k=1

(〈D(〈u, ei〉H), ek〉H)2

]

= E[‖u‖2H ] + E
[ ∞∑
i,k=1

(〈Du, ei ⊗ ek〉H⊗H)2

]
= E[‖u‖2H ] + E[‖Du‖2H⊗H ] = ‖u‖21,2,H .

Then, if u ∈ D1,2(H), there exists a sequence un ∈ SH that converges to u in L2(Ω;H)
and such that the sequence D(un) converges to Du in L2(Ω;H ⊗H). Hence, the sequence
δ(un) converges in L2(Ω) and its limit is δ(u). That is, u ∈ Dom δ and (1.20) holds for all
u ∈ D1,2(H). 4

More generally, using Meyer inequalities one can prove the following central result in
Malliavin calculus (see [N06, Proposition 1.5.7]).
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Theorem 1.32 The operator δ is continuous from Dk,p(H) into Dk−1,p, for all p > 1 and
k ≥ 1. That is, if u ∈ Dk,p(H), then

‖δ(u)‖k−1,p ≤ ck,p‖u‖k,p,H .

In particular, Dk,p(H) ⊂ Dom δ.

We will also use the following property of the divergence.

Proposition 1.33 Let F ∈ D1,2 and u ∈ Dom δ such that Fu ∈ L2(Ω, H) and Fδ(u) −
〈DF, u〉H ∈ L2(Ω). Then Fu ∈ Dom δ and

δ(Fu) = Fδ(u)− 〈DF, u〉H .

Proof. For any random variable G ∈ S, using (1.19), it holds that

E[〈Fu,DG〉H ] = E[〈u,D(FG)−GDF 〉H ] = E[(Fδ(u)− 〈u,DF 〉H)G].

This implies the desired result. 4

1.5.2 The Skorohod integral

As in Section 1.4.2 we will restrict ourselves in the case of a one-domensional Brownian
motion (B(t), t ∈ T ), T = [a, b], H = L2(T ), and W (h) =

∫
[a,b] h(s)dB(s) for h ∈ H (see

[N06, Section 1.3.2] for the general white noise case).
In this case, the elements of Dom δ ⊂ L2(Ω;H) ∼= L2(T × Ω) are square integrable

stochastic processes and the divergence δ(u) is called the Skorohod integral of the process
u.

An element u ∈ L2(T × Ω) has a Wiener chaos decomposition of the form

u(t) =
∞∑
n=0

In(fn(·, t)), (1.21)

where for each n ≥ 1, fn ∈ L2(Tn+1) is symmetric in its first n variables.
The next results gives the decomposition of the Skorohod integral in the Wiener chaos.

Proposition 1.34 Let u ∈ L2(T × Ω) with the decomposition given in (1.21). Then u ∈
Dom δ if and only if the series

δ(u) =
∞∑
n=0

In+1(f̃n) (1.22)

converges in L2(Ω), where

f̃n(t1, ..., tn, t) =
1

n+ 1

(
fn(t1, ..., tn, t) +

n∑
i=1

fn(t1, ..., ti−1, t, ti+1, ..., tn, ti)
)
.
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Proof. Let n ≥ 1 and g ∈ L2(Tn) a symmetric function. We have that

E
[∫

T
utDt(In(g))dt

]
=
∞∑
m=0

∫
T

E[Im(fm(·, t))nIn−1(g(·, t))]dt

= n

∫
T

E[In−1(fn−1(·, t))In−1(g(·, t))]dt

= n(n− 1)!
∫
T
〈fn−1(·, t), g(·, t)〉L2(Tn−1)dt

= n!〈fn−1, g〉L2(Tn) = n!〈f̃n−1, g〉L2(Tn)

= E[In(f̃n−1)In(g)].

Assume first that u ∈ Dom δ. Then using (1.19) and the computation above we obtain that
for all n ≥ 1 and g ∈ L2(Tn) symmetric,

E[δ(u)In(g)] = E[〈u,D(In(g))〉H ] = E[In(f̃n−1)In(g)].

This implies that In(g) is the projection of δ(u) in the n-th Wiener chaos, Hn. Hence, the
series (1.22) converges in L2(Ω) to its sum which is equal to δ(u).

Reciprocally, we assume that this series converges in L2(Ω) and we denote its sum by
V . Let FN =

∑N
n=0 In(gn), where gn ∈ L2(Tn) are symmetric and N ≥ 1. Using the

computation above we obtain that for all N ≥ 1,

E
[∫

T
utDtFNdt

]
=

N∑
n=1

E[In(f̃n−1)In(gn)].

In particular, ∣∣∣∣E[∫
T
utDtFNdt

]∣∣∣∣ ≤ ‖V ‖L2(Ω)‖FN‖L2(Ω).

Let F ∈ D1,2, F =
∑∞

n=0 In(gn), where the gn ∈ L2(Tn) are symmetric. Then FN converges
to F in L2(Ω) as N →∞ and DFN converges to DF in L2(Ω, H) as N →∞. Therefore,∣∣∣∣E[∫

T
utDtFdt

]∣∣∣∣ ≤ ‖V ‖L2(Ω)‖F‖L2(Ω),

which implies that u ∈ Dom δ. 4

The next result shows that when u ∈ L2(T ×Ω) in an adapted processes, the Skorohod
integral coincides with the Itô integral with respect to the Brownian motion.

Proposition 1.35 If u ∈ L2(T × Ω) is an adapted process then u ∈ Dom δ. Moreover,
δ(u) coincides with the Itô integral with respect to the Brownian motion, that is,

δ(u) =
∫ b

a
u(s)dB(s).

Proof. Let u be an elementary adapted process of the form

ut =
n∑
j=1

Fj1(tj ,tj+1](t),
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where Fj ∈ L2(Ω,Ftj ,P) and a ≤ t1 < · · · < tn+1 ≤ b.
Then we have that for all j = 1, ..., n, Fj1(tj ,tj+1](t) ∈ Dom δ. Indeed, assume first that

Fj ∈ D1,2. Then Proposition 1.33 implies that Fj1(tj ,tj+1](t) ∈ Dom δ, and appealing to
Lemma 1.26 it yields that

δ(Fj1(tj ,tj+1](·)) = Fjδ(1(tj ,tj+1](·))−
∫
t
DtFj1(tj ,tj+1](t)dt = Fj(B(tj+1)−B(tj)).

The general case can be proved using a density argument and the fact that δ is a closed
operator. Hence, we have shown that u ∈ Dom δ and

δ(u) =
n∑
j=1

Fj(B(tj+1)−B(tj)). (1.23)

On the other hand, we know that any adapted process in L2(T × Ω) can be approximated
by a sequence {un}n≥1 of elementary and adapted processes in L2(T ×Ω). Then by (1.23),
δ(un) is the Itô integral of un and converges in L2(Ω) to the Itô integral of u. Because δ is
a closed operator, we deduce that u ∈ Dom δ and δ(u) is the Itô integral of u. 4

Finally, the next results will allow us to compute the derivative of the Skorohod integral
of a process.

Proposition 1.36 Let u ∈ D1,2(H). Assume that for any t ∈ T , the process (Dtu(s),
s ∈ T ) is in Dom δ and that there exists a version of the process (δ(Dtu(s)), t ∈ T ) that
belong to L2(T × Ω). Then δ(u) ∈ D1,2 and for all t ∈ T ,

Dt(δ(u)) = u(t) + δ(Dtu). (1.24)

Proof. Let

u(t) =
∞∑
n=0

In(fn(·, t)),

where for all n ≥ 1, fn ∈ L2(Tn+1) is symmetric in its first n variables. Then, using
Propositions 1.21 and 1.34 we have that

Dt(δ(u)) = Dt

( ∞∑
n=0

In+1(f̃n)
)

=
∞∑
n=0

(n+ 1)In(f̃n(·, t))

= u(t) +
∞∑
n=0

In

( n∑
i=1

fn(t1, ..., ti−1, t, ti+1, ..., tn, ti)
)

= u(t) +
∞∑
n=0

nIn(φn(·, t, ·)),

where φn(·, t, ·) is the symmetrization of the function

(t1, ..., tn) 7→ fn(t1, ..., tn−1, t, tn).

On the other hand, using again Propositions 1.21 and 1.34, we obtain that

δ(Dtu) = δ

( ∞∑
n=1

nIn−1(fn(·, t, s))
)

=
∞∑
n=0

nIn(φn(·, t, ·)),
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which shows the desired result. 4

For example, if f is a C1 function with bounded partial derivatives, it holds that

Dt

(
f

(∫ b

a
B(s)dB(s)

))
= f ′

(∫ b

a
B(s)dB(s)

)(
B(t) +

∫ b

t
dB(s)

)
1[a,b](t)

= f ′
(∫ b

a
B(s)dB(s)

)
B(b)1[a,b](t).

1.5.3 The Clark-Ocone formula

Suppose that B = {B(t), t ≥ 0} is a one-dimensional Brownian motion. The following
result is a basic result in Itô calculus which provides an integral representation of any
square functional of the Brownian motion.

Theorem 1.37 Let F ∈ L2(Ω), measurable with respect to B. Then there exists a unique
process u ∈ L2

a(R+ × Ω) such that

F = E[F ] +
∫ ∞

0
u(t)dB(t). (1.25)

Proof. It suffices to show that any zero-mean square integrable random variable G that
is orthogonal to all stochastic integrals

∫
R+
u(t)dB(t), u ∈ L2

a(R+ × Ω) must be zero. Let

u ∈ L2
a(R+ ×Ω) and set Mu(t) = exp(

∫ t
0 u(s)dB(s)− 1

2

∫ t
0 u

2(s)ds). Using Itô’s formula we
deduce that

Mu(t) = 1 +
∫ t

0
Mu(s)u(s)dB(s).

Hence, such a random variable G is orthogonal to the exponentials

E(h) = exp
(∫ ∞

0
h(s)dB(s)− 1

2

∫ ∞
0

h2(s)ds
)
, h ∈ L2(R+).

Finally, because the random variables {eW (h), h ∈ L2(R+)} form a total subset of L2(Ω)
(see the proof of Theorem 1.5), we conclude the desired proof. 4

When the random variable belongs to the space D1,2, it turn out that the process
u can be identified as the optional projection of the derivative of F . This is called the
Clark-Ocone representation formula:

Theorem 1.38 Let F ∈ D1,2. Then

F = E[F ] +
∫ ∞

0
E[DtF |Ft]dB(t). (1.26)

Proof. Suppose that F has the representation (1.25) with u ∈ L2
a(R+ × Ω). Then for any

v ∈ L2
a(R+ × Ω), using the isometry property of the Itô integral, we can write

E[δ(v)F ] =
∫ ∞

0
E[v(s)u(s)]ds. (1.27)
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On the other hand, by the duality relationship (1.19), and taking into account that v is
adapted we obtain

E[δ(v)F ] = E
[∫ ∞

0
v(t)DtFdt

]
=
∫ ∞

0
E[v(s)E[DtF |Ft]]dt. (1.28)

Finally, (1.27) and (1.28) imply that u(t) = E[DtF |Ft], which proves (1.26). 4

As an example of application of the Clark-Ocone formula, we will find the integral
representation of the random variable M = supt∈[0,1]B(t).

In Lemmas 1.27 and 1.28 we have proved that M ∈ D1,2 and DtM = 1[0,T ](t), where
T is the a.s. unique point where B attains in maximum. Hence, using the Clark-Ocone
formula (1.26), we have that

M = E[M ] +
∫ 1

0
E[1[0,T ](t)|Ft]dB(t).

We now compute the conditional expectation. Using the reflection principle (1.18), we have
that

E[1[0,T ](t)|Ft] = E
[
1{supt≤s≤1(B(s)−B(t))≥ sup0≤s≤t(B(s)−B(t))}

∣∣∣∣Ft]
= 2− 2Φ

(
sup0≤s≤t(B(s)−B(t))

√
1− t

)
.

We conclude that the integral representation of M is given by

M = E[M ] +
∫ 1

0

(
2− 2Φ

(
sup0≤s≤t(B(s)−B(t))

√
1− t

))
dB(t).

1.6 Exercises

Exercise 1.39 Show that the process {Hn(Bt, t), t ≥ 0} is a martingale, where (Bt, t ≥ 0)
is a Brownian motion.

Exercise 1.40 Prove Proposition 1.17.

In the next exercises we consider the isonormal Gaussian process associated to the
Brownian motion as in Section 1.3.

Exercise 1.41 Let F =
∑∞

n=0 In(fn), fn ∈ L2(Tn) symmetric, a random variable in the
space Dk,2, k ≥ 1. Show that for all k ≥ 1,

Dk
t1,...,tk

F =
∞∑
n=k

n(n− 1) · · · (n− k + 1)In−k(fn(·, t1, ..., tk))

and

E
[
‖DkF‖2L2(Tk)

]
=
∞∑
n=k

(n!)2

(n− k)!
‖fn‖2L2(Tn).

Exercise 1.42 Let F =
∑∞

n=0 In(fn), fn ∈ L2(Tn) symmetric, a random variable in the
space D∞,2 = ∩kDk,2. Show that, for all n ≥ 0, fn = 1

n!E[DnF ].
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Exercise 1.43 Let F = exp(W (h) − 1
2

∫
[a,b] h

2(s)ds), h ∈ L2(T ). Compute the iterated
derivatives of F and its expansion on the Wiener chaos.

Exercise 1.44 Let B = {B(t), t ∈ [0, 1]} be a Brownian motion. Compute the expansion
on the Wiener chaos of the random variables:

F =
∫ 1

0
(t3B(t)3 + 2tB(t)2)dB(t), G =

∫ 1

0
teB(t)dB(t).

Exercise 1.45 Using the Clark-Ocone formula find the stochastic integral representation
of the random variable F = B3(1).
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2 The integration by parts formula and applications to reg-
ularity of probability laws

The integration by parts formula is a fundamental tool of the Malliavin calculus, which in
particular has an important application which is the study of the absolutely continuity and
smoothness of the density of the law of random variables on the Wiener space.

2.1 The integration by parts formula

In this section we prove the integration by parts formula in the one-dimensional case and
give some applications to the existence and estimates of the density of a random variable
on the Wiener space.

Proposition 2.1 Let F,G two random variables such that F ∈ D1,2. Let u be an H-valued
random variable such that 〈DF, u〉H 6= 0 a.s. and Gu(〈DF, u〉H)−1 ∈ Dom δ. Then for any
function f ∈ C1 with bounded derivatives, we have that

E[f ′(F )G] = E[f(F )H(F,G)],

where H(F,G) = δ(Gu(〈DF, u〉H)−1).

Proof. Applying the chain rule (Proposition 1.20) we have that

〈D(f(F )), u〉H = f ′(F )〈DF, u〉H .

Using the duality relation (1.19) we obtain that

E[f ′(F )G] = E[〈D(f(F )), u〉H(〈DF, u〉H)−1G]

= E[〈D(f(F )), u(〈DF, u〉H)−1G〉H ]

= E[f(F )δ(Gu(〈DF, u〉H)−1)],

which concludes the desired proof. 4

The following observations will be important for the application of Proposition 2.1.

1. If u = DF , then the conclusion of Proposition 2.1 is written as

E[f ′(F )G] = E
[
f(F )δ

(
GDF

‖DF‖2H

)]
. (2.1)

2. If u is a deterministic process it suffices to assume that G(〈DF, u〉H)−1 ∈ D1,2, as this
implies that Gu(〈DF, u〉H)−1 ∈ D1,2(H) ⊂ Dom δ (see Proposition 1.31).

An important application of the integration by parts formula is the following expression
of the density of a random variable.

Proposition 2.2 Let F be a random variable such that F ∈ D1,2. Assume that DF
‖DF‖2H

∈
Dom δ. Then the law of F has a continuous and bounded density function given by

f(x) = E
[
1{F>x}δ

(
DF

‖DF‖2H

)]
. (2.2)
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Proof. Let ψ : R 7→ R+ be a C1 function with compact support and let φ(y) =
∫ y
−∞ ψ(x)dx.

Using formula (2.1) with G = 1 and f = φ, we have that

E[ψ(F )] = E
[
φ(F )δ

(
DF

‖DF‖2H

)]
.

Using an approximation argument this equality is valid for ψ(x) = 1[a,b](x), where a < b.
Therefore, by Fubini’s theorem, we conclude that

P(F ∈ [a, b]) = E
[(∫ F

−∞
ψ(x)dx

)
δ

(
DF

‖DF‖2H

)]
=
∫ b

a
E
[
1{F>x}δ

(
DF

‖DF‖2H

)]
dx,

which implies the desired result. 4

We observe that as E
[
δ

(
DF
‖DF‖2H

)]
= 0 (Proposition 1.30(i)), we deduce form Proposi-

tion 2.2 the following expression for the density:

f(x) = −E
[
1{F<x}δ

(
DF

‖DF‖2H

)]
. (2.3)

As a consequence of Proposition 2.2 we obtain the following estimate of the density:

Lemma 2.3 Let F ∈ D2,4 such that E[‖DF‖−8
H ] < +∞. Then the density f(x) satisfies

the following estimate:

f(x) ≤ (P{|F | > |x|})1/2

(
‖‖DF‖−1

H ‖0,2 + 3‖D2F‖L4(Ω;H⊗H)‖‖DF‖−2
H ‖0,4

)
.

Proof. First observe that the hypotheses of the lemma and Proposition 1.31 imply that
DF
‖DF‖2H

∈ D1,2(H) ⊂ Dom δ, and hence, the hypotheses of Proposition 2.2 hold. Applying
the Cauchy-Schwarz inequality to the expression (2.2), we obtain that

f(x) ≤ (P{F > x})1/2

∥∥∥∥δ( DF

‖DF‖2H

)∥∥∥∥
0,2

.

On the other hand, if we apply the Cauchy-Schwarz inequality to the expression (2.3), we
get that

f(x) ≤ (P{F < x})1/2

∥∥∥∥δ( DF

‖DF‖2H

)∥∥∥∥
0,2

.

Hence, we conclude that for all x ∈ R,

f(x) ≤ (P{|F | > |x|})1/2

∥∥∥∥δ( DF

‖DF‖2H

)∥∥∥∥
0,2

.

Using Proposition 1.31, we deduce that∥∥∥∥δ( DF

‖DF‖2H

)∥∥∥∥
0,2

≤ E[‖DF‖−2
H ] + E

[∥∥∥∥D( DF

‖DF‖2H

)∥∥∥∥2

H⊗H

]
.

We have that

D

(
DF

‖DF‖2H

)
=

D2F

‖DF‖2H
− 2
〈D2F,DF ⊗DF 〉

‖DF‖4H
,
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and hence, ∥∥∥∥D( DF

‖DF‖2H

)∥∥∥∥
H⊗H

≤ 3
‖D2F‖H⊗H
‖DF‖2H

.

Applying again the Cauchy-Schwarz inequality, we conclude the desired estimate for f(x).
4

2.2 Existence and smoothness of densities

The following criterium was proved by Bouleau and Hirsch using techniques of geometric
measure theory (see [N06, Section 2.1.3]).

Theorem 2.4 Let F = (F 1, ..., F d) be a random vector satisfying the following two cond-
tions:

(i) F i ∈ D1,2 for all i = 1, ..., d.

(ii) The Malliavin matrix γF defined as

γijF = 〈DF i, DF j〉H , 1 ≤ i, j ≤ d

satisfies det γF > 0 a.s.

Then the law of F is absolutely continuous with respect to the Lebesgue measure on Rd.

Remark 2.5 Condition (i) in Theorem 2.4 implies that the measure ((det γF ) · P ) ◦ F−1

is absolutely continuous with respect to the Lebesgue measure on Rd. In other words, the
random vector F has an absolutely continous law conditioned by the set {det γF > 0}, that
is,

P{F ∈ B, det γF > 0} = 0,

for any Borel subset B of Rd of zero Lebesgue measure.

The regularity of the density requires under stronger conditions, and for this we intro-
duce the following definition.

Definition 2.6 We say that a random vector F = (F 1, ..., F d) is nondegenerate if it satis-
fies the following conditions:

(i) F i ∈ D∞, for all i = 1, ..., d.

(ii) The matrix γF satisfies E[(det γF )−p] <∞, for all p ≥ 2.

Using the techniques of Malliavin calculus we will establish the following general criterion
for the smoothness of densities.

Theorem 2.7 Let F = (F 1, ..., F d) a nondegenerate random vector in the sense of Defini-
tion 2.6. Then the law of F possesses an infinitely differentiable density.

In order to prove Theorem 2.7 we will need the following technical result.

Lemma 2.8 Let γ be a d × d random matrix such that det γ > 0 a.s. and (det γ)−1 ∈
Lp(Ω), for all p ≥ 1. Suppose that the entries γij of γ are in D∞. Then (γ−1)ij belongs to
D∞ for all i, j, and

D(γ−1)ij = −
d∑

k,l=1

(γ−1)ik(γ−1)ljDγkl. (2.4)
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Proof. For any ε > 0, define

γ−1
ε =

det γ
det γ + ε

γ−1.

Note that (det γ + ε)−1 ∈ D∞ as it can be expressed as the composition of det γ with a
function in C∞p (R). Therefore, the entries of γ−1

ε belong to D∞. Furthermore, for any i, j,
(γ−1
ε )ij converges in Lp(Ω) to (γ−1)ij as ε tends to zero. Then, in order to check that the

entries of γ−1 belong to D∞ it suffices to show, taking into account Lemma 1.25, that the
iterated derivatives of (γ−1

ε )ij are bounded in Lp(Ω), uniformly with respecto to ε, for any
p ≥ 1. This boundedness in Lp(Ω) holds from the Leibnitz rule for the operator Dk, that
is,

Dk
t1,...,tk

(FG) =
∑

I⊂{t1,...,tk}

D
|I|
I (F )Dk−|I|

Ic (G), F,G ∈ S,

because (det γ)γ−1 ∈ D∞, and, on the other hand, (det γ+ ε)−1 has bounded ‖ · ‖k,p norms
for all k, p, due to our hypotheses.

Finally, form the expression γ−1
ε γ = det γ

det γ+εI, we deduce equation (2.4) by first applying
the derivative operator D and then letting ε tend to zero. 4

We next state and prove the integration by parts formula in the multi-dimensional case.

Proposition 2.9 Let F = (F 1, ..., F d) be a nondegenerate random vector. Let G ∈ D∞
and g ∈ C∞p (Rd). Then for any multiindex α ∈ {1, ..., d}k, k ≥ 1, there exists an element
Hα(F,G) ∈ D∞ such that

E[∂αg(F )G] = E[g(F )Hα(F,G)], (2.5)

where the random variable Hα(F,G) is recursively given by

H(i)(F,G) =
d∑
j=1

δ

(
G(γ−1

F )ijDF j
)
,

Hα(F,G) = Hαk
(F,H(α1,...,αk−1)(F,G)).

Proof. By the chain rule (Proposition 1.20), we have, for all j = 1, ..., d

〈D(g(F )), DF j〉H =
d∑
i=1

∂i〈DF i, DF j〉H =
d∑
i=1

∂ig(F )γijF ,

and, consequently, for all i = 1, ..., d,

∂ig(F ) =
d∑
j=1

〈D(g(F )), DF j〉H(γ−1
F )ij .

Taking expectation and using the duality relation (1.19) we get

E[∂ig(F )G] = E[g(F )H(i)(F,G)].

Notice that the continuity of the operator δ (Theorem 1.32) and Lemma 2.8 imply that
H(i)(F,G) ∈ D∞ (note that Definition 2.6 (ii) implies that det γF > 0 a.s.). Finally, the
expression for Hα(F,G) follows by recurrence. 4
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Proof of Theorem 2.7. Equality (2.5) applied to the multiindex α = (1, ..., d) yields

E[G∂αg(F )] = E[g(F )Hα(F,G)].

Notice that

g(F ) =
∫ F 1

−∞
· · ·
∫ F d

−∞
∂αg(x)dx.

Hence, by Fubini’s theorem we can write

E[G∂αg(F )] =
∫

Rd

∂αg(x)E[1{F>x}Hα(F,G)] dx. (2.6)

We can take ∂αg any function in C∞0 (Rd). Then equation (2.6) implies that the random
vector F has a density given by

p(x) = E[1{F>x}Hα(F, 1)].

Moreover, for any multiindex β, we have

E[∂β∂αg(F )] = E[g(F )Hβ(F,Hα(F, 1))]

=
∫

Rd

∂αg(x)E[1{F>x}Hβ(Hα)] dx.

Hence, for any f ∈ C∞0 (Rd),∫
Rd

∂βf(x)p(x)dx =
∫

Rd

E[1{F>x}Hβ(F,Hα(F, 1))] dx.

Therefore, p(x) is infinitely differentiable and for any multiindex β we have that

∂βp(x) = (−1)|β|E[1{F>x}Hβ(F,Hα(F, 1))].

This completes the desired proof. 4

2.3 Application to diffusion processes: Hörmander’s theorem

Fix T > 0 and let (B(t) = (B1(t), ..., Bd(t)), t ∈ [0, T ]) be a d-dimensional Brownian motion
defined on its canonical probability space (Ω,F ,P), and consider its associated isonormal
Gaussian process with H = L2([0, T ]; Rd).

Let X = (X(t), t ∈ [0, T ]) be the solution of the following d-dimensional system of SDEs:

dXi(t) =
d∑
j=1

σij(X(t))dBj(t) + bi(X(t))dt, Xi(0) = xi0, i = 1, ..., d, (2.7)

where σj : Rd → Rd and b : Rd → Rd are measurable functions satisfying the following
globally Lipschitz condition:

‖σj(x)− σj(y)‖+ ‖b(x)− b(y)‖ ≤ K‖x− y‖, for all x, y ∈ Rd. (2.8)

Here σj denote the columns of the matrix σ = (σij)1≤i,j≤d.
The next results show that there is a unique continuous solution to this equation, such

that for all t ∈ [0, T ] and for all i = 1, ..., d, the random variable Xi(t) belongs to the
space D1,p for all p ≥ 2 if the coefficients are continuously differentiable. Moreover, if the
coefficients are infinitely differentiable with bounded partial derivatives, then Xi(t) ∈ D∞.
The first result is standard so it is left for exercise (see Exercise 2.15).
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Theorem 2.10 There exists a unique continuous solution X = {X(t), t ∈ [0, T ]} to equa-
tion (2.7). Moreover,

E
[

sup
0≤t≤T

|X(t)|p
]
≤ C,

for any p ≥ 2, where C > 0 is a positive constant depending on p, T,K.

Theorem 2.11 Let X = {X(t), t ∈ [0, T ]} be the solution to equation (2.7) and assume
that its coefficients are continuously differentiable functions. Then Xi(t) belongs to D1,∞

for any t ∈ [0, T ] and i = 1, ..., d. Moreover,

sup
0≤r≤t

E
[

sup
r≤s≤T

|Dj
rXi(s)|p

]
<∞,

and the derivative Dj
rXi(s) satisfies the following linear equation:

Dj
rXi(t) = σij(X(r)) +

d∑
k,`=1

∫ t

r
∂kσi`(X(s))Dj

r(Xk(s))dB`(s) +
d∑

k=1

∫ t

r
∂kbi(X(s))ds, (2.9)

for r ≤ t a.e., and Dj
rXi(t) = 0 for r > t a.e.

Furthermore, if the coefficients are assumed to be infinitely differentiable with bounded
partial derivatives of all orders greater than or equal to one, then Xi(t) belongs to D∞ for
all t ∈ [0, T ] and i = 1, ..., d.

Proof. Consider the Picard approximations given by

X0
i (t) = xi0,

Xn+1
i (t) = xi0 +

d∑
j=1

∫ t

0
σij(Xn(s))dBj(s) +

∫ t

0
bi(Xn(s))ds, n ≥ 0.

We will prove the following property by induction on n:

(P) Xn
i (t) ∈ D1,∞, for all i = 1, ..., d, n ≥ 0, and t ∈ [0, T ]; furthermore, for all p > 1, we

have

ψn(t) := sup
0≤r≤t

E
[

sup
s∈[r,t]

|DrX
n(s)|p

]
<∞, (2.10)

and for some constants c1, c2,

ψn+1(t) ≤ c1 + c2

∫ t

0
ψn(s)ds. (2.11)

Clearly, (P) holds for n = 0. Suppose it is true for n. Applying Proposition 1.20, we
get

Dr(σj(Xn(s))) =
d∑

k=1

∂kσj(Xn(s))Dj
r(X

n
k (s))1{r≤s}, and

Dr(b(Xn(s))) =
d∑

k=1

∂kb(Xn(s))Dj
r(X

n
k (s))1{r≤s}.
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Thus the processes {Dr(σj(Xn(s))), s ≥ r} and {Dr(b(Xn(s))), s ≥ r} are adapted and
satisfy,

|Dr(σj(Xn(s)))| ≤ C|DrX
n(s)|, |Dr(b(Xn(s))) ≤ |C|DrX

n(s)|.

Using Proposition 1.36 we deduce that the Itô integral
∑d

j=1

∫ t
0 σij(X

n(s))dBj(s) belongs
to D1,2, for each i = 1, ..., d. Indeed, the hypothesis that the process (Dtu(s), s ∈ T ) is in
Dom δ follows from the square integrability, the adaptability and Proposition 1.35. On the
other hand, the fact that the process (δ(Dt(u(s))), t ∈ T )) follows from the Itô isometry
and the induction hypothesis (2.10). Moreover, by (1.24), for r ≤ t and ` = 1, ..., d,

D`
r

(∫ t

0
σij(Xn(s))dBj(s)

)
= δ`,jσ`j(Xn(r)) +

∫ t

r
D`
r(σij(X

n(s)))dBj(s).

On the other hand,
∫ t

0 bi(X
n(s))ds ∈ D1,2, and, for r ≤ t,

D`
r

(∫ t

0
bi(Xn(s))dBj(s)

)
=
∫ t

r
D`
r(bi(X

n(s)))ds.

From these equalities, applying Doob’s maximal inequality (Proposition A.1), Burkhölder’s
inequality (Proposition A.2), and Hölder’s inequality, we obtain that

E
[

sup
s∈[r,t]

|Dj
rX

n+1(s)|p
]
≤ cp

(
γp + T p−1Cp

∫ t

r
E[|Dj

rX
n(s)|p]ds

)
,

where

γp := sup
n,j

E
[

sup
t∈[0,T ]

|σj(Xn(t))|p
]
<∞.

In particular, by hypothesis (2.10), Xn+1
i (s) ∈ D1,∞, for all t ∈ [0, T ]. So (2.10) and (2.11)

hold for n+ 1. We know that

E
[
sup
s≤T
|Xn(s)−X(s)|p

]
→ 0, as n→∞.

Hence, by Gronwall’s lemma applied to (2.11) we deduce that the derivatives of the sequence
Xn
i (t) are bounded in Lp(Ω, H) uniformly in n for all p ≥ 2. Thus, from Lemma 1.25, we

deduce that the random variables Xi(t) belong to D1,2. Finally, applying the operator D to
equation (2.7) and using Propositions 1.20 and 1.36 as above we deduce (2.9).

The proof that Xi(t) ∈ D∞ if the coefficients are smooth follows by a recursive argument.
See [N06, Theorem 2.2.2] for its proof. 4

Remark 2.12 If the coefficients are just Lipschitz (satisfy (2.8)), then we will still have
that Xi(t) ∈ D1,∞, and equation (2.9) holds with ∂kσi`(X(s)) and ∂kbi(X(s)) replaced by
some bounded and adapted processes. The proof of this extension follows in the same way
as before (see [N06, Theorem 2.2.1]), but appealing to Proposition 1.23.

We next introduce the Hörmander’s condition. For this, we assume that the coefficients
of equation (2.7) are infinitely differentiable with bounded partial derivatives of all orders
greater than or equal to one.
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To introduce this condition we consider the following vector fields on Rd associated with
the coefficients of equation (2.7):

σj =
d∑
i=1

σij(x)
∂

∂xi
, j = 1, ..., d, b =

d∑
i=1

bi(x)
∂

∂xi
.

The covariant derivative of σk in the direction of σj is defined as the vector field

σj∇σk =
d∑

i,`=1

σ`j∂lσik
∂

∂xi
,

and the Lie bracket between the vector fields σj and σk is defined by

[σj , σk] = σj∇σk − σk∇σj .

Consider the vector field on Rd,

σ0 = b− 1
2

d∑
i=1

σi∇σi,

which appears when we write the Itô SDE (2.7) in terms of a Stratonovich integral:

X(t) = X0 +
d∑
j=1

∫ t

0
σj(X(s)) ◦ dBj(s) +

∫ t

0
σ0(X(s))ds.

We are now ready to state Hörmander’s condition:

(H) The vector space spanned by the vector fileds:

σ1, ..., σd, [σi, σj ], 0 ≤ i, i ≤ d, [σi, [σj , σk]], 0 ≤ i, j, k ≤ d, ...

at the point x0 is Rd.

Example 2.13 If m = d = 1, σ11(x) = σ(x), and σ10(x) = b(x), then Hörmander’s
condition means that σ(x0) 6= 0 or σn(x0)b(x0) 6= 0 for some n ≥ 1.

The next theorem can be considered as a probabilistic version of Hörmander’s theorem
on the hypoellipticity of second-order differential operators.

Theorem 2.14 Assume that Hörmander’s condition (H) holds and that the coefficients
of equation (2.7) are infinitely differentiable with bounded partial derivatives of all orders
greater than or equal to one. Then for any t > 0, X(t) has an infinitely differentiable
density.

The proof of this theorem is based on Norris Lemma ([N06, Lemma 2.3.2]) which essen-
tially shows that when the quadratic variation or the bounded variation part of a continuous
semimartingale is large, then the semimartingale is small with an exponentially small proba-
bility. The complete proof of Theorem 2.14 is given in [N06, Section 2.3], and [N09, Chapter
7] gives a useful sketch of the proof.
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2.4 Exercises

Exercise 2.15 Prove Theorem 2.10.

Exercise 2.16 Set Mt =
∫ t

0 usdB(s), where B = {B(s), s ∈ [0, T ]} is a one-dimensional
Brownian motion and u = {u(t), t ∈ [0, T ]} is an adapted process such that |u(t)| ≥ ρ > 0

for some constant ρ, E
(∫ T

0 u2(t)dt
)
<∞, u(t) ∈ D2,2 for each t ∈ [0, T ], and

λ := sup
s,t∈[0,T ]

E[|Dsu(t)|p] + sup
r,s∈[0,T ]

E
[(∫ T

0
|D2

r,su(t)|pdt
)p/2]

<∞,

for some p > 3. Show that the density of Mt denoted by pt(x) satisfies

pt(x) ≤ c√
t
P{|Mt| > |x|}1/q,

for all t > 0, where q > p/(p− 3) and the constant c depends on λ, ρ and p.

Exercise 2.17 Show that the random variable F =
∫ 1

0 t
2arctan(B(t)) dt, where B is a

Brownian motion, has a C∞ density.

Exercise 2.18 Let m = 3, d = 2, and x0 = 0, and consider the vector fields:

σ1(x) =

 1
0
0

 , σ2(x) =

 0
sinx2

x1

 , b(x) =

 0
1
2 sinx2 cosx2 + 1

0

 .

Show that the solution to the SDE X(t) associated to these coefficients has a C∞ density
for any t > 0.
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3 Applications of Malliavin calculus in mathematical finance

3.1 Pricing and hedging financial options

An option is a financial contract that allows to buy or sell (if it is a put or call option) a
certain quantity of a financial asset (which can be a financial stock, a currency, a benefit,
etc...) at an exercise price K (strike price) and time exercise T (maturity), which are fixed
in the contract. If the buyer exercises the right granted by the option, the writer has the
obligation to purchase the underlying asset at the strike price. In exchange for having this
option, the buyer pays the writer a fee x (the option premium).

The terms for exercise differ depending on the option style:

• An European option can only be exercised at the established time T .

• An American option allows exercise at any time before the expiration.

We will use the following notation:

• (St, 0 ≤ t ≤ T ) is the observed price in the market of the underlying asset at every
instant.

• (Ct, 0 ≤ t ≤ T ) and (Pt, 0 ≤ t ≤ T ) are, respectively, the value of the call and put
option at every instant.

We observe that the value of a call and a put option at the exercise time are, respectively,

CT = (ST −K)+

PT = (K − ST )+.

This type of options (call y put) are called standard or (vanilla) options. There exists
more type of options, called exotic options which are more complex. Vanilla options are
often used for hedging exotic options.

We will assume the existence of a non-risky asset with constant interest rate r > 0,
exercise time T , and price at each time 0 ≤ t ≤ T , S0

t = ert.

We now state the following two questions:

1. How to evaluate at time t = 0 the price of an option (premium), that is, the price in
the contract where the buyer and the writer need to agree ? This problem is called
pricing options.

2. How can one produce the value of an option at the maturity from the premium ? This
is the problem is called hedging options.

In order to solve these problems we need to assume the following hypothesis on the mar-
ket: absence of arbitrage opportunities, that is, its is impossible to obtain benefits without
taking risks.

Lemma 3.1 The following call-put parity relationship follows:

Ct − Pt = St −Ke−r(T−t), for all t < T.
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Proof. Assume that Ct − Pt > St −Ke−r(T−t). At time t, if we sell a call, we buy a put
and we buy an action we will obtain a net benefit of Yt = Ct − Pt − St. If this quantity is
positive, we can put this money at interest rate r > 0 till the maturity. On the other hand,
if this quantity is negative, we can ask for a loan of this quantity at the same interest rates.
When maturity arrives, we have two possibilities: If ST > K, then the call is exercise and
we obtain a benefit of K+er(T−t)(Ct−Pt−St) > 0. If ST ≤ K, the put is exercised and we
obtain the same benefit. This is an example of arbitrage which contradict the hypothesis
of our market. 4

The dynamic pricing and hedging of options consists on the following: assume that the
owner of the option can guarantee a flow of h(ST ) at the maturity. Then he will try to use
the premium to buy a portfolio of actions with price flow equal to the one of the option.
It is called the hedging portfolio and its gestion is called the dynamic strategy of selling or
buying actions or loan at the bank.

We denote the value at any time of the hedging portfolio by (Vt, 0 ≤ t ≤ T ). In this
case the absence of arbitrage is written as: V0 = 0, VT ≥ 0 and P{VT > 0} > 0. We observe
that V0 = x. Let βt be the number of actions that the owner of the option has bought at
time 0 ≤ t ≤ T , and αt the number of non-risky assets that he owns at time 0 ≤ t ≤ T .
We assume that the portfolio strategy is self-financing, that is, its manager does not take
into account in his decision rule the value of the underlying asset when he renegotiates the
value of the portfolio. That is, in small amount of time [t, t+ dt], the variation of the value
of the portfolio only depends on the variation of the value of the option and the interest
obtained on the inverted cash at the bank, which will be equal to Vt− βtSt = αte

rt. Hence,
we have that

dVt = βtdSt + (Vt − βtSt)rdt = rVtdt+ βt(dSt − rStdt). (3.1)

The problem of pricing and hedging the option is finding a self-financing portfolio strat-
egy that replicates the terminal flow h(ST ), that is, that v(T, ST ) = h(ST ), and that each
instant covers the derivative product. This problem can be mathematically translated to
find two functions v(t, x), β(t, x) sufficiently regular and such that{

dv(t, St) = v(t, St)rdt+ β(t, St)(dSt − rStdt),
v(T, ST ) = h(ST ).

(3.2)

β(t, St) is called the hedging portfolio of the derivative product h(ST ).

• The problem of existence of a solution of (3.2) will depend on the model choosed to
describe St. In the next sections, we will solve this equation under the Black-Scholes
model.

• The unicity of the solution is a consequence of the absence of arbitrage hypothesis.

• A market in which for any terminal flow h(ST ) exists a self-financing replicating
portfolio is called a complete market.

Example 3.2 Consider a market with a non-risky asset with r = 0 and a risky asset with
initial price S0 = 10 and such that

P{S1 = 20} = p, P{S1 = 7, 5} = 1− p.
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Consider a put with K = 15 y T = 1, where the time in this case is assumed to be discrete
(for example, days). We want to obtain a replicating portfolio. For this, we need to give
the initial capital V0 and the value of the portfolio (α1, β1).

Under the self-financing assumption, we have that V0 = 10β1 + α1. On the other hand,
because the portfolio needs to replicate the derivative, we have that

V1 =

{
5 if S1 = 20
0 if S1 = 7, 5,

that is,

20β1 + α1 = 5
7, 5β1 + α1 = 0.

Hence, we deduce that β1 = 0, 4, α1 = −3 and V0 = 1. That is, the option price is 1. In
order to cover the option with a capital 1, we construct a portfolio in the following way: we
ask for a credit of 3 and invest 4 in actions. At time T = 1 we have two possibilities:

1. If S1 = 20, the option is exercised with a cost of 5. We next sell the actions and win
0, 4× 20 = 8, and with this money we reimburse the credit and the cost of the option.

2. If S1 = 7, 5, the option is not exercised. We sell the actions, win 0, 4× 7, 5 = 3, and
pay the credit.

3.2 The Black-Scholes model

The Black-Scholes model consists in assuming that the price of the underlying asset observed
in the market follows the following stochastic differential equation:{

dSt = St(µdt+ σdBt), t ∈ [0, T ],
S0 = x,

(3.3)

where (Bt, t ∈ [0, T ]) is a Brownian motion defined on its canonical probability space
(Ω,F ,P), and µ and σ are constant parameters that can be financially interpreted as follows:

• µ represents the expected annual rate of return of the asset.

• σ is the volatility, it measures the risk and depends on the nature of the underlying
asset.

The solution of the SDE (3.3) is given by the process:

St = S0 exp(µt− σ2

2
t+ σBt). (3.4)

Indeed, applying Itô’s formula to the function f(t, y) = x exp(µt − σ2

2 t + σy) at y = Bt
(remark that f is C2 on y, C1 on t and has continuous derivatives), we obtain that:

f(t, Bt) = f(0, B0) +
∫ t

0
f ′s(s,Bs)ds+

∫ t

0
f ′y(s,Bs)dBs +

1
2

∫ t

0
f ′′yy(s,Bs)d〈B,B〉s.
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Using (3.4), we find that:

St = x+
∫ t

0
Ssµds+

∫ t

0
SsσdBs,

which is the integral version of the differential equation (3.3).

We observe the following:

• One can also prove the unicity of equation (3.3).

• In order to justify the integral writing we should prove that
∫ t

0 (Ssσ)2ds < +∞ a.s.
For this, it suffices to prove that E[

∫ t
0 (Ssσ)2ds] < +∞. This follows from the following

result (see Exercise 3.6):

Lemma 3.3 It holds that

E[St] = xeµt; E[S2
t ] = x2 exp((2µ+ σ2)t).

3.3 Pricing and hedging options in the Black-Scholes model

The next result converts equation (3.2) in a partial derivatives equation under the Black-
Scholes model, that will be solved below. In particular, this will show that the Black-Scholes
model is complete.

Theorem 3.4 Let h be a continuous function of at most linear growth. Assume that the
following PDE admits a regular solution v(t, y) over ]0, T ]×]0,+∞[ :{

1
2σ

2y2v′′yy(t, y) + ryv′y(t, y) + v′t(t, y)− rv(t, y) = 0,
v(T, y) = h(y).

(3.5)

Then, there exist a portfolio with valuer v(t, St) at times t that replicates the flow h(ST ).
The value of this hedging portfolio is given by β(t, St) = v′y(t, St).

Proof. Applying Itô’s formula to the function v(t, St), we obtain that:

dv(t, St) = v′t(t, St)dt+ v′y(t, St)dSt +
1
2
σ2S2

t v
′′
yy(t, St)dt.

On the other hand, we have seen that the value of a self-financing portfolio satisfies the
differential equation:

dv(t, St) = v(t, St)rdt+ β(t, St)(dSt − rStdt).

Hence, using the unicity of the representation of an Itô process, we have that:{
v′y(t, St) = β(t, St) c.s.
1
2σ

2S2
t v
′′
yy(t, St) + rStv

′
y(t, St) + v′t(t, St) = v(t, St)r,

which shows the conclusion of the theorem. 4
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We define the risk premium as the quotient between the benefits mean and the viability
of the option, that is, λ = µ−r

σ . Consider the process B̃ = (B̃t, t ∈ [0, T ]) defined as

B̃t = Bt + λt.

Consider the martingale

Mt = exp(−λBt −
1
2
λ2t),

and note that E[Mt] = 1. Then, by Girsanov’s theorem the measure Q defined by dQ
dP = MT

is a probability measure, equivalent to P, and B̃ is a Brownian motion under Q.

The Black-Scholes model with respect to B̃t can be written as:

dSt = St(σdBt + µdt) = St(σdB̃t + rdt), (3.6)

and hence,

St = S0 exp(rt− σ2

2
t+ σB̃t).

Consider the function
u(t, B̃t) = e−rtv(t, St),

where v(t, St) is the value of the portfolio at time t that replicates the flow h(ST ) of Theorem
3.4. We observe that

v(0, x) = u(0, x), u(T, y) = e−rTh(x exp((r − σ2

2
)T + σy)). (3.7)

On the other hand, it holds that:

Lemma 3.5
du(t, B̃t) = e−rtβ(t, St)StσdB̃t.

Proof. We will use the notation βt = β(t, St). We have that

du(t, B̃t) = −re−rtv(t, St)dt+ e−rtdv(t, St).

On the other hand, v(t, St) = αte
rt + βtSt. Hence,

dv(t, St) = rαte
rtdt+ βtdSt.

Finally, using (3.6) we obtain the desired result. 4

On the other hand, applying Itô’s formula, we have that

du(t, B̃t) =
1
2
u′′yy(t, B̃t)dt+ u′t(t, B̃t)dt+ u′y(t, B̃t)dB̃t. (3.8)

Then, putting together (3.8) and Lemma 3.5, and using the unicity of the representation of
the Itô process, we obtain that{

1
2u
′′
yy(t, y)dt+ u′t(t, y)dt = 0,

u′y(t, B̃t) = e−rtβ(t, St)Stσ.
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We observe that the first differential equation is the heat equation with final condition
at T given by (3.7), whose solution is given by:

u(t, y) = e−rT
∫

R
h(x exp((r − σ2

2
)T + σ(y + z)))g(T − t, z)dz, 0 ≤ t < T,

where g(T − t, y) is the Gaussian density

g(T − t, z) =
1√

2π(T − t)
e
− z2

2(T−t) .

Therefore, we deduce that the value of a replicating portfolio for the flow h(ST ) under the
Black-Scholes model is given by:

v(t, y) = e−r(T−t)
∫

R
h(xy exp((r − σ2

2
)(T − t) + σz))g(T − t, z)dz, 0 < t ≤ T,

v(0, x) = e−rT
∫

R
h(x exp((r − σ2

2
)T + σz))g(T, z)dz.

Then, writing this formulas in terms of the measure Q, we observe that if {Ft, t ∈ [0, T ]}
is the natural filtration of the Brownian motion, the price of the self-financing portfolio that
replicates the payoff h(ST ) is given by

Vt = v(t, St) = e−r(T−t)EQ[h(ST )|Ft], (3.9)

and the initial price is
V0 = v(0, x) = e−rTEQ[h(ST )]. (3.10)

Furthermore, derivating (3.9) it yields that

v′y(t, y) = e−r(T−t)
∫

R
x exp((r− σ

2

2
)(T−t)+σz)h′(xy exp((r− σ

2

2
)(T−t)+σz))g(T−t, z)dz.

Therefore,

βt = β(t, St) =
e−r(T−t)

St
EQ[h(ST )ST |Ft] (3.11)

3.4 Sensibility with respect to the parameters: the greeks

A greek is defined as the derivative of the price of an option with respect to any o its
parameters of the model. Hence, the greeks measure the stability of the option under
variations of the parameters.

We observe that the price of an option V0 of strike K and maturity T depends on
five parameters (x, r, σ, T,K), where x is the premium, r is the interest rates, and σ the
volatility. The greeks are then the partial derivatives of V0 with respect to these parameters.

The greeks that are most used are:

Delta: ∆ = ∂V0
∂x .

Gamma: Γ = ∂2V0
∂x2 .

Vega: ϑ = ∂V0
∂σ .
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We will next make the explicit computation of these greeks under the Black-Scholes
model. For this, we will use the integration by parts formula of the Malliavin calculus.
By formula (3.10), the price of an option of final flow h(ST ) at time t = 0 under the
Black-Scholes moedl is given by

V0 = e−rTEQ[h(ST )].

Then, if the hypotheses of Proposition 2.1 are satisfied and α is one of the parameters
(x, r, σ, T,K), we have that

∂V0

∂α
= e−rTEQ

[
h′(ST )

∂ST
∂α

]
= e−rTEQ

[
h(ST )H(ST ,

∂ST
∂α

)
]
.

Assume that h ∈ C1 with bounded derivatives.

Computation of ∆: We have that

∆ =
∂V0

∂x
= e−rTEQ

[
h′(ST )

∂ST
∂x

]
=
e−rT

S0
EQ[h′(ST )ST ].

We now apply Proposition 2.1 with F = ST , G = ST , and u = 1 to obtain that

∆ =
e−rT

S0σT
EQ[h(ST )BT ].

Computation of Γ: We write

Γ =
∂2V0

∂x2
= e−rTEQ

[
h′′(ST )

(
∂ST
∂x

)2]
=
e−rT

S2
0

EQ[h′′(ST )S2
T ].

If we assume that h′ ∈ C1 with bounded derivatives, we can appeal to Proposition 2.1 with
f = h′, F = ST , G = S2

T , and u = 1 to obtain that

Γ =
e−rT

S2
0

EQ[h′(ST )ST (
BT
σT
− 1)].

Finally, appealing again to Proposition 2.1 with F = ST , G = ST (BT
σT − 1), and u = 1, we

conclude that

Γ =
e−rT

S2
0σT

EQ[h(ST )(
B2
T

σT
− 1
σ
−BT )].

Computation of ϑ: We write

ϑ =
∂V0

∂σ
= e−rTEQ

[
h′(ST )

∂ST
∂σ

]
= e−rTEQ[h′(ST )ST (BT − σT )].

Applying Proposition 2.1 with F = ST , G = ST (BT − σT ), and u = 1 it yields that

ϑ = e−rTEQ[h(ST )(
B2
T

σT
− 1
σ
−BT )].

In general, h will not be derivable, and in this case, using an approximation argument one
can prove that these formulas are valid for h a continuous function with jump discontinuities
and linear growth. The Monte Carlo methods allows to obtain numerical simulations of these
derivatives (see [KM98]).
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3.5 Application of the Clark-Ocone formula in hedging

In Section 3.3 we found explicit formulas for the hedging portfolio that replicates the flow
h(ST ) in the Black-Scholes model.

In this section we will show how the Clark-Ocone formula can be applied to find explicit
formulas for the hedging portfolio that replicates a general payoff in the Black-Scholes model.
Suppose that H ≥ 0 is an FT -measurable random variale such that EQ[H2] < ∞. The
random variable H represents the payoff of some derivative. The Itô integral representation
(1.25) implies that any square integrable payoff with respect to the probability Q can be
replicable, and this shows that the Black-Scholes market is complete. Indeed, by (1.25),
there exists a square integrable adapted process u such that

e−rTH = EQ[e−rTH] +
∫ T

0
usdBs.

Using (3.1), if we write Ṽt = e−rtVt for the discounted value of the self-financing portfolio
and S̃ = e−rtSt, we get that Ṽt − βtS̃t = αt, and hence

Ṽt = x+
∫ t

0
βsdS̃s = x+

∫ t

0
βsσS̃sdB̃s.

Thus, it suffices to take
βt =

ut

σS̃t
= ert

ut
σSt

.

Then, applying the Clark-Ocone formula (1.26), we get that

βt =
e−r(T−t)

σSt
EQ[DtH|Ft].

In the particular case where H = h(ST ), then

βt =
e−r(T−t)

σSt
EQ[h′(ST )σST |Ft],

which coincides with the expression obtained in (3.11).

3.6 Exercises

Exercise 3.6 Prove Lemma 3.3 using the Gaussian calculus.

Exercise 3.7 Compute the price at time t ∈ [0, T [ of an European call of strike K assuming
the Black-Scholes model.

Exercise 3.8 Compute the greeks ∆, Γ and ϑ for an European call of strike K assuming
the Black-Scholes model. Compare the obtained result with the result that one obtains if we
compute the greeks derivating directly the expression obtained in Exercise 3.7.
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A Appendix

Let {M(t), t ∈ [0, T ]} be a continuous local martingale with repect to an increasing family
of σ-fileds {Ft, t ≥ 0}.

The following inequalities are Doob’s maximal inequality and Burkhölder’s inequality,
respectively, which play a fundamental role in the stochastic calculus:

Proposition A.1 For any p > 1, we have

E
[

sup
0≤t≤T

|M(t)|p
]
≤
(

p

p− 1

)p
E[|M(T )|p],

and this inequality also holds if we replace |M(t)| by any continuous nonegative submartin-
gale.

Proposition A.2 For any p > 1, there exists constants c1(p) and c2(p) such that

c1(p)E
[
〈M(t)〉p/2T

]
≤ E

[
sup

0≤t≤T
|M(t)|p

]
≤ c2(p)E

[
〈M(t)〉p/2T

]
.
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