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Intensities for continuous-time Markov chains

Assume X is a continuous time Markov chain in E ⊂ Zd. The Q-matrix,
Q = {qkl}, for the chain gives

P{X(t + ∆t) = l|X(t) = k} ≈ qkl∆t, k 6= l ∈ E,

and hence

E[f(X(t+∆t))−f(X(t))|FX
t ] ≈

∑
l

qX(t),l(f(l)−f(X(t))∆t ≡ Af(X(t))∆t

Alternative notation: Define βl(k) = qk,k+l. Then

Af(k) =
∑

l

βl(k)(f(k + l)− f(k))
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Martingale problems

≈ is made precise by the requirement that

f(X(t))− f(X(0))−
∫ t

0
Af(X(s))ds

be a {FX
t }-martingale for f in an appropriate domain D(A).

X is called a solution of the martingale problem for A.
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Backward and forward equations

Defining u(x, t) = E[f(X(t))|X(0) = x], one can derive the backward
equation

∂tu(t, x) = Au(t, x)

and setting νt(G) = P{X(t) ∈ G} and νtf =
∫

E fdνt, the martingale
property gives the forward equation (in weak form)

νtf = ν0f +

∫ t

0
νsAfds, f ∈ D(A).
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The forward/master equation

Taking f = 1{k} and setting pk(t) = νt({k}),

ṗk(t) =
∑

l

pk−l(t)βl(k − l)− pk(t)
∑

l

βl(k)

giving the usual form of the forward equation (the master equation in
the chemical literature).
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Time change equation

X(t) = X(0) +
∑

l

lNl(t)

where Nl(t) is the number of jumps of l at or before time t. Nl is a
counting process with intensity (propensity in the chemical literature)
βl(X(t)), that is,

Nl(t)−
∫ t

0
βl(X(s))ds

is a martingale. Consequently, we can write

Nl(t) = Yl(

∫ t

0
βl(X(s))ds),

where the Yl are independent, unit Poisson processes, and

X(t) = X(0) +
∑

l

lYl(

∫ t

0
βl(X(s))ds).
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Random jump equation

Alternatively, setting β̄(k) =
∑

l βl(k),

N(t) = Y (

∫ t

0
β(X(s))ds)

and

X(t) = X(0) +

∫ t

0
F (X(s−), ξN(s−))dN(s)

where Y is a unit Poisson process, {ξi} are iid uniform [0, 1], and

P{F (k, ξ) = l} =
βl(k)

β̄(k)
.
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Connections to simulation schemes

Simulating the random-jump equation gives Gillespie’s [7, 8] direct
method (the stochastic simulation algorithm SSA).

Simulating the time-change equation gives the next reaction (next
jump) method as defined by Gibson and Bruck [6].

For 0 = τ0(x) < τ1(x) < · · ·, satisfying τk(x) = τk(x
τk−), where

xτk−(s) =

{
x(s) s < τk(x)

x(τk(x)−) s ≥ τk(x)

(typically, τk+1(x) = τk(x) + gk+1(x(τk))), simulation of

X̂(t) = X(0) +
∑

l

lYl

(∑
k

βl(X̂(τk))(τk+1 ∧ t− τk ∧ t)

)
gives Gillespie’s [9] τ -leap method
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Reaction networks

Standard notation for chemical reactions

A + B
k
⇀ C

is interpreted as “a molecule of A combines with a molecule of B to
give a molecule of C.

A + B 
 C

means that the reaction can go in either direction, that is, a molecule
of C can dissociate into a molecule of A and a molecule of B

We consider a network of reactions involving m chemical species, A1, . . . , Am.

m∑
i=1

νikAi ⇀

m∑
i=1

ν ′ikAi

where the νik and ν ′ik are nonnegative integers
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Markov chain models

X(t) number of molecules of each species in the system at time t.

νk number of molecules of each chemical species consumed in the kth
reaction.

ν ′k number of molecules of each species created by the kth reaction.

λk(x) rate at which the kth reaction occurs. (The propensity/intensity.)

If the kth reaction occurs at time t, the new state becomes

X(t) = X(t−) + ν ′k − νk.

The number of times that the kth reaction occurs by time t is given by
the counting process satisfying

Rk(t) = Yk(

∫ t

0
λk(X(s))ds),

where the Yk are independent unit Poisson processes.
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Equations for the system state

The state of the system satisfies

X(t) = X(0) +
∑

k

Rk(t)(ν
′
k − νk)

= X(0) +
∑

k

Yk(

∫ t

0
λk(X(s))ds)(ν ′k − νk) = (ν ′ − ν)R(t)

ν ′ is the matrix with columns given by the ν ′k.

ν is the matrix with columns given by the νk.

R(t) is the vector with components Rk(t).

Basic assumption: The system is well-mixed.
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Rates for the law of mass action

For a binary reaction A1 + A2 ⇀ A3 or A1 + A2 ⇀ A3 + A4

λk(x) = κkx1x2

For A1 ⇀ A2 or A1 ⇀ A2 + A3, λk(x) = κkx1. For 2A1 ⇀ A2, λk(x) =
κkx1(x1 − 1).

For a binary reaction A1+A2 ⇀ A3, the rate should vary inversely with
volume, so it would be better to write

λN
k (x) = κkN

−1x1x2 = Nκkz1z2,

where classically, N is a scaling parameter taken to be the volume of the
system times Avogadro’s number and zi = N−1xi is the concentration
in moles per unit volume. Note that unary reaction rates also satisfy

λk(x) = κkxi = Nκkzi.
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General form for classical scaling

All the rates naturally satisfy

λN
k (x) ≈ Nκk

∏
i

zνik

i ≡ Nλ̃k(z).
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First scaling limit

Setting CN(t) = N−1X(t)

CN(t) = CN(0) +
∑

k

N−1Yk(

∫ t

0
λN

k (X(s))ds)(ν ′k − νk)

≈ CN(0) +
∑

k

N−1Yk(N

∫ t

0
λ̃k(C

N(s))ds)(ν ′k − νk)

The law of large numbers for the Poisson process implies N−1Y (Nu) ≈
u,

CN(t) ≈ CN(0) +
∑

k

∫ t

0
κk

∏
i

CN
i (s)νik(ν ′k − νk)ds,

which in the large volume limit gives the classical deterministic law of
mass action

Ċ(t) =
∑

k

κk

∏
i

Ci(t)
νik(ν ′k − νk) ≡ F (C(t)).

skip
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Central limit theorem/Van Kampen approximation

VN(t) ≡
√

N(CN(t)− C(t))

≈ VN(0) +
√

N(
∑

k

1

N
Yk(N

∫ t

0

λ̃N
k (CN(s))ds)(ν ′k − νk)

−
∫ t

0

F (C(s))ds)

= VN(0) +
∑

k

1√
N

Ỹk(N

∫ t

0

λ̃N
k (CN(s))ds)(ν ′k − νk)

+

∫ t

0

√
N(FN(CN(s))− F (C(s)))ds

≈ VN(0) +
∑

k

Wk(

∫ t

0

λ̃k(C(s))ds)(ν ′k − νk)

+

∫ t

0

∇F (C(s)))VN(s)ds
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Gaussian limit

VN converges to the solution of

V (t) = V (0)+
∑

k

Wk(

∫ t

0
λ̃k(C(s))ds)(ν ′k− νk)+

∫ t

0
∇F (C(s)))V (s)ds

CN(t) ≈ C(t) +
1√
N

V (t)
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Diffusion approximation

CN(t) = CN(0) +
∑

k

N−1Yk(

∫ t

0
λk(X

N(s))ds)(ν ′k − νk)

≈ CN(0) +
∑

k

N−1/2Wk(

∫ t

0
λ̃k(C

N(s))ds)(ν ′k − νk)

+

∫ t

0
F (CN(s))ds,

where
F (c) =

∑
k

λ̃k(c)(ν
′
k − νk).

The diffusion approximation is given by the equation

C̃N(t) = C̃N(0)+
∑

k

N−1/2Wk(

∫ t

0
λ̃k(C̃

N(s))ds)(ν ′k−νk)+

∫ t

0
F (C̃N(s))ds.
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Itô formulation

The time-change formulation is equivalent to the Itô equation

C̃N(t) = C̃N(0) +
∑

k

N−1/2
∫ t

0

√
λ̃k(C̃N(s))dW̃k(s)(ν

′
k − νk)

+

∫ t

0
F (C̃N(s))ds

= C̃N(0) +
∑

k

N−1/2
∫ t

0
σ(C̃N(s))dW̃ (s) +

∫ t

0
F (C̃N(s))ds,

where σ(c) is the matrix with columns
√

λ̃k(c)(ν
′
k − νk).

See Kurtz [11], Ethier and Kurtz [4], Chapter 10, Gardiner [5], Chapter
7, and Van Kampen, [14].
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General approaches to averaging

Models with two time scales: (X, Y ), Y is “fast”

Occupation measure: ΓY (C × [0, t]) =
∫ t

0 1C(Y (s))ds

Replace integrals involving Y by integrals against ΓY∫ t

0
f(X(s), Y (s))ds =

∫
EY ×[0,t]

f(X(s), y)ΓY (dy × ds)

≈
∫ t

0

∫
EY

f(X(s), y)ηs(dy)ds

How do we identify ηs?
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Generator approach

Suppose Brf(x, y) = rCf(x, y) + Df(x, y) where C operates on f as a
function of y alone.

f(Xr(t), Yr(t))− r

∫
EY ×[0,t]

Cf(Xr(s), y)ΓY
r (dy × ds)

−
∫

EY ×[0,t]
Df(Xr(s), y)ΓY

r (dy × ds)

Assuming (Xr, Γ
Y
r ) ⇒ (X, ΓY ), dividing by r, we should∫

EY ×[0,t]
Cf(X(s), y)ΓY (dy × ds) =

∫
EY ×[0,t]

Cf(X(s), y)ηs(dy)ds = 0

Suppose that for each x, there exists a unique µx satisfying∫
EY

Cf(x, y)µx(dy) = 0, f ∈ D,

then ηs(dy) = µX(s)(dy)
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Well-mixed reactions

Consider A + B
κ
⇀ C. The generator for the Markov chain model is

Af(m, n) = κmn(f(m− 1, n− 1)− f(m, n))

Spatial model

Ui state (location and configuration) of ith molecule of A

Vj state of jth molecule of B

Bf(u, v) =
m∑

i=1

rCA
ui
f(u, v) +

n∑
j=1

rCB
vj
f(u, v)

+
∑
i,j

ρ(ui, vj)(f(θiu, θjv)− f(u, v))

where rCA is a generator modeling the evolution of a molecule of A and
rCB models the evolution of a molecule of B.
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Independent evolution of molecules

If there was no reaction

rCf(u, v) =
m∑

i=1

rCA
ui
f(u, v) +

n∑
j=1

rCB
vj
f(u, v)

would model the independent evolution of m molecules of A and r

molecules of B.
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Averaging: Markov chain model

Assume that the state spaces EA, EB for molecules of A and B are
compact and let E = ∪m,nE

m
A × En

B.

Let Γr be the occupation measure

Γr(C × [0, t]) =

∫ t

0
1C(U r(s), V r(s))ds,

so

f(U r(t), V r(t))−
∫
E×[0,t]

(rCf(u, v) + Df(u, v))Γr(du× dv × ds)

is a martingale. Then {(Γr, Xr
A, Xr

B)} is relatively compact, and assum-
ing all functions are continuous, any limit point (Γ, XA, XB) of Γr as
r →∞ satisfies ∫

E×[0,t]
Cf(u, v)Γ(du, dv, ds) = 0.

cf. Kurtz [12]
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Averaged generator

If f depends only on the numbers of molecules the martingale becomes

f(XA(t), XB(t))−
∫
E×[0,t]

∑
i,j

ρ(ui, vj)(f(XA(s)−1, XB(s)−1)−f(XA(s), XB(s)))Γ(du, dv, ds).

If CA and CB have unique stationary distributions µA, µB, then for
f(u, v) =

∏m
i=1 g(ui)

∏n
j=1 h(uj),∫

f(u, v)Γ(du, dv, t) =

∫ t

0
〈g, µA〉XA(s)〈h, µB〉XB(s)ds

and setting κ =
∫

ρ(u0, v0)µA(du0)µB(dv0),

f(XA(t), XB(t))−
∫ t

0

κXA(s)XB(s)f(XA(s)− 1, XB(s)− 1)− f(XA(s), XB(s)))ds

is a martingale.
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Averaging: Michaelis-Menten kinetics

Consider the reaction system A + E 
 AE ⇀ B + E

modeled as a continuous time Markov chain satisfying

XA(t) = XA(0)− Y1(

∫ t

0
κ1XA(s)XE(s)ds) + Y2(

∫ t

0
κ2XAE(s)ds)

XE(t) = XE(0)− Y1(

∫ t

0
κ1XA(s)XE(s)ds) + Y2(

∫ t

0
κ2XAE(s)ds)

+Y3(

∫ t

0
κ3XAE(s)ds)

XB(t) = Y3(

∫ t

0
κ3XAE(s)ds)
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Scaling

Note that M = XAE(t) + XE(t) is constant. Let N = O(XA) define

VE(t) =

∫ t

0
M−1XE(s)ds, ZA(t) = N−1XA(t)

κ1 = M−1γ1, κ2 = NM−1γ2, κ3 = NM−1γ3

ZA(t) = ZA(0)−N−1Y1(N

∫ t

0
γ1ZA(s)dVE(s)) + N−1Y2(Nγ2(t− VE(t)))

XE(t) = XE(0)− Y1(N

∫ t

0
γ1ZA(s)dVE(s)) + Y2(Nγ2(t− VE(t)))

+Y3(Nγ3(t− VE(t)))

ZB(t) = N−1Y3(Nγ3(t− VE(t)))

Along a subsequence (ZA, ZB, VE) ⇒ (xA, xB, vE) and∫ t

0
ZA(s)dVE(s) ⇒

∫ t

0
xA(s)dvE(s) =

∫ t

0
xA(s)v̇E(s)ds
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Theorem 1 (Darden [2, 3]) Assume that N →∞, M/N → 0, Mκ1 →
γ1, Mκ2/N → γ2, Mκ3/N → γ3, and XA(0)/N → xA(0), and

Then (N−1XA, VE) converges to (xA(t), vE(t)) satisfying

xA(t) = xA(0)−
∫ t

0
γ1xA(s)v̇E(s)ds +

∫ t

0
γ2(1− v̇E(s))ds (1)

0 = −
∫ t

0
γ1xA(s)v̇E(s)ds +

∫ t

0
(γ2 + γ3)(1− v̇E(s))ds,

and hence v̇E(s) = γ2+γ3

γ2+γ3+γ1xA(s) and

ẋA(t) = − γ1γ3xA(t)

γ2 + γ3 + γ1xA(s)
.
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Quasi-steady state

Assume M is constant κ2 = γ2N/M , κ3 = γ3N/M . Then

f(XE(t))− f(XE(0))

−
∫ t

0
Nγ1ZA(s)M−1XE(s)(f(XE(s)− 1)− f(XE(s)))ds

−
∫ t

0
N(γ2 + γ3)(1−M−1XE(s))(f(XE(s) + 1)− f(XE(s)))ds

Since ZA(s) → xA(s),
∫

Cf(xA(s), k)ηs(dk) = 0 becomes

M∑
k=0

ηs(k)[(γ1xA(s)M−1k(f(k − 1)− f(k)

+(γ2 + γ3)(1−M−1k)(f(k + 1)− f(k))] = 0

so ηs is binomial(M, ps), where ps = γ2+γ3

γ2+γ3+γ1xA(s) .
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A model of intracellular viral infection

Srivastava, You, Summers, and Yin [13], Haseltine and Rawlings [10],
Ball, Kurtz, Popovic, and Rampala [1]

Three time-varying species, the viral template, the viral genome, and
the viral structural protein (indexed, 1, 2, 3 respectively).

The model involves six reactions,

T + stuff
k1⇀ T + G

G
k2⇀ T

T + stuff
k3⇀ T + S

T
k4⇀ ∅

S
k5⇀ ∅

G + S
k6⇀ V
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Stochastic system

X1(t) = X1(0) + Yb(

∫ t

0
k2X2(s)ds)− Yd(

∫ t

0
k4X1(s)ds)

X2(t) = X2(0) + Ya(

∫ t

0
k1X1(s)ds)− Yb(

∫ t

0
k2X2(s)ds)

−Yf(

∫ t

0
k6X2(s)X3(s)ds)

X3(t) = X3(0) + Yc(

∫ t

0
k3X1(s)ds)− Ye(

∫ t

0
k5X3(s)ds)

−Yf(

∫ t

0
k6X2(s)X3(s)ds)
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Figure 1: Simulation (Haseltine and Rawlings 2002)
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Scaling parameters

N scaling parameter

Each Xi is scaled according to its abundance in the system.

For N = 1000, X1 = O(N 0), X2 = O(N 2/3), and X3 = O(N) and we
take Z1 = X1, Z2 = X2N

−2/3, and Z3 = X3N
−1.

Expressing the rate constants in terms of N = 1000

k1 1 1

k2 0.025 2.5N−2/3

k3 1000 N

k4 0.25 .25
k5 2 2

k6 7.5× 10−6 .75N−5/3
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Normalized system

With the scaled rate constants, we have

ZN
1 (t) = ZN

1 (0) + Yb(

∫ t

0
2.5ZN

2 (s)ds)− Yd(

∫ t

0
.25ZN

1 (s)ds)

ZN
2 (t) = ZN

2 (0) + N−2/3Ya(

∫ t

0
ZN

1 (s)ds)−N−2/3Yb(

∫ t

0
2.5ZN

2 (s)ds)

−N−2/3Yf(

∫ t

0
.75ZN

2 (s)ZN
3 (s)ds)

ZN
3 (t) = ZN

3 (0) + N−1Yc(

∫ t

0
NZN

1 (s)ds)−N−1Ye(

∫ t

0
2NZN

3 (s)ds)

−N−1Yf(

∫ t

0
.75ZN

2 (s)ZN
3 (s)ds),
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Limiting system

With the scaled rate constants, we have

Z1(t) = Z1(0) + Yb(

∫ t

0
2.5Z2(s)ds)− Yd(

∫ t

0
.25Z1(s)ds)

Z2(t) = Z2(0)

Z3(t) = Z3(0) +

∫ t

0
Z1(s)ds−

∫ t

0
2Z3(s)ds
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Fast time scale

When τN
ε = inf{t : ZN

2 (t) ≥ ε} < ∞, define V N
i (t) = Zi(τ

N
ε + N 2/3t).

On the event τN
ε < ∞,

V N
1 (t) = Z1(τ

N
ε ) + Y ∗

b (

∫ t

0
2.5N 2/3V N

2 (s)ds)− Y ∗
d (

∫ t

0
.25N 2/3V N

1 (s)ds)

V N
2 (t) =

dεN 2/3e
N 2/3 + N−2/3Y ∗

a (

∫ t

0
N 2/3V N

1 (s)ds)

−N−2/3Y ∗
b (

∫ t

0
2.5N 2/3V N

2 (s)ds)

−N−2/3Y ∗
f (N 2/3

∫ t

0
.75V N

2 (s)V N
3 (s)ds)

V N
3 (t) = Z3(τ

N
ε ) + N−1Y ∗

c (

∫ t

0
N 5/3V N

1 (s)ds)−N−1Y ∗
e (

∫ t

0
2N 5/3V N

3 (s)ds)

−N−1Y ∗
f (

∫ t

0
.75N 2/3V N

2 (s)V N
3 (s)ds)
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Averaging

As N →∞, dividing the equations for V N
1 and V N

3 by N 2/3 shows that∫ t

0
V N

1 (s)ds− 10

∫ t

0
V N

2 (s)ds → 0∫ t

0
V N

3 (s)ds− 5

∫ t

0
V N

2 (s)ds → 0.

The assertion for V N
3 and the fact that V N

2 is asymptotically regular
imply ∫ t

0
V N

2 (s)V N
3 (s)ds− 5

∫ t

0
V N

2 (s)2ds → 0.

It follows that V N
2 converges to the solution of (2).
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Law of large numbers

Theorem 2 Conditioning on τN
ε < ∞, for each δ > 0 and t > 0,

lim
N→∞

P{ sup
0≤s≤t

|V N
2 (s)− V2(s)| ≥ δ} = 0,

where V2 is the solution of

V2(t) = ε +

∫ t

0
7.5V2(s)ds)−

∫ t

0
3.75V2(s)

2ds. (2)
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Software

StochKit
Petzold group, UC Santa Barbara
http://www.engineering.ucsb.edu/%7Ecse/

Hy3S Hybrid Stochastic Simulation for Supercomputers
Kaznessis Group, University of Minnesota
http://hysss.sourceforge.net/

StochSim
Computational Cell Biology Group, Cambridge
http://info.anat.cam.ac.uk/groups/comp-cell/StochSim.html

Stochastirator
Molecular Sciences Institute, Berkeley
http://opnsrcbio.molsci.org/stochastirator/stoch-main.html

http://www.engineering.ucsb.edu/%7Ecse/
http://hysss.sourceforge.net/
http://info.anat.cam.ac.uk/groups/comp-cell/StochSim.html
http://opnsrcbio.molsci.org/stochastirator/stoch-main.html
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Abstract

Attempts to model chemical reactions within biological cells has led to
renewed interest in stochastic models for these systems. The classical
stochastic models for chemical reaction networks will be reviewed, and
multiscale methods for model reduction will be described. New models
motivated by the particular nature of biochemical processes will also
be discussed.


