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Kolmogorov’s equations

The transition function of a Markov process X with state space E is
defined by P (s, x, t, dy) = P{X(t) ∈ dy|X(s) = x}.

A transition function satisfies the Chapman-Kolmogorov equation

P (s, x, r, Γ) =

∫
E

P (s, x, t, dy)P (t, y, r, Γ), s < t < r.

Kolmogoroff (1931) considers transition functions for E = Rd with the
following properties:

lim
t→s

1

t− s

∫
|y−x|≤1

(y − x)P (s, x, t, dy) = b(s, x)

lim
t→s

1

t− s

∫
|y−x|≤1

(y − x)(y − x)TP (s, x, t, dy) = a(s, x)

lim
t→s

1

t− s

∫
|y−x|≤1

|y − x|3P (s, x, t, dy) = 0

Note that a(s, x) must be nonnegative definite.
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Kolmogorov backward equation

Let u(s, x, t) = E[f(X(t))|X(s) = x] =
∫

Rd f(y)P (s, x, t, dy).

u(s− h, x, t)− u(s, x, t)

= E[

∫
Rd

(u(s, y, t)− u(s, x, t))P (s− h, x, s, dy)

= E[

∫
Rd

(∂xu(s, x, t) · (y − x) +
1

2
(y − x)T∂2

xu(s, x, t)(y − x)

+O(|y − x|3))P (s− h, x, s, dy)

≈ h∂xu(s, x, t) · b(s− h, x) +
1

2

∑
aij(s− h, x)∂xi

∂xj
u(s, x, t)

strongly suggesting −∂su(s, x, t) = Lsu(s, x, t), where

Lsf(x) = ∂xf(x) · b(s, x) +
1

2

∑
aij(s, x)∂xi

∂xj
f(x)
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Kolmogorov’s forward equation

Again setting u(s, x, t) = E[f(X(t))|X(s) = x] =
∫

Rd f(y)P (s, x, t, dy).

u(s, x, t + h)− u(s, x, t)

= E[

∫
Rd

(

∫
Rd

f(z)P (t, y, t + h, dz)− f(y))P (s, x, t, dy)

= E[

∫
Rd

∫
Rd

(∂yf(y) · (z − y) +
1

2
(z − y)T∂2

yf(y)(z − y)

+O(|z − y|3))P (t, y, t + h, dz)P (s, x, t, dy)

strongly suggesting ∂t

∫
Rd f(y)P (s, x, t, dy) =

∫
Rd Ltf(y)P (s, x, t, dy) where

Ltf(y) = ∂yf(y) · b(t, y) +
1

2

∑
aij(t, y)∂yi

∂yj
f(y).

Assuming a smooth density, p(s, x, t, y)dy = P (s, x, t, dy),

∂tp(s, x, t, y) = L∗
tp(s, x, t, y)
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Doeblin’s approach Doeblin (2000)

Let d = 1. For 0 = t0 < · · · < tm = t

X(t)−X(0)−
m−1∑
i=0

E[X(ti+1)−X(ti)|Fti]

= X(t)−X(0)−
m−1∑
i=0

∫
R
(y −X(ti))P (ti, X(ti), ti+1, dy)

≈ X(t)−X(0)−
m−1∑
i=0

b(ti, X(ti))(ti+1 − ti)

≈ X(t)−X(0)−
∫ t

0
b(s, X(s))ds

In modern terminology,

Z(t) = X(t)−X(0)−
∫ t

0
b(s, X(s))ds

is a martingale.
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Time-change to a Brownian motion

Let θ satisfy ∫ θ(t)

0
a(s, X(s))ds = t.

Then
W (t) = Z(θ(t))

is a Brownian motion and hence (as Yor (2000) notes)

Z(t) = W (

∫ t

0
a(s, X(s))ds)

so

X(t) = X(0) + W (

∫ t

0
a(s, X(s))ds) +

∫ t

0
b(s, X(s))ds (1)
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Itô’s approach

Doeblin and others recognized that X(t + ∆t)−X(t) was, in a strong
sense, approximately Gaussian with (conditional) mean b(t,X(t))∆t

and covariance a(t,X(t))∆t.

Write a(s, x) = σ2(s, x) (or a(s, x) = σ(s, x)σ(s, x)T if d > 1). Itô
(1946, 1951) exploits the Gaussian observation writing

X(t)−X(0) =
∑

(X(ti+1)−X(ti))

≈
∑

σ(ti, X(ti))(W (ti+1)−W (ti)) + b(ti, X(ti)(ti+1 − ti)

and formulating the equation

X(t) = X(0) +

∫ t

0
σ(s, X(s))dW (s) +

∫ t

0
b(s, X(s))ds (2)

based on the stochastic integral introduced in Itô (1944).
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An aside on quadratic variations and continuous
martingales

If M is a continuous (local) martingale, then

[M ]t = lim
∑

(M(ti+1)−M(ti))
2

exists and defining θ by θ(t) = inf{s : [M ]s ≥ t}, W̃ (t) = M(θ(t)) is a
standard Brownian motion and

M(t) = W̃ ([M ]t).

An Itô integral M(t) =
∫ t

0 Y (s)dW (s) is a local martingale with quadratic

variation
∫ t

0 Y (s)2ds, so∫ t

0
Y (s)dW (s) = W̃ (

∫ t

0
Y (s)2ds).

In modern terminology, a solution of the time-change equation is a weak
solution of the corresponding Itô equation.
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Doeblin’s change of variable

If X is a Markov process in R and ϕ(x, t) is (strictly) increasing in x,
then Y (t) = ϕ(X(t), t) is Markov.

Specifically, Doeblin shows

lim
t→s

1

t− s

∫
|z−Y (s)|≤1

(z − Y (s))Q(s, Y (s), t, dz)

= ϕ′(X(s), s)b(s, X(s)) +
1

2
ϕ′′(X(s), s)a(s, X(s)) + ∂sϕ(X(s), s)

lim
t→s

1

t− s

∫
|z−Y (s)|≤1

(z − Y (s))2Q(s, Y (s), t, dz)

= ϕ′(X(s), s)2a(s, X(s))
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Calculation by Itô’s formula

Of course, the above conclusion follows immediately from Itô’s formula

ϕ(X(t), t) = ϕ(X(s), s) +

∫ t

s

ϕ′(X(r), r)σ(X(r), r)dW (r)

+

∫ t

s

Lrϕ(X(r), r) + ∂rϕ(X(r), r))dr

Doeblin’s analysis gives

ϕ(X(t), t) = ϕ(X(s), s) + W̃ϕ(

∫ t

s

ϕ′(X(r), r)2a(X(r), r))

+

∫ t

s

Lrϕ(X(r), r) + ∂rϕ(X(r), r))dr

where W̃ϕ is a standard Brownian motion depending on ϕ.
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Martingale properties of diffusions

In effect, Doeblin’s argument implies

Mϕ(t) = ϕ(X(t), t)− ϕ(X(s), s)−
∫ t

s

(Lrϕ(X(r), r) + ∂rϕ(X(r), r))dr

is a martingale and that Mϕ can be represented as

Mϕ(t) = W̃ (

∫ t

s

ϕ′(X(r), r)2a(r, X(r))dr).

This martingale property plays a central role in the general semigroup
approach to Markov processes (see Dynkin (1965)) and ultimately led
to the development by Stroock and Varadhan of the martingale problem
(see Stroock and Varadhan (1979), Ethier and Kurtz (1986)).
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The time-change equation for Markov chain

Consider a continuous-time Markov chain in Zd satsifying

P{X(t + ∆t) = X(t) + l|X(t) = k} ≈ βk(l)∆t.

Then X(t) = X(0) +
∑

l lNl(t), where Nl(t) is the number of jumps of
l at or before time t. Nl is a counting process with intensity βl(X(t)),
that is,

Nl(t)−
∫ t

0
βl(X(s))ds

is a martingale. Consequently, we can write

Nl(t) = Yl(

∫ t

0
βl(X(s))ds),

where the Yl are independent, unit Poisson processes, and

X(t) = X(0) +
∑

l

lYl(

∫ t

0
βl(X(s))ds).
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Diffusion approximations

Suppose Xn is a Markov chain in 1√
n
Zd with intensities of the form

nβn
l (s, Xn(s)). Then

Xn(t) = Xn(0) +
1√
n

∑
l

lYl(n

∫ t

0
βn

l (s, Xn(s))ds)

= Xn(0) +
1√
n

∑
l

lỸl(n

∫ t

0
βn

l (s, Xn(s))ds) +

∫ t

0
bn(s, Xn(s))ds

= Xn(0) +
∑

l

lW n
l (

∫ t

0
βn

l (s, Xn(s))ds) +

∫ t

0
bn(s, Xn(s))ds,

where

W n
l (u) =

Yl(nu)− nu√
n

, bn(s, x) =
∑

l

1√
n

lβn
l (s, x).
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Limiting equation

Assume βn
l → βl and Fn → F . Then (probably), Xn ⇒ X satisfying

X(t) = X(0) +
∑

l

lWl(

∫ t

0
βl(s, X(s))ds) +

∫ t

0
b(s, X(s))ds,

and (probably) X is a diffusion with a(s, x) =
∑

βl(s, x)llT .

See Kurtz (1977/78) and Ethier and Kurtz (1986), Chapter 11.

Note that

τ0(t) =

∫ t

0
b(s, X(s))ds, τl(t) =

∫ t

0
βl(s, X(s))ds

satisfies a system of random differential equations

τ̇0(t) = b(t, Γ(τ(t)))

τ̇l(t) = βl(t, Γ(τ(t))),

where Γ(τ) = X(0) +
∑

l lWl(τl) + τ0.
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Convergence of stochastic differential equations

Xn(t) = Xn(0) +
1√
n

∑
l

lYl(n

∫ t

0
βn

l (s, Xn(s))ds)

= Xn(0) +
1√
n

∑
l

lỸl(n

∫ t

0
βn

l (s, Xn(s))ds) +

∫ t

0
bn(s, Xn(s))ds

= Xn(0) +
∑

l

l

∫ t

0

√
βn

l (s−, Xn(s−))dMn
l (s) +

∫ t

0
bn(s, Xn(s))ds,

where

Mn
l (t) =

∫ t

0

1√
βn

l (r−, Xn(r−))

1√
n

dỸ (n

∫ r

0
βn

l (s, Xn(s))ds).
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Limiting equation

Mn
l is a local martingale with

[Mn
l ]t =

∫ t

0

1

nβn
l (r, Xn(r))

dY (n

∫ r

0
βn

l (s, Xn(s))ds) → t

(probably) and
[Mn

l , Mn
l′ ]t = 0

which implies the Mn
l converge to independent standard Brownian mo-

tions. Then (probably) Xn ⇒ X satisfying

X(t) = X(0) +
∑

l

∫ t

0

√
βl(s, X(s))dWl(s) +

∫ t

0
b(s, X(s))ds.

See S lomiński (1989) and Kurtz and Protter (1991).
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Convergence based on the martingale problem

Let

Ln
s f(x) =

∑
l

nβn
l (s, x)(f(x +

1√
n

l)− f(x))

=
∑

l

nβn
l (s, x)(f(x +

1√
n

l)− f(x)− 1√
n

l · ∂f(x)) + bn(s, x) · ∂f(x) .

Then f(Xn(t))− f(Xn(0))−
∫ t

0 Ln
sf(s, Xn(s))ds is a martingale.

Ln
sf(x) → Lsf(x) =

1

2

∑
l

βl(s, x)lT∂2f(x)l + b(s, x) · ∂f(x)

and (probably) Xn ⇒ X where

f(X(t))− f(X(0))−
∫ t

0
Lsf(X(s))ds

is a martingale.
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Characterizing diffusions by time-change equations

How general is

X(t) = X(0) +
∑

l

lWl(

∫ t

0
βl(s, X(s))ds) +

∫ t

0
b(s, X(s))ds ?

The drift is completely general, but the diffusion matrix must be rep-
resentable as

a(s, x) =
∑

l

βl(s, x)llT .

We want the sum to be finite or at least countable.
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Uniformly positive definite matrices

The collection of nonnegative definite matrices is convex and the ex-
treme points are matrices of the form zzT .

By a result of Motzkin and Wasow (1953) (see Kurtz (1980), Lemma
4.8), for ε > 0 there exists a finite set {zk} ⊂ Rd such that for all A

satisfying
ε|x|2 ≤ xTAx ≤ ε−1|x|2

there exist βk(A) such that

A =
m∑

k=1

βk(A)zkz
T
k .
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Multiple time-change equations Kurtz (1980)

Given independent Markov processes Yk, require

Xk(t) = Yk(

∫ t

0
βk(s, X(s))ds). (3)

Set τk(t) =
∫ t

0 βk(s, X(s))ds, and for α ∈ [0,∞)∞, define

FY
α = σ(Yk(sk) : sk ≤ αk, k = 1, 2, . . .)

and

FX
α = σ({τ1(t) ≤ s1, τ2(t) ≤ s2, . . .} : si ≤ αi, i = 1, 2, . . . , t ≥ 0).
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Compatibility conditions

Assume Yk is the unique solution of the martingale problem for (Ak, ν
0
k).

Define D(Hk) = {fk ∈ D(Ak) : infy fk > 0} and Hkfk = Akfk/fk. Then

Mf1,...,fk
(α) =

k∏
i=1

fi(Yi(α)) exp{−
∫ αi

0
Hifi(Yi(s))ds}

is a martingale with respect to the filtration {FY
α }.

Compatibility (see Kurtz (2007), Example 3.20) is equivalent to the
requirement that Mf1,...,fk

be a martingale with respect to {FX
α ∨ FY

α }
for all k and all fi ∈ D(Hi).

τ(t) = (τ1(t), τ2(t), . . .) is a stopping time with respect to {FX
α ∨ FY

α }
in the sense that

{τ(t) ≤ α} = {τ1(t) ≤ α1, τ2(t) ≤ α2, . . .} ∈ FX
α ∨ FY

α , α ∈ [0,∞)∞.
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Notes

1. Doeblin (2000) contains the material from the sealed envelope (the
Pli cacheté) submitted to the French Academy of Sciences by Doe-
blin. Bru and Yor (2002) contains extensive material about Doeblin
and his work on diffusions as well as his earlier published work and
includes an English translation of a portion of the Pli cacheté.

2. The picture of Wolfgang Doeblin is taken from the documentary
Wolfgang Doeblin: A Mathematician Rediscovered.

\http://www.wolfgang-doeblin-video.org/
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Abstract

Diffusions and diffusion approximations revisited

Abstract: Wolfgang Doeblin was already an established mathematician
when, while serving in the French army at the age of 25, he committed
suicide after his company was surrounded by German troops during
the initial invasion of France. 60 years later probabilists were amazed
to learn that shortly prior to his death, he had mailed a sealed enve-
lope to the French Academy that contained a manuscript that in many
ways anticipated the work of Ito that has been the foundation of the
explosive development of the theory of diffusion processes for the last
several decades. Doeblin’s approach and its relationship to Ito’s will be
described and connections of his approach to diffusion approximations
for continuous time Markov chains will be illustrated through examples.



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 24

References

Bernard Bru and Marc Yor. Comments on the life and mathematical legacy of Wolfgang Doeblin. Finance
Stoch., 6(1):3–47, 2002. ISSN 0949-2984.

Wolfgang Doeblin. Sur l’équation de Kolmogoroff. C. R. Acad. Sci. Paris Sér. I Math., 331(Special Issue):
1059–1128, 2000. ISSN 0764-4442. Avec notes de lecture du pli cacheté par Bernard Bru. [With notes on
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Kiyosi Itô. On a stochastic integral equation. Proc. Japan Acad., 22(nos. 1-4):32–35, 1946. ISSN 0021-4280.
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Marc Yor. Présentation du pli cacheté. C. R. Acad. Sci. Paris Sér. I Math., 331(Special Issue):1033–1035,
2000. ISSN 0764-4442. Sur l’équation de Kolmogoroff, par W. Doeblin.


