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Poisson random measures

S a Polish space and ν be a σ-finite measure on B(S).

ξ is a Poisson random measure with mean measure ν if

a) ξ is a random counting measure on S.

b) For each A ∈ S with ν(A) < ∞, ξ(A) is Poisson distributed with parameter
ν(A).

c) For A1, A2, . . . ∈ S disjoint, ξ(A1), ξ(A2), . . . are independent.

Lemma 1 If H : S → S0, Borel measurable, and ξ̂(A) = ξ(H−1(A)), then ξ̂ is a
Poisson random measure on S0 with mean measure ν̂ given by ν̂(A) = ν(H−1(A))
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Moment identities

If ξ is a Poisson random measure with mean measure ν

E[e
∫

f(z)ξ(dz)] = e
∫

(ef−1)dν ,

or letting ξ =
∑

i δZi
,

E[
∏

i

g(Zi)] = e
∫

(g−1)dν .

Similarly,

E[
∑

j

h(Zj)
∏

i

g(Zi)] =

∫
hgdνe

∫
(g−1)dν ,

and

E[
∑
i6=j

h(Zi)h(Zj)
∏

k

g(Zk)] = (

∫
hgdν)2e

∫
(g−1)dν ,
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Conditionally Poisson systems

Let ξ be a random counting measure on S and Ξ be a locally finite random measure
on S.

ξ is conditionally Poisson with Cox measure Ξ if, conditioned on Ξ, ξ is a Poisson
point process with mean measure Ξ.

E[e−
∫

S fdξ] = E[e−
∫

S(1−e−f )dΞ]

for all nonnegative f ∈ M(S).

If ξ is conditionally Poisson system on S × [0,∞) with Cox measure Ξ×m where m
is Lebesgue measure, then for f ∈ M(S)

E[e−
∫

S×[0,K] fdξ] = E[e−K
∫

S(1−e−f )dΞ]

and for f ≥ 0,

Ξ(f) = lim
K→∞

1

K

∫
S×[0,K]

fdξ = lim
ε→0

ε

∫
S×[0,∞)

e−εuf(x)ξ(dx× du) a.s.
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Relationship to exchangeability

Lemma 2 Suppose ξ is a conditionally Poisson random measure on S × [0,∞) with
Cox measure Ξ × m. If Ξ < ∞ a.s., then we can write ξ =

∑∞
i=1 δ(Xi,Ui) with

U1 < U2 < · · · a.s. and {Xi} is exchangeable.

Conditioned on Ξ, {Ui} is Poisson with parameter Ξ(S) and {Xi} is iid with distri-
bution Ξ(S)−1Ξ.
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Convergence

Lemma 3 If {ξn} is a sequence of conditionally Poisson random measures on S ×
[0,∞) with Cox measures {Ξn ×m}. Then ξn ⇒ ξ if and only if Ξn ⇒ Ξ, Ξ the Cox
measure for ξ.

If ξn → ξ in probability, then Ξn → Ξ in probability
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A population model

Consider a process with state space E = ∪n[0, r]n.

0 ≤ g ≤ 1 and f(u, n) =
∏n

i=1 g(ui)

For a > 0, and −∞ < b ≤ ra, define

Af(u, n) = f(u, n)
n∑

i=1

2a

∫ r

ui

(g(v)− 1)dv + f(u, n)
n∑

i=1

(au2
i − bui)

g′(ui)

g(ui)
.

In other words, particle levels satisfy

U̇i(t) = aU2
i (t)− bUi(t),

and a particle with level z gives birth at rate 2a(r−z) to a particle whose initial level
is uniformly distributed between z and r.

N(t) = #{i : Ui(t) < r}

α(n, du) the joint distribution of n iid uniform [0, r] random variables.
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A calculation

As before, f̂(n) =
∫

f(u, n)α(n, du) = e−λgn, e−λg = 1
r

∫ r

0
g(u)du

To calculate
∫

Afu, n)α(n, du), observe that

r−12a

∫ r

0

g(z)

∫ r

z

(g(v)− 1)dv = are−2λg − 2ar−1

∫ r

0

g(z)(r − z)dz

and

r−1

∫ r

0

(az2 − bz)g′(z)dz = −r−1

∫ r

0

(2az − b)(g(z)− 1)dz

= −2ar−1

∫ r

0

zg(z)dz + ar + b(e−λg − 1).

Then∫
Af(u, n)α(n, du) = ne−λg(n−1)

(
are−2λg − 2are−λg + ar + b(e−λg − 1)

)
= Cf̂(n),

where
Cf̂(n) = arn(f̂(n + 1)− f̂(n)) + (ar − b)n(f̂(n− 1)− f̂(n)).
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Conclusion

Let Ñ be a solution of the martingale problem for

Cf̂(n) = arn(f̂(n + 1)− f̂(n)) + (ar − b)n(f̂(n− 1)− f̂(n)),

that is, Ñ is a branching process with birth rate ar and death rate (ar − b).

Then there exists a solution (U1(t), . . . , UN(t)(t), N(t)) of the martingale problem for

A such that N has the same distribution as Ñ .
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The limit as r →∞
If n = O(r), then the scaling is correct for the Feller diffusion.

A converges for every g such that 0 ≤ g ≤ 1, g(z) = 1, z ≥ ug.

f(u) =
∏

i g(ui)

Af(u) = f(u)
∑

i

2a

∫ ug

ui

(g(v)− 1)dv + f(u)
∑

i

(au2
i − bui)

g′(ui)

g(ui)
.

α(y, du) is the distribution of a Poisson process on [0,∞) with intensity y.

f̂(y) = αf(y) =

∫
f(u)α(y, du) = e−y

∫∞
0 (1−g(z))dz = e−yβg

and

αAf(y) = e−yβg

(
2ay

∫ ∞

0

g(z)

∫ ∞

z

(g(v)− 1)dvdz + y

∫ ∞

0

(az2 − bz)g′(z)dz

)
= e−yβg(ayβ2

g − byβg)

= ayf̂ ′′(y) + byf̂ ′(y)
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Particle representation of Feller diffusion

Let {Ui(0)} be a conditionally Poisson process on [0,∞) with (conditional) intensity
Y (0). Then, {Ui(t)} is conditionally Poisson with intensity Y (t),

Y (t) = lim
r→∞

1

r
#{i : Ui(t) ≤ r},

and Y is a Feller diffusion with generator Cf(y) = ayf ′′(y) + byf ′(y)

γ : N (R) → [0,∞)

γ(u) = lim
r→∞

1

r
#{i : ui ≤ r}

α(y, du) Poisson process distribution on [0,∞) with intensity y. α(y, γ−1(y)) = 1.



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 12

Extinction

Assume U1(0) < U2(0) < · · ·. Then for all t, all levels are above

U1(t) =
U1(0)e

−bt

1− a
b
U1(0)(1− e−bt)

Let τ = inf{t : Y (t) = 0}

P{τ > t} = P{U1(0) <
[
(1− e−bt)a/b

]−1} = 1− e−yb/[(1−e−bt)a]

If b ≤ 0, conditioning on nonextinction for all t is equivalent to setting U1(0) = 0.
The generator becomes

Af(u) = f(u)
∑

i

2a

∫ ug

ui

(g(v)− 1)dv + f(u)
∑

i

(au2
i − bui)

g′(ui)

g(ui)

+f(u)2a

∫ ug

0

(g(v)− 1)dv

and
αAf(y) = ayf̂ ′′(y) + (2a + by)f̂ ′(y)
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Branching Markov processes
f(x, u, n) =

∏n
i=1 g(xi, ui), where g : E × [0,∞) → (0, 1]

As a function of x, g is in the domain D(B) of the generator of a Markov process in
E, g is continuously differentiable in u, and g(x, u) = 1 for u ≥ r.

Af(x, u, n) = f(x, u, n)
n∑

i=1

Bg(xi, ui)

g(xi, ui)
+ f(x, u, n)

n∑
i=1

2a(xi)

∫ r

ui

(g(xi, v)− 1)dv

+f(x, u, n)
n∑

i=1

(a(xi)u
2
i − b(xi)ui)

∂ui
g(xi, ui)

g(xi, ui)

Each particle has a location Xi(t) in E and a level Ui(t) in [0, r].

The locations evolve independently as Markov processes with generator B, the levels
satisfy

U̇i(t) = a(Xi(t))U
2
i (t)− b(Xi(t))Ui(t)

and particles that reach level r die.

Particles give birth at rates 2a(Xi(t))(r−Ui(t)); the initial location of a new particle
is the location of the parent at the time of birth; and the initial level is uniformly
distributed on [Ui(t), r].
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Generator for X(t) = (X1(t), . . . , XN(t))

Setting e−λg(xi) = r−1
∫ r

0
g(xi, z)dz and f̂(x, n) = e−

∑n
i=1 λg(xi), and calculating as in

the previous example, we have

Cf̂(x, n) =
n∑

i=1

Bxi
f̂(x, n) +

n∑
i=1

a(xi)r(f̂((x, xi), n + 1)− f̂(x, n))

+
n∑

i=1

(a(xi)r − b(xi))(f̂(d(x|xi), n− 1)− f̂(x, n)),

where Bxi
is the generator B applied to f̂(x, n) as a function of xi.
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Infinite population limit

Letting r →∞, Af becomes

Af(x, u) = f(x, u)
∑

i

Bg(xi, ui)

g(xi, ui)
+ f(x, u)

∑
i

2a(xi)

∫ ug

ui

(g(xi, v)− 1)dv

+f(x, u)
∑

i

(a(xi)u
2
i − b(xi)ui)

∂ui
g(xi, ui)

g(xi, ui)

Particle locations evolve as independent Markov processes with generator B.

Levels satisfy
U̇i(t) = a(Xi(t))U

2
i (t)− b(Xi(t))Ui(t)

A particle with level Ui(t) gives birth to new particles at its location Xi(t) and initial
level in the interval [Ui(t) + c, Ui(t) + d] at rate 2a(Xi(t))(d− c).

A particle dies when its level hits ∞.
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The measure-valued limit

For µ ∈ Mf (E), let α(µ, dx × du) be the distribution of a Poisson random measure
on E × [0,∞) with mean measure µ×m. Then setting h(y) =

∫∞
0

(1− g(y, v))dv

αf(µ) =

∫
f(x, u)α(µ, dx× du) = exp{−

∫
E

h(y)µ(dy)},

and

αAf(µ) = exp{−
∫

E

h(y)µ(dy)}
[ ∫

E

∫ ∞

0

Bg(y, v)dvµ(dy)

+

∫
E

∫ ∞

0

2a(y)g(y, z)

∫ ∞

z

(g(y, v)− 1)dvdzµ(dy)

+

∫
E

∫ ∞

0

(a(y)v2 − b(y)v)∂vg(y, v)dvµ(dy)
]

= exp{−
∫

E

h(y)µ(dy)}
∫

E

(
−Bh(y) + a(y)h(y)2 − b(y)h(y)

)
µ(dy)

It follows that the Cox measure (or more precisely, the E marginal of the Cox measure)
corresponding to the particle process at time t, call it Z(t), is a solution of the
martingale problem for A = {(αf, αAf) : f ∈ D}.
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Branching processes in random environments
a and b functions of another stochastic process ξ, say an irreducible finite Markov
chain with generator Q.

f(l, u, n) = f0(l)f1(u) = f0(l)
∏n

i=1 g(ui),

Arf(l, u, n) = rf1(u)Qf0(l) + f(l, u, n)
n∑

i=1

2a(l)

∫ r

ui

(g(v)− 1)dv

+f(l, u, n)
n∑

i=1

(a(l)u2
i −

√
rb(l)ui)

g′(ui)

g(ui)
,

which projects to

Crf̂(l, n) = rQf̂(l, n) + a(l)rn(f̂(l, n + 1)− f̂(n))

+(ra(l)−
√

rb(l))n(f̂(l, n− 1)− f̂(l, n)),

where f̂(l, n) = f0(l)e
−λgn. The process corresponding to Cr is a branching process

in a random environment determined by ξ.
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Scaling limit
Writing the process corresponding to Ar as

(ξ(rt), X1(t), . . . , XNr(t), U1(t), . . . , UNr(t))

the process corresponding to Cr is (ξ(rt), Nr(t)).

Note that the levels satisfy

U̇i(t) = a(ξ(rt))U2
i (t)−

√
rb(ξ(rt))Ui(t).

Let π be the stationary distribution for Q and assume that
∑

l π(l)b(l) = 0. Then

Z(r)(t) =
√

r

∫ t

0

b(ξ(rs))ds

converges to a Brownian motion Z with variance parameter∑
k

∑
l

π(k)qkl(h0(l)− h0(k))2 = −2
∑

l

π(l)h0(l)b(l) ≡ 2c,

where h0(l) is a solution of Qh0(l) = b(l). In the limit, the levels will satisfy

dUi(t) = (aUi(t)
2 + cUi(t))dt +

√
2cUi(t)dW (t), (1)

where a =
∑

π(l)a(l).

Note that the limiting levels are all driven by the same Brownian motion.
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Limiting generator

h1(l, u, n) = h0(l)f1(u, n)
n∑

i=1

ui
g′(ui)

g(ui)
,

Passing to the limit as r →∞, Ar(f1 + 1√
rh

) converges to

Ãf1(u, l)

= f1(u)
∑

i

2a(l)

∫ ∞

ui

(g(v)− 1)dv + f1(u)
∑

i

a(l)u2
i

g′(ui)

g(ui)

−h0(l)b(l)f1(u)
n∑

j=1

(∑
i6=j

ujui
g′(ui)g

′(uj)

g(ui)g(uj)
+

ujg
′(uj) + u2

jg
′′(uj)

g(uj)

)
.

An additional perturbation h2 gives Ar(f1 + 1√
r
h1 + 1

r
h2) converging to

Af1(u)

= f1(u)
∑

i

2a

∫ ∞

ui

(g(v)− 1)dv + f1(u)
∑

i

au2
i

g′(ui)

g(ui)

+cf1(u)
n∑

j=1

(∑
i6=j

ujui
g′(ui)g

′(uj)

g(ui)g(uj)
+

ujg
′(uj) + u2

jg
′′(uj)

g(uj)

)
.
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Limiting diffusion

Let

βg =

∫ ∞

0

(1− g(z))dz =

∫ ∞

0

zg′(z)dz = −1

2

∫ ∞

0

z2g′′(z)dz.

We have

αAf(y) = e−yβg

(
2ay

∫ ∞

0

g(z)

∫ ∞

z

(g(v)− 1)dvdz + y

∫ ∞

0

(az2 + cz)g′(z)dz

+cy2(

∫ ∞

0

zg′(z)dz)2 + cy

∫ ∞

0

z2g′′(z)dz
)

= e−yβg((ay + cy2)β2
g − cyβg)

= Cf̂(y),

where
Cf̂(y) = (ay + cy2)f̂ ′′(y) + cyf̂ ′(y),

which identifies the diffusion limit for r−1Nr.
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Exit measures

Let B be the generator of a diffusion and D a bounded domain with all points in ∂D
regular.

Af(x, u) = f(x, u)
∑

i

1D(xi)
Bg(xi, ui)

g(xi, ui)

+f(x, u)
∑

i

1D(xi)2a(xi)

∫ ug

ui

(g(xi, v)− 1)dv

+f(x, u)
∑

i

1D(xi)(a(xi)u
2
i − b(xi)ui)

∂ui
g(xi, ui)

g(xi, ui)

For simplicity assume infx a(x) > 0, b ≤ 0, then τ = inf{t :
∑

i 1D(Xi(t) > 0} < ∞.

Define ξ =
∑

i δ(Xi(τ),Ui(τ)) and

ZD(Γ) = lim
r→∞

1

r

∑
i:Ui(τ)≤r

1Γ(Xi(τ)),

the exit measure.
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Nonlinear PDE

Assume {(Xi(0), Ui(0))} is a Poisson random measure with mean measure δx × m.
Then for h ≥ 0, bounded and continuous,

u(x) = − log E[e−〈h,Zx
D〉]

solves the differential equation

Bu = au2 − bu

u = h on ∂D.

e−〈h,Zx
D〉 = E[e

∫
log(1−h/r)1[0,r]dξ|ZD] = E[e

∑
Ui(τ)≤r log(1−h(Xi(τ))/r)|ZD].

Taking expectations,

E[e−〈h,Zx
D〉] = E

[ ∏
Ui(τ)≤r

(
1− h(Xi(τ))

r

)]
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Homogenization

Bu(x) = a(x, x/ε)u(x)2 − b(x, x/ε)u(x)

u = h on ∂D

a(x, y), b(x, y) periodic in y, and

Bg(x) =
1

2

d∑
j,k=1

cjk(x)
∂2g

∂xj∂xk

(x) +
d∑

j=1

dj(x)
∂g

∂xj

(x).

Particle generator:

Aεf(x, u) = f(x, u)
∑

i

Bg(xi, ui)

g(xi, ui)
1D(xi)

+f(x, u)
∑

i

2a(xi, xi/ε)

∫ ug

ui

(g(xi, v)− 1)dv1D(xi)

+f(x, u)
∑

i

(a(xi, xi/ε)u
2
i − b(xi, xi/ε)ui)

∂ui
g(xi, ui)

g(xi, ui)
1D(xi)
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Effective coefficients

Let a(x) =
∫

a(x, y)πx(dy), b(x) =
∫

b(x, y)πx(dy), where πx is determined by∫
B̂g(x, y)πx(dy) = 0, g ∈ Rd,

where

B̂g(x, y) =
1

2

d∑
j,k=1

cjk(x)
∂2g

∂yj∂yk

(y).

lim
ε→0

E[e−〈Z
ε,x
D ,h〉] = lim

ε→0
E
[ ∏

Uε
i (τ)≤r

(
1− h(Xi(τ))

r

)]
= E[e−〈Z

x
D,h〉]
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Conditioning on non-extinction

Let a be constant and b ≡ 0. and let U∗(0) be the minimum of the initial levels.

U∗(t) =
U∗(0)

1− aU∗(0)t
.

Let τ be the time of extinction, Then {τ > T} = {U∗(0) < 1
aT
}. Conditioning on

{τ > T} and letting T → ∞ is equivalent to conditioning on the initial Poisson
process having a level at zero. The resulting generator becomes

Af(x, u) = f(x, u)
∑

i

Bg(xi, ui)

g(xi, ui)
+ f(x, u)

∑
i>0

2a

∫ rg

ui

(g(xi, v)− 1)dv (2)

+f(x, u)2a

∫ rg

0

(g(x0, v)− 1)dv

+f(x, u)
∑
i>0

au2
i

∂ui
g(xi, ui)

g(xi, ui)
,
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Generator for measure-valued process

The generator for the measure-valued process is given by setting

α0f(µ) =

∫
f(x, u)α0(µ, dx× du) =

1

|µ|

∫
E

g(z, 0)µ(dz) exp{−〈h, µ〉},

and

α0Af(µ) = 〈−Bh(y) + ah(y)2, µ〉 1

|µ|

∫
E

g(z, 0)µ(dz) exp{−〈h, µ〉}

+
1

|µ|

∫
E

(Bg(z, 0)− 2ag(z, 0)h(z))µ(dz) exp{−〈h, µ〉}
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Markov mappings

Theorem 4 A ⊂ C(E)× C(E) a pre-generator with bp-separable graph.

D(A) closed under multiplication and separating.

γ : E → E0, Borel measurable.

α a transition function from E0 into E satisfying

α(y, γ−1(y)) = 1

Define

C = {(
∫

E

f(z)α(·, dz),

∫
E

Af(z)α(·, dz)) : f ∈ D(A)} .

Let µ0 ∈ P(E0), ν0 =
∫

α(y, ·)µ0(dy).

If Ỹ is a solution of the MGP for (C, µ0), then there exists a solution Z of the MGP

for (A, ν0) such that Y = γ ◦ Z and Ỹ have the same distribution on ME0 [0,∞).

E[f(Z(t))|FY
t ] =

∫
f(z)α(Y (t), dz)

(at least for almost every t).
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Uniqueness

Corollary 5 If uniqueness holds for the MGP for (A, ν0), then uniqueness holds for

the ME0 [0,∞)-MGP for (C, µ0). If Ỹ has sample paths in DE0 [0,∞), then uniqueness
holds for the DE0 [0,∞)-martingale problem for (C, µ0).
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Abstract

Poisson representations of measure-valued processes

Measure-valued diffusions and measure-valued solutions of stochastic partial differ-
ential equations can be represented in terms of the Cox measures of particle systems
that are conditionally Poisson at each time t. The representations are useful for
characterizing the processes, establishing limit theorems, and analyzing the behav-
ior of the measure-valued processes. Examples will be given and some of the useful
methodology will be described.


