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1. Processes, filtrations, and stopping times

• Stochastic processes

• Filtrations

• Stopping times
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Stochastic processes

A stochastic process is an indexed family of random variables {Xα, α ∈ I}

• State space: The set E in which Xα takes values. Usually E ⊂ Rd for some d.
Always (for us), a complete , separable metric space (E, r).

• Index set: Usually, discrete time (Z, N = {1, 2, 3, . . .}, N0 = {0, 1, 2, . . .}) or
continuous time ([0,∞) or (−∞,∞))

• Finite dimensional distributions:

µα1,...,αn(A1 × · · · × An) = P{Xα1 ∈ A1, . . . , Xαn ∈ An}, Ai ∈ B(E), (1.1)

B(E) the Borel subsets of E.

• Kolmogorov extension theorem: If {µα1,...,αn ∈ P(En), αi ∈ I, n = 1, 2, . . .}
is consistent, then there exists a probability space (Ω,F , P ) and {Xα, α ∈ I}
defined on (Ω,F , P ) satisfying (1.1).
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Information structure

Available information is modeled by a sub-σ-algebra of F .

Assume that the index set is discrete or continuous time, [0,∞) to be specific.

• Filtration: {Ft, t ≥ 0}, Ft a sub-σ-algebra of F . If s ≤ t, Fs ⊂ Ft. Ft represents
the information available at time t.

• Adapted process: {X(t) ≡ Xt, t ≥ 0} is {Ft}-adapted if X(t) is Ft-measurable
for each t ≥ 0, that is, the state of X at time t is part of the information avail-
able at time t.

• Natural filtration for a process X : FX
t = σ(X(s) : s ≤ t). {FX

t } is the smallest
filtration for which X is adapted.
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Stopping times

• Stopping time: A random variable τ with values in the index set (e.g., [0,∞))
or ∞ is a {Ft}-stopping time if {τ ≤ t} ∈ Ft for each t ∈ [0,∞).

• The max and min of two stopping times (or any finite collection) are stopping
times

• If τ is a stopping time and c > 0, then τ + c is a stopping time

• In discrete time, {τ = n} ∈ Fn for all n if and only if {τ ≤ n} ∈ Fn for all n.

• In discrete time, hitting times for adapted processes are stopping times: τA =
min{n : Xn ∈ A}

{τA ≤ n} = ∪k≤n{Xk ∈ A}, {τA = ∞} = ∩k{Xk /∈ A}

• In discrete time, a stopped process is adapted: If {Xn} is adapted and τ is a
stopping time, then {Xn∧τ} is adapted.

{Xn∧τ ∈ A} = (∪k<n{Xk ∈ A} ∩ {τ = k}) ∪ ({Xn ∈ A} ∩ {τ ≥ n})
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Information at a stopping time

• Information available at a stopping time τ

Fτ = {A ∈ F : A ∩ {τ ≤ t} ∈ Ft, all t}

or in the discrete time case

Fτ = {A ∈ F : A ∩ {τ = n} ∈ Fn, all n}

• σ ≤ τ implies Fσ ⊂ Fτ

A ∩ {τ ≤ t} = A ∩ {σ ≤ t} ∩ {τ ≤ t}

Exercise 1.1 Show that Fτ is a σ-algebra.
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Stopping times for discrete time processes
For definitness, let I = {0, 1, 2, . . .}, and let {Xn} be {Fn}-adapted.

Lemma 1.2 If τ is a {Fn}-stopping time, then Xm∧τ is Fτ measurable.

Proof.
{Xm∧τ ∈ A} ∩ {τ = n} = {Xm∧n ∈ A} ∩ {τ = n} ∈ Fn (1.2)

�

Lemma 1.3 Let FX
n = σ(Xk : k ≤ n) be the natural filtration for X , and let τ be a finite

(that is, {τ <∞} = Ω) {FX
n }-stopping time. Then FX

τ = σ(Xk∧τ : k ≥ 0).

Proof. σ(Xk∧τ : k ≥ 0) ⊂ FX
τ , by (1.2). Conversely, for A ∈ FX

τ ,

A ∩ {τ = n} = {(X0, . . . , Xn) ∈ Bn} = {(X0∧τ , . . . , Xn∧τ ) ∈ Bn}

for some Bn. Consequently,

A = ∪n{(X0∧τ , . . . , Xn∧τ ) ∈ Bn} ∈ σ(Xk∧τ : k ≥ 0)

�
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Families of processes

• Markov processes: E[f(X(t+ s))|Ft] = E[f(X(t+ s))|X(t)], all f ∈ B(E), the
bounded, measureable functions on E.

• Martingales: E = R and E[X(t+ s)|Ft] = X(t)

• Stationary processes: P{X(s+ t1) ∈ A1, . . . , X(s+ tn) ∈ An} does not depend
on s
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2. Markov Chains

• Markov property

• Transition functions

• Strong Markov property

• Tulcea’s theorem

• Optimal stopping

• Recurrence and transcience

• Stationary distributions
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Markov property

{Xn, n ≥ 0} a sequence of E-valued random variables

Definition 2.1 {Xn} is a Markov chain with respect to a filtration {Fn} if {Xn} is
{Fn}-adapted and

P{Xn+1 ∈ C|Fn} = P{Xn+1 ∈ C|Xn}, C ∈ B(E), n ≥ 0,

or equivalently

E[f(Xn+1)|Fn] = E[f(Xn+1)|Xn], f ∈ B(E), n ≥ 0.

Dynkin class theorem
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Generic construction of a Markov chain

Let F : E × R → E be measurable (F−1(C) ∈ B(E)× B(R) for each C ∈ B(E)).

Let
Xk+1 = F (Xk, Zk+1),

where the {Zk} are iid and X0 is independent of the {Zk}

Lemma 2.2 {Xk} is a Markov chain with respect to {Fn}, Fn = σ(X0, Z1, . . . , Zn).

Proof. Let µZ be the distribution of Zk and define

Pf(x) =

∫
f(F (x, z))µZ(dz).

Then Xk is Fk-measurable and Zk+1 is independent of Fk, so

E[f(F (Xk, Zk+1))|Fk] = Pf(Xk).

�

Note that Fn ⊃ FX
n . conditional expectation
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Transition function

P (x,C) = P{F (x, Z) ∈ C} = µZ({z : F (x, z) ∈ C}) is the transition function for the
Markov chain.

P : E × B(E) → [0, 1] is a transition function if P (·, C) is B(E)-measurable for each
C ∈ B(E) and P (x, ·) ∈ P(E) for each x ∈ E.

Note that we are considering time homogeneous Markov chains. We could consider

Xk+1 = Fk(Xk, Zk+1)

for a sequence of functions {Fk}. The chain would then be time inhomogeneous.
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Finite dimensional distributions

µX0 is called the initial distribution of the chain. The initial distribution and the
transition function determine the finite dimensional distributions of the chain

P{X0 ∈ B0, . . . , Xn ∈ Bn} =

∫
B0

µX0(dx0)

∫
B1

P (x0, dx1) · · ·
∫

Bn−1

P (xn−1, Bn)

More generally

E[f0(X0) · · · fn(Xn)] =

∫
E

µX0(dx0)f0(x0)

∫
E

P (x0, dx1)f1(x1) · · ·
∫

E

P (xn−1, dxn)fn(xn)

and

E[f(X0, . . . , Xn)] =

∫
E×···×E

f(x0, . . . , xn)µX0(dx0)P (x0, dx1) · · ·P (xn−1, dxn)



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 15

Example: FIFO queue

Let {(ξk, ηk)} be iid with values in [0,∞)2 define

Xk+1 = (Xk − ξk+1)
+ + ηk+1

Xk is the time that the kth customer is in the system for a FIFO queue with service
times {ηk} and interarrival times {ξk}.

Note that P : C̄([0,∞)) → C̄([0,∞)). Transition operators that satisfy this condi-
tion are said to have the Feller property.
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Strong Markov property

Let τ be a stopping time with τ <∞ a.s. and consider

E[f(Xτ+1)|Fτ ].

Let A ∈ Fτ . Then∫
A

f(Xτ+1)dP =
∞∑

n=0

∫
A∩{τ=n}

f(Xτ+1)dP

=
∞∑

n=0

∫
A∩{τ=n}

f(Xn+1)dP

=
∞∑

n=0

∫
A∩{τ=n}

Pf(Xn)dP =

∫
A

Pf(Xτ )dP

so
E[f(Xτ+1)|Fτ ] = Pf(Xτ )

(Note that Xτ is Fτ -measurable.)
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Tulcea’s theorem

Theorem 2.3 For k = 1, 2, . . ., let (Ωk,Fk) be a measurable space. Define Ω = Ω1×Ω2×
· · · and F = F1×F2× · · ·. Let P1 be a probability measure on F1 and for k = 2, 3, . . ., let
Pk : Ω1×· · ·×Ωk−1×Fk → [0, 1] be such that for each (ω1, . . . , ωk−1) ∈ Ω1×· · ·×Ωk−1,
Pk(ω1, . . . , ωk−1, ·) is a probability measure on Fk and for each A ∈ Fk, Pk(·, A) is a
F1 × · · · × Fk−1-measurable function. Then there is a probability measure P on F such
that for A ∈ F1 × · · · × Fk

P (A× Ωk+1 × · · ·) =

∫
Ω1

· · ·
∫

Ωk

1A(ω1, . . . , ωk)Pk(ω1, . . . , ωk−1, dωk) · · ·P1(dω1)

Corollary 2.4 There exists Px ∈ P(E∞) such that for C0, C1, . . . , Cm ∈ B(E)

Px(C0 × C1 × · · · × Cm × E∞)

= 1C0(x)

∫
C1

P (x, dx1)

∫
C2

P (x1, dx2) · · ·
∫

Cm−1

P (xm−2, dxm−1)P (xm−1, Cm)

For C ∈ B(Em+1),

Px(C × E∞) =

∫
E

P (x, dx1) · · ·
∫

E

P (xm−1, dxm)1C(x, x1, . . . , xm)
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Implications of the Markov property
Note that

E[f1(Xn+1)f2(Xn+2)|Fn] = E[f1(Xn+1)E[f2(Xn+2)|Fn+1]|Fn]

= E[f1(Xn+1)E[f2(Xn+2)|Xn+1]|Fn]

= P (f1Pf2)(Xn)

and by induction
P{(Xn, Xn+1, · · ·) ∈ C|Fn} = PXn(C), (2.1)

for C = C0 × C1 × · · · × Cm × E∞, Ck ∈ B(E). The Dynkin class theorem implies
(2.1) holds for all C ∈ B(E∞).

Strong Markov property: By the same argument,

P{(Xτ , Xτ+1, · · ·) ∈ C|Fτ} = PXτ (C).
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Conditioning on Fτ

Lemma 2.5 Let τ be a finite {Fn}-stopping time, and let E[|Z|] <∞. Then

E[Z|Fτ ] =
∞∑

n=0

E[Z|Fn]1{τ=n},

Proof. Let A ∈ Fτ . Then

E[1A

∞∑
n=0

E[Z|Fn]1{τ=n}] =
∞∑

n=0

E[1A∩{τ=n}E[Z|Fn]] =
∞∑

n=0

E[1A∩{τ=n}Z] = E[1AZ].

�

Lemma 2.6 Let {Yn} be {Fn}-adapted, and let τ be a finite {Fn}-stopping time. If
E[|Yn|] + E[|Yτ |] <∞, then

E[Yτ |Fn] = E[Yτ∨n|Fn]1{τ≥n} + Yτ1{τ<n}.
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Optimal stopping

Let {Xn} be a {Fn}-Markov chain, and let S ≡ S({Fn}) denote the collection of
{Fn}-stopping times, and let Sn = {τ ∈ S : τ ≥ n}. The optimal stopping problem
with reward function u(n, x) is to find a stopping time τo satisfying

E[u(τo, Xτo)] = V ∗ ≡ sup
τ∈S

E[u(τ,Xτ )]

To ensure the right side is finite, assume thatE[supn u(n,Xn)] <∞ andE[u(0, X0)] >
−∞. To ensure P{τo = ∞} = 0, let u(∞, x) = −∞.

For more information on optimal stopping see Ferguson
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Optimality equation

Suppose that τ1, τ2 ∈ Sn and A = {E[u(τ1, Xτ1)|Fn] > E[u(τ2, Xτ2)|Fn]}. Then
τ = τ11A + τ21Ac ∈ Sn and

E[u(τ,Xτ )|Fn] = E[u(τ1, Xτ1)|Fn]1A + E[u(τ2, Xτ2)|Fn]1Ac (2.2)
= E[u(τ1, Xτ1)|Fn] ∨ E[u(τ2, Xτ2)|Fn]

Define

Vn = ess sup
τ∈Sn

E[u(τ,Xτ )|Fn]

= ess sup
τ∈Sn

E[u(τ ∨ (n+ 1), Xτ∨(n+1))1{τ>n} + u(n,Xn)1{τ=n}|Fn]

= ess sup
τ∈Sn

E[E[u(τ ∨ (n+ 1), Xτ∨(n+1))|Fn+1]1{τ>n} + u(n,Xn)1{τ=n}|Fn]

= ess sup
τ∈Sn

(E[Vn+1|Fn]1{τ>n} + u(n,Xn)1{τ=n}

It follows that
Vn = max(u(n,Xn), E[Vn+1|Fn])

Note that (2.2) implies that E[Vn] = supτ∈Sn
E[u(τ,Xτ )], so V ∗ = E[V0].

essential supremum
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Optimal stopping rule

Theorem 2.7 Suppose that E[supn u(n,Xn)] < ∞ and limn→∞ u(n,Xn) = −∞. Then
τo = min{n : u(n,Xn) ≥ Vn} is an optimal stopping rule.

Proof.

�
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Dynamic programming

Lemma 2.8 For n < N , let SN
n be the collection of stopping times satisfying n ≤ τ ≤ N .

Define vN
N (x) = u(N, x) and

vN
n = max(u(n, x), PvN

n+1(x)).

Then for n < N ,
V N

n = ess sup
τ∈SN

n

E[u(τ,Xτ )|Fn] = vN
n (Xn)

Proof. As above
V N

n = max(u(n,Xn), E[V N
n+1|Fn]),

so since V N
N = u(N,XN),

V N
N−1 = max(u(N − 1, XN−1), E[u(N,XN)|FN−1]) = vN

N−1(XN−1),

and the lemma follows by induction. �
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Infinite horizon

Assume E[supn u(n,Xn)] <∞ and limn→∞ u(n,Xn) = −∞ a.s. Then

lim sup
N→∞

E[u(τ ∧N,Xτ∧N)] ≤ E[u(τ,Xτ )]
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House-selling problem

Each week you pay c dollars to advertise your house, and each week you advertise,
you get one offer. Suppose the offers {Xk} are iid with a known distribution µX

and if you reject an offer, it is gone forever. When should you sell? The problem is
to maximize

E[Xτ − cτ ].

The optimality equation becomes

Vn = max(Xn − cn, E[Vn+1|Fn]) = max(Xn, E[Vn+1 + cn|Fn])− cn

Let V ∗ = supτ∈S E[Xτ − cτ ]. Then Vn = max(Xn, V
∗)− cn, so

V ∗ = E[max(X1, V
∗)]− c

which gives

V ∗ = V ∗µX(−∞, V ∗] +

∫
(V ∗,∞)

xµX(dx)− c

or ∫
(V ∗,∞)

(x− V ∗)µX(dx) = c.
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Recurrence and transience

Assume E is countable. Let T 0
y = 0 and define

T k
y = min{n > T k−1

y : Xn = y}.

y is recurrent if Py{T 1
y <∞} = 1. Otherwise y is transient.

Let Cy = {(x0, x1, . . .) : xi = y for some i > 0}. Then {T 1
y < ∞} = {X ∈ Cy} and

similarly
{T 2

y <∞} = {T 1
y <∞, (XT 1

y
, XT 1

y +1, . . .) ∈ Cy}
By the strong Markov property

= Px{T 1
y <∞}Py(Cy)

and more generally

Px{T k
y <∞} = Px{T 1

y <∞}Py{T 1
y <∞}k−1.

Consequently, if Py{T 1
y < ∞} = 1, then Py{T k

y < ∞} = 1, and if Py{T 1
y < ∞} < 1,

then there is a last time that Xn = y. In particular, let N(y) =
∑∞

n=1 1{Xn=y}. Then

Ey[N(y)] =
∞∑

k=1

Py{N(y) ≥ k} =
∞∑

k=1

Py{T k
y <∞} =

Py{T 1
y <∞}

1− Py{T 1
y <∞}

.
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Conditions for recurrence

Theorem 2.9 y is recurrent if and only if Ey[N(y)] = ∞.

Let ρxy = Px{T 1
y <∞}.

Theorem 2.10 If x is recurrent and Px{T 1
y <∞} > 0, then y is recurrent and

Py{T 1
x <∞} = 1

Proof. Px{T k
x = ∞, some k} ≥ ρxy(1−ρyx), so ρyx = 1. Px{T 1

y <∞} =
∑∞

k=1 Px{T k−1
x <

T 1
y < T k

x } and

Px{T k−1
x < T 1

y < T k
x } = Px{T 1

y > T 1
x}k−1Px{T 1

y < T 1
x}.

Let Ak = {Xn = y, some T k
x < n < T k+1

x }. Then Px(Ak) = Px{T 1
y < T 1

x}. Conse-
quently, since N(y) ≥

∑
k 1Ak

, Ex[N(y)] = ∞.

�
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Irreducibility

X is irreducible if ρxy > 0 for all x, y ∈ E.

Lemma 2.11 If X is irreducible, then either every state is transient or every state is recur-
rent.
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Conditions for recurrence/transience

M f
n =

n∑
k=1

(f(Xk)− Pf(Xk−1)) = f(Xn)− f(X0)−
n−1∑
k=0

(Pf(Xk)− f(Xk))

is a martingale. Suppose Pf = f . Then f(Xn) is a martingale. If Pf ≤ f , f(Xn) is
a supermartingale.

Theorem 2.12 Assume that the chain is irreducible. Suppose f is positive and noncon-
stant and that Pf ≤ f . Then the chain is transient.

Proof. Suppose f(x) 6= f(y). Since limn→∞ f(Xn) exists, X cannot visit both x and
y infinitely often. �
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Conditions for transcience

Theorem 2.13 Assume that the chain is irreducible. Suppose f is positive, Pf(x) ≤ f(x)
for x /∈ K, and that there exists y ∈ E −K such that f(y) < f(x) for all x ∈ K. Then
the chain is transient.

Proof. Let τK = min{n ≥ 0 : Xn ∈ K}. Then f(Xn∧τK
) is a super martingale. Let

X0 = y. Since Lf = limn→∞ f(Xn∧τK
) exists and E[Lf ] ≤ f(y), Py{τK <∞} < 1. �

Let f(x) = Px{τK < ∞}. Then f(x) = 1 for x ∈ K and Pf(x) = f(x) for x /∈ K.
Consequently, an irreducible chain is transient if and only if there exist K and
y /∈ K such that f(y) = Py{τK <∞} < 1.
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Conditions for recurrence

Theorem 2.14 Assume that the chain is irreducible. If Pf(x) ≤ f(x) for x /∈ K, and
{x : f(x) < c} is finite for each c > 0, then Px{τK <∞} = 1 for all x.

Proof. If x ∈ K, then τK = 0. Fix y /∈ K, and letX0 = y. ThenLf = limn→∞ f(Xn∧τK
)

exists. Since E[Lf ] ≤ f(y) <∞, we must have Py{τK <∞} = 1. �
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Example

Let E = {0, 1, 2, . . .}, 0 < pi = 1 − qi < 1 for i 6= 1. Let p(i, i + 1) = pi and
p(i, i− 1) = qi, for i > 0, and p01 = 1. Then X is irreducible. Consider the equation
Pf(i) = f(i) for i > 0. Then

f(k + 1)− f(k) =
qk
pk

(f(k)− f(k − 1)),

so

f(k + 1)− f(k) =
k∏

i=1

qi
pi

(f(1)− f(0))

and

f(k + 1) = f(1) + (f(1)− f(0))
k∑

j=1

j∏
i=1

qi
pi

Therefore, if
∞∑

j=1

j∏
i=1

qi
pi

<∞,

then X is transient.
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Conversely, if
∞∑

j=1

j∏
i=1

qi
pi

= ∞,

let

f(k + 1) = 1 +
k∑

j=1

j∏
i=1

qi
pi

.

Then limk→∞ f(k) = ∞, and ρi0 = Pi{τ0 <∞} = 1 for all i > 0. Since

ρ00 = p01ρ10 = 1,

X is recurrent.
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Positive recurrence

If the chain is irreducible and recurrent, then by the strong Markov property, for
each y ∈ E, {T k+1

y − T k
y , k ≥ 1} are iid.

The law of large numbers then implies

lim
k→∞

T k
y

k
= Ey[T

1
y ],

and hence

lim
n→∞

1

n

n∑
i=1

1{y}(Xi) =
1

Ey[T 1
y ]
≡ π(y).

If Ey[T
1
y ] <∞, then the y is called positive recurrent. Assuming irreducibility, if one

state is positive recurrent, then all states are positive recurrent.
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Stationary distributions

Lemma 2.15 If the chain is irreducible and positive recurrent, then∑
x∈E

π(x)pxy = π(y)

Proof. Let f(x) = 1{y}(x). Then

lim
n→∞

1

n

n∑
i=1

(f(Xi)− Pf(Xi−1)) = 0 a.s.,

so ∑
x∈E

π(x)pxy ≤ lim
n→∞

1

n

n∑
i=1

pXi−1y = π(y).

Summing over y, we see that equality must hold. �

Dropping the assumption that E is countable, π ∈ P(E) satisfying∫
E

P (x,A)π(dx) = π(A)

is called a stationary distribution for the chain.
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Ergodicity for Markov chains

The statement that a Markov chain is ergodic is somewhat ambiguous. At a mini-
mum, it means that the chain has a unique stationary distribution.

Other possibilities (P nf(x) = Ex[f(Xn)]):

• There exists π ∈ P(E) such that for each f ∈ C̄(E) and each x ∈ E,

lim
n→∞

1

n

n∑
i=1

P if(x) =

∫
E

fdπ.

• There exists π ∈ P(E) such that for each x ∈ E,

lim
n→∞

sup
A∈B(E)

| 1
n

n∑
i=1

P i(x,A)− π(A)| = 0.

• There exists π ∈ P(E) such that for each initial distribution

lim
n→∞

1

n

n∑
i=1

f(Xi) =

∫
E

fdπ, a.s., f ∈ C̄(E) (or f ∈ B(E))
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Stronger conditions

• There exists π ∈ P(E) such that for each x ∈ E,

lim
n→∞

P nf(x) =

∫
E

fdπ, f ∈ C̄(E) (or f ∈ B(E)).

• (Uniform ergodicity) There exists π ∈ P(E) such that

lim
n→∞

sup
x∈E

sup
A∈B(E)

|P n(x,A)− π(A)| = 0.

• (Geometric ergodicity) There exists π ∈ P(E), 0 < ρ < 1, and M > 0 such that

sup
A∈B(E)

|P n(x,A)− π(A)| ≤M(x)ρn.
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Total variation norm

For a finite signed measure ν on B(E),

‖ν‖TV = sup
A∈B(E)

|ν(A)|.

Then ‖µ− ν‖TV defines a metric on P(E).

Lemma 2.16 Let µ, ν ∈ P(E). Then

‖µ− ν‖TV =
1

2
sup

f∈B(E),0≤f≤1

|
∫

E

fdµ−
∫

E

fdν|
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Reversibility

Let µ be a σ-finite measure. A chain is reversible with respect to µ if∫
E

fPgdµ =

∫
E

gPfdµ.

In other words, P is a self-adjoint operator on L2(µ).

If P is reversible with respect to µ, then µ is a stationary measure for P in the sense
that ∫

E

Pgdµ =

∫
E

gdµ, g ∈ L1(µ).

If µ ∈ P(E), then µ is a stationary distribution.

Suppose P has a density with respect to β, β σ-finite, that is,

P (x, dy) = p(x, y)β(dy).

Then any stationary measure is absolutely continuous with respect to β. If in addi-
tion, P is reversible with respect to µ(dy) = m(y)β(dy), then detailed balance holds:

m(x)p(x, y) = m(y)p(y, x).
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Example

Let E = {0, 1, 2, . . .}, and p01 = 1 and pii+1 = pi = 1− pii−1 = 1− qi, for i > 0. Then
letting β be counting measure detailed balance requires

mkpk = mk+1qk+1.

Consequently, we can take m0 = 1 and

mk =
k∏

i=1

pi−1

qi
, k ≥ 1,

and the chain is reversible with respect to µ{i} = mi. The birth and death process
is postive recurrent if and only if

∞∑
k=1

k∏
i=1

pi−1

qi
<∞.
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Markov chain Monte Carlo

Markov chain Monte Carlo exploits the fact that

lim
n→∞

1

n

n∑
i=1

f(Xi) =

∫
E

fdπ

under appropriate conditions on the Markov chain and stationary distribution π.

Given π, find P such that
∫

E
Pfdπ =

∫
E
fdπ. To estimate

∫
E
fdπ, simulate {Xi}

and compute

Θb,nf =
1

n− b

n∑
i=b+1

f(Xi).

For b (the “burn in”) sufficiently large, Θb,nf should be an approximately unbiased
estimator of

∫
E
fdπ.
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Metropolis-Hastings algorithm

π(dy) = π(y)β(dy)

Q(x, dy) = q(x, y)β(dy)

Define

α(x, y) = 1 ∧ π(y)q(y, x)

π(x)q(x, y)
=

1

π(x)q(x, y)
(π(x)q(x, y)) ∧ π(y)q(y, x)),

where α(x, y) = 1 if π(x)q(x, y) = 0. Given X0, define {Xn} recursively as follows:

Let {ξn} be iid uniform [0, 1]. Generate Yn+1 so that P{Yn+1 ∈ A|FX,Y,ξ
n } = Q(Xn, A)

and set

Xn+1 =

{
Yn+1 ξn+1 ≤ α(Xn, Yn+1)
Xn ξn+1 > α(Xn, Yn+1)

Lemma 2.17 {Xn} is a Markov chain that is reversible with respect to π.
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Proof of Lemma 2.17

Pf(x) =

∫
E

q(x, y)(f(y)α(x, y) + f(x)(1− α(x, y))β(dy)

=

∫
E

1

π(x)
((f(y)− f(x))(π(x)q(x, y)) ∧ (π(y)q(y, x))β(dy) + f(x)

so ∫
E

g(x)Pf(x)π(x)β(dx)

=

∫
E

∫
E

g(x)(f(y)− f(x))(π(x)q(x, y)) ∧ (π(y)q(y, x))β(dy)β(dx)

+

∫
E

g(x)f(x)π(x)β(dx)

= −1

2

∫
E

∫
E

(g(y)− g(x))(f(y)− f(x))(π(x)q(x, y)) ∧ (π(y)q(y, x))β(dx)β(dy)

+

∫
E

g(x)f(x)π(x)β(dx)

Reversibility follows by the symmetry in f and g.
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Gibbs sampler

E = Sd, β(dz), σ-finite on S

π(dx) =π(x1, . . . , xd)β(dx1) · · · β(dxd)

θl(x|z) replaces the lth component of x ∈ Sd by z ∈ S.

Plf(x) =

∫
S
f(θl(x|z))π(θl(x|z))β(dz)∫

S
π(θl(x|z))β(dz)

Check that
∫

E
Plfdπ =

∫
E
fdπ.

Deterministic scan Gibbs sampler: P = P1P2 · · ·Pd

Random scan Gibbs sampler: P = 1
d

∑d
i=1 Pi
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Coupling

Lemma 2.18 Let P (x,Γ) be a transition function on E and let νxy(Γ) be a transition
function from E×E to E. Let ε : E×E → [0, 1] be B(E)×B(E)-measurable and satisfy

P (x,Γ) ∧ P (y,Γ) ≥ ε(x, y)νxy(Γ), Γ ∈ B(E)

Let {Xk} and {Yk} be independent Markov chains with transition function P . If

∞∑
k=0

ε(Xk, Yk) = ∞ a.s.,

then there exists a probability space on which is defined a Markov chain {(X̃k, Ỹk)} such
that {X̃k} has the same distribution as {Xk}, {Ỹk} has the same distribution as {Yk}, and
there exists a random variable κ <∞ a.s. such that k ≥ κ implies X̃k = Ỹk.
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Proof of Lemma 2.18
Proof. Assume, without loss of generality, that ε(x, x) = 1, and define

P̃ (x, y,Γ1 × Γ2) = ε(x, y)νxy(Γ1 ∩ Γ2)

+
(P (x,Γ1)− ε(x, y)νxy(Γ1))(P (y,Γ2)− ε(x, y)νxy(Γ2))

1− ε(x, y)
,

where the second term on the right is 0 if ε(x, y) = 1. Note that if {(X̃k, Ỹk)} is a
Markov chain with transition function P̃ (x, y,Γ), then {X̃k} and {Ỹk} are Markov
chains with transition function P . Intuitively, at the kth transition a coin is flipped
which is heads with probability ε(X̃k−1, Ỹk−1). If heads comes up, then X̃k = Ỹk

and both have conditional distribution νX̃k−1Ỹk−1
. If tails comes up, X̃k and Ỹk are

conditionally independent with conditional distribution

ζ(x, y,Γ1 × Γ2) =
(P (x,Γ1)− ε(x, y)νxy(Γ1))(P (y,Γ2)− ε(x, y)νxy(Γ2))

(1− ε(x, y))2
,

where x = X̃k−1 and y = Ỹk−1.



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 47

To see that X̃ and Ỹ eventually couple, construct a Markov chain (X̃, Ỹ , X, Y ) such
that each component is a Markov chain with transition function P , X is indepen-
dent of Y , (X̃, Ỹ ) has the transition function given above, and (Xk, Yk) = (X̃k, Ỹk)
until the coin comes up heads. The desired one-step transition function is

P̂ (x, y, x′, y′,Γ1 × Γ2 × Γ3 × Γ4) = νxy(Γ1 ∩ Γ2)(P (x,Γ3)P (y,Γ4)

−(1− ε(x, y))ζ(x, y,Γ3 × Γ4))

+(1− ε(x, y))ζ(x, y, (Γ1 ∩ Γ3)× (Γ2 ∩ Γ4))

if x = x′ and y = y′, and

P̂ (x, y, x′, y′,Γ1 × Γ2 × Γ3 × Γ4) = P̃ (x, y,Γ1 × Γ2)P (x′,Γ3)P (y′,Γ4)

otherwise. Under this transition function, if X̃0 = X0 and Ỹ0 = Y0, then X̃k = Xk

and Ỹk = Yk until the first time that X̃k = Ỹk. Let κ = min{k : X̃k = Ỹk}. Then

P{κ > k} ≤ E[
k−1∏
i=0

(1−ε(X̃i, Ỹi))] ≤ E[
k−1∏
i=0

(1−ε(Xi, Yi))] ≤ E[exp{−
k−1∑
i=0

ε(Xi, Yi)}] → 0

as k → ∞. Here the second inequality follows from the fact that, for each i ≥ 0,
either (X̃i, Ỹi) = (Xi, Yi) or ε(X̃i, Ỹi) = 1. �
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3. Stationary processes

• Stationary sequences

• Measure preserving transformation

• Ergodic theorem

• Ergodicity for Markov chains

• Mean ergodic theorem

• Subadditive ergodic theorem
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Stationary sequences

{Xn} is stationary if P{Xm+n ∈ A0, . . . , Xm+n+k ∈ Ak} does not depend on n for
any choice of A0, . . . , Ak ∈ B(E).

Examples:

• iid sequence

• Markov chain with transition function P (x,C) and stationary distribution π
and X0 ∼ π.

• Xn+1 = Xn + c mod 1 and X0 uniform [0, 1].

• Xn+1 = 2Xn mod 1 and X0 uniform [0, 1]
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Useful facts

Theorem 3.1 If {Xk, k ≥ 0} is stationary, then there exists a sequence {Yk,−∞ < k <
∞} such that P{(Yn, . . . , Yn+m) ∈ C} = P{(X0, . . . , Xm) ∈ C},−∞ < n <∞,m ≥ 0,
C ∈ B(Sm+1).

Theorem 3.2 If {Xk, k ≥ 0} is a stationary sequence and g : S∞ → Ŝ is measurable,
then Zk = g(Xk, Xk+1, . . .) is stationary.

If {Yk,−∞ < k <∞} is stationary and g : SZ → Ŝ, then Zk = g(. . . , Yk−1, Yk, Yk+1 . . .)
is stationary.
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Example
Let {ξk} be iid real-valued with E[ξk] = 0 and V ar(ξk) <∞. Suppose

∑∞
k=0 a

2
k <∞

and

Zk =
∞∑
l=0

alξk−l

If al = ρl with |ρ| < 1, then Zk+1 = ρZk + ξk+1. (In this case, second moments aren’t
needed.)
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Measure-preserving transformations

ϕ : Ω → Ω is measureable iff ϕ−1(A) ∈ F for all A ∈ F .

A measurable transformation is measure preserving iff P (ϕ−1(A)) = P (A) for all
A ∈ F .

Lemma 3.3 If ϕ is measure perserving, Z a random variable and Xn(ω) ≡ Z ◦ ϕn(ω),
then {Xn} is a stationary sequence.

Proof.

P{Xn ∈ A} = P{ω : Z ◦ ϕn(ω) ∈ A}
= P{ω : ϕ(ω) ∈ {ω̃ : Z ◦ ϕn−1(ω̃) ∈ A}} = P{Xn−1 ∈ A}

�

Conversely, Ω = E∞ F = B(E∞), P the joint distribution of a stationary sequence
{Xn}. (We can identify Xn with the mapping Xn(x0, x1, . . .) = xn.) ϕ(x0, x1, . . .) =
(x1, x2, . . .). Then

P (A) = P{(X0, X1 . . .) ∈ A} = P{(X1, X2, . . .) ∈ A} = P (ϕ−1(A))
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Invariant sets (or almost surely invariant sets)

Let I = {A : P (A4 ϕ−1(A)) = 0}. I is the collection of (almost surely) invariant
sets.

Lemma 3.4 I is a σ-algebra. X is I-measurable iff X ◦ ϕ = X a.s.
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Ergodicity

ϕ is ergodic if and only if A ∈ I implies P (A) = 0 or 1.

Lemma 3.5 If {Yk} is ergodic, then Zk = g(. . . , Yk−1, Yk, Yk+1 . . .) is ergodic.
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A maximal inequality

Lemma 3.6 Let {Xn} be stationary and define Sk =
∑k−1

i=0 Xi

Mk = max{0, S1, . . . , Sk}.

Then E[X01{Mk>0}] ≥ 0.

Proof. If j ≤ k, then X0 + 0 ∨max1≤l≤k

∑l
i=1Xi ≥ Sj+1, so

X0 ≥ Sj+1 − 0 ∨ max
1≤l≤k

l∑
i=1

Xi

Consequently,

E[X01{Mk>0}] ≥
∫
{Mk>0}

(max
1≤l≤k

Sl − 0 ∨ max
1≤l≤k

l∑
i=1

Xi)dP

=

∫
{Mk>0}

(Mk − 0 ∨ max
1≤l≤k

l∑
i=1

Xi)dP ≥ 0

�
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Shift invariant sets
C ∈ B(E∞) is shift invariant if (x0, x1, . . .) ∈ C implies (x1, x2, . . .) ∈ C.

Lemma 3.7 If A ∈ σ({Xn}) is invariant, then there exists a shift invariant C such that
P (A4 {(X0, X1, . . .) ∈ C}) = 0.

Proof. If A ∈ σ({Xn}), there exists Ĉ ∈ B(E∞) such that A = {(X0, . . .) ∈ Ĉ}.
Define C = ∩n ∪m>n {x : (xm, xm+1, . . .) ∈ Ĉ}. Then C is shift invariant and
P (A4 {(X0, . . .) ∈ C}) = 0. �

Lemma 3.8 Let I0 = {{(X0, . . .) ∈ C} : C shift invariant}. Then

E[X0|I0] = E[Xn|I0]
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Ergodic theorem

Theorem 3.9 Let {Xn} be stationary and E[|Xn|] <∞. Then

lim
n→∞

1

n

n∑
k=1

Xk = E[X1|I0] a.s. and in L1.

Proof. wlog assume E[X1|I0] = 0. Define X̄ = lim sup 1
n
Sn and for ε > 0, set

D = {X̄ > ε} ∈ I0. Define X∗
n = (Xn − ε)1D. Let

M∗
n = max{0, S∗1 , . . . , S∗n} Fn = {M∗

n > 0} F = ∪Fn = {sup
k

1

k
S∗k > 0} = D

Consequently,

0 ≤
∫

D

X∗
0dP =

∫
D

(X0 − ε)dP =

∫
D

E[X0|I0]dP − εP (D)

Uniform integrability implies the convergence is in L1. �
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Conditions for ergodicity

Lemma 3.10 {Xn} is ergodic if and only if

lim
n→∞

1

n

n∑
k=1

f(Xk, Xk+1, . . . , Xk+m) = E[f(X0, . . . , Xm)]

for all bounded, measurable f on Em and all m. (All bounded countinuous functions will
also work.)

Proof. Necessity is immediate since If ⊂ I0. Let G ⊂ B(E∞) be the collection of
C ∈ B(E∞) such that

lim
n→∞

1

n

n∑
k=1

1C(Xk, . . .) = P{(X0, . . .) ∈ C} a.s.

Then G is a Dynkin class. (E∞ ∈ G, A,B ∈ G and A ⊂ B implies B − A ∈ G,
C1 ⊂ C2 ⊂ · · · ∈ G implies ∪Cn ∈ G)

C = B1 ×B2 × · · · ×Bm × S × S · · · ∈ G. �
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Ergodicity for Markov chains

Lemma 3.11 If {Xn} is a stationary Markov chain. Then {Xn} is ergodic if and only if

lim
n→∞

1

n

n∑
k=1

f(Xk) = E[f(X0)] a.s.

for all bounded measurable f .

Proof. By the law of large numbers for martingales,

lim
n→∞

1

n

n∑
k=1

(f(Xk, Xk+1)−
∫

S

f(Xk, z)P (Xk, dz)) = 0,

and the conditions of the previous lemma follow by induction. �
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Ergodicity and uniqueness of stationary distribution

Theorem 3.12 If P (x,C) has a unique stationary distribution π, then for X0 ∼ π, {Xn}
is ergodic.

Proof. Suppose that
1

n

n∑
k=1

f(Xk) → Z a.s.

Note that E[Z|F0] = E[Z|X0] ≡ h(X0), but then E[Z|F1] = h(X1). Consequently,
Ph(X0) = h(X0) and

E[(h(X1)− h(X0))
2] = E[h2(X1)] + E[h2(X0)]− 2E[h(X1)h(X0)] = 0.

But by induction
E[Z|Fn] = h(Xn) = h(X0),

so Z = h(X0). Let

π0(C) =
E[1C(X0)h(X0)]

E[h(X0)]
.
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Then

Eπ0 [g(X1)] =
E[g(X1)h(X0)]

E[h(X0)]
=
E[g(X1)h(X1)]

E[h(X1)]
=
E[g(X0)h(X0)]

E[h(X0)]
=

∫
gdπ0,

so π0 is a stationary distribution for P (x,C) and hence must equal π. But that
implies h (and hence Z) is constant a.s. π. �
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Irreducibility implies uniqueness

Theorem 3.13 If E is countable and {Xn} is an irreducible Markov chain, then there is
at most one stationary distribution.

Proof. If {Xn} is stationary and A ∈ B(E), then

lim
n→∞

1

n

n∑
k=1

1A(Xn) = E[1A(X0)|I0]

and hence
{Xn ∈ A i.o.} ⊃ {E[1A(X0)|I0] > 0}

Since {Xn = x i.o.} has probability 0 or 1, if there is a stationary distribution, then
every state is recurrent. Consequently, the strong Markov property implies that
the distribution of

ZA = lim
n→∞

1

n

n∑
k=1

1A(Xn)

does not depend on the distribution of X0, and since E[ZA] = π(A), there is only
one stationary distribution. �
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The collection of stationary distributions

Note that the collection of stationary distributions Π is convex.

Two measures µ and ν are mutually singular if there exists a measurable set A such
that µ(A) = 0 and ν(Ac) = 0.

Theorem 3.14 If π1 and π2 are stationary distributions with π1 6= π2, then there exist two
mutually singular stationary distributions.

Proof. Let π = 1
2
π1 + 1

2
π2. Then π is a stationary distribution. Let f ∈ B(E) satisfy∫

fdπ1 6=
∫
fdπ2. Let Xπ1 be a Markov chain with initial distribution π1 and Xπ2 be

a Markov chain with initial distribution π2. Let ξ be independent of Xπ1 and Xπ2

and P{ξ = 1} = 1− P{ξ = 0} = 1
2
. Define

Xπ
n =

{
Xπ1

n ξ = 1
Xπ2

n ξ = 0
.

Then Xπ is a Markov chain with initial distribution π. Let

h(X0) = lim
n→∞

1

n

n−1∑
k=0

f(Xk).
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Then
∫
hdπ1 =

∫
fdπ1 6=

∫
fdπ2 =

∫
hdπ2, so h is not constant a.s. π. Let

0 < π{h > β} < 1.

Define

π̃1(Γ) =
E[1Γ(X0)1{h(X0)>β}]

P{h(X0) > β}
π̃2(Γ) =

E[1Γ(X0)1{h(X0)≤β}]

P{h(X0) ≤ β}
. (3.1)

Then π̃i is a stationary distribution as in the proof of Theorem 3.12, and π̃1 and π̃2

are mutually singular. �
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Extremal stationary distributions

A stationary distribution π is extremal if and only if it cannot be represented as
π = απ1 + (1− α)π2 for 0 < α < 1 and π1, π2 ∈ Π.

Corollary 3.15 If π is an extremal stationary distribution, then Xπ is ergodic.

Proof. With reference to the proof of the previous theorem, if

h(Xπ
0 ) = lim

n→∞

1

n

n−1∑
k=0

f(Xπ
k )

is not constant, then defining π̃1 and π̃2 as in (3.1) and α = P{h(X0) > β},

π = απ̃1 + (1− α)π̃2.

�
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Mixing

If ϕ : Ω → Ω is an ergodic measure preserving transformation, then

1

n

n∑
k=1

P (A ∩ ϕ−kB) = E[1A
1

n

n∑
k=1

1B ◦ ϕk] → P (A)P (B), ∀A,B ∈ F . (3.2)

Note that this condition is sufficient for ergodicity also.

ϕ is called mixing if the stronger condition

lim
n→∞

P (A ∩ ϕ−nB) = P (A)P (B), ∀A,B ∈ F (3.3)

holds.

The collection of B (A) for which (3.2) holds is a Dynkin class and similarly for
(3.3).
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Applications

Theorem 3.16 {Xn} stationary in Rd. Sn =
∑n

k=1Xk, Rn = number of distinct values
in {S1, . . . , Sn}. Let C = {x : x1 6= 0, x1 + x2 6= 0, . . .}. Then

lim
n→∞

Rn

n
= E[1C(X1, X2, . . .)|I0]

Proof. First, Rn ≥
∑n

k=1 1C(Xk, Xk+1, . . .), so

lim inf
Rn

n
≥ E[1C(X1, X2, . . .)|I0].

Cl = {x : x1 6= 0, . . . , x1 + · · ·+ xl 6= 0}

Rn ≤ l +
n−l∑
k=1

1Cl
(Xk, . . . , Xk+l−1)

so
lim sup

Rn

n
≤ E[1Cl

(X1, X2, . . .)|I0].

�
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Recurrence

Note that Cc = {x :
∑k

i=1 xi = 0 some k ≥ 1}, n−1Rn → 0 a.s. implies that for
Sk =

∑k
i=1Xi, P{Sk = 0, some k ≥ 1} = 1, but then P{

∑m+k
i=m+1Xi = 0, some k ≥

1} = 1, so P{Sk = 0 i.o.} = 1.

For d = 1,

Theorem 3.17 If E[X0|I0] = 0 a.s., then P{Sk = 0 i.o.} = 1.

Proof. Since limn→∞ n−1Sn = 0 a.s., implies,

lim
n→∞

n−1 max
k≤n

|Sk| = 0,

limn→∞ n−1Rn = 0. �



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 69

Entropy
E finite, {Xn} stationary and ergodic, p(x0, . . . , xn) = P{X0 = x0, . . . , Xn = xn}
p(xn|xn−1, . . . , x0) = P (Xn = xn|Xn−1 = xn−1, . . . , X0 = x0)

Assume that {Xn} is stationary for n ∈ Z, and define Fn = σ(Xn, Xn−1, . . .). Let

p(x|Xn−1, Xn−2, . . .) = E[1{Xn=x}|Fn−1] = lim
m→∞

p(x|Xn−1, . . . Xn−m).

Then p(Xn|Xn−1, Xn−2, . . .) is stationary and

H = − lim
n→∞

1

n

n−1∑
k=0

log p(Xk|Xk−1, Xk−2, . . .)

exists.
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Shannon-McMillan-Breiman theorem

Theorem 3.18

H = − lim
n→∞

1

n
log p(X0, . . . , Xn−1) = − lim

n→∞

1

n

n−1∑
k=1

log p(Xk|Xk−1, . . . , X0)

Proof. Let

H0
n = − 1

n

n−1∑
k=1

log p(Xk|Xk−1, . . . , X0)

and

Hn = − 1

n

n−1∑
k=0

log p(Xk|Xk−1, Xk−2, . . .).

Then

Hn −H0
n =

1

n

n−1∑
k=1

log
p(Xk|Xk−1, . . . , X0)

p(Xk|Xk−1, Xk−2, . . .)
→ 0

at least in probability. �
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Mean ergodic theorem

If we replace almost sure and L1-convergence by L2-convergence in the statement
of the ergodic theorem, there is a much simpler proof. Define TX = X ◦ ϕ, X ∈
L2(P ) and let HI = {X ∈ L2(P ) : TX = X a.s.}.

E[Y |I0] = PIY a.s., where PIY is the projection, in the Hilbert space sense, of Y
onto HI .

H⊥
I = {X − TX : X ∈ L2(P )}, so Z ∈ L2(P ) can be written as Z = X − TX + Y

where Y = PIZ ∈ HI . Consequently,

n−1∑
k=0

Z ◦ ϕk = X − T nX + nY a.s.

It follows immediately that

E[|n−1

n−1∑
k=0

Z ◦ ϕk − PIZ|2] → 0.
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Maximal ergodic theorem

For Z ∈ L1(P ), define

Z∗ = sup
n

1

n

n∑
k=1

|Z ◦ ϕk|

Theorem 3.19 There exists A > 0 such that for each Z ∈ L1(P ),

P{Z∗ > α} ≤ A

α
E[|Z|].

Proof. Let An = n−1
∑n

k=1 |Z ◦ ϕk| The maximal inequality implies

E[(|Z| − α)1{max1≤k≤n(Ak−α)>0}] ≥ 0

so
αP{max

1≤k≤n
Ak > α} ≤ E[|Z|]

�
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Almost sure convergence
If X and Y are bounded by constants and Y is in HI , then for Z = X − TX + Y ,

1

n

n−1∑
k=0

Z ◦ ϕk → 0 a.s.

But Z of this form is dense in L2(P ) and hence in L1(P ), and the maximal ergodic
theorem implies almost sure convergence for all Z ∈ L1(P ).
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Multiparameter ergodic theorem

Theorem 3.20 Suppose that the joint distribution of {Xi+m,j+n, i, j ∈ Z} does not depend
on m and n, and suppose E[|X0,0|] <∞. Define

An,m =
1

nm

n−1∑
i=0

m−1∑
j=0

Xi,j.

Then there exists X̄ such that

lim
n,m→∞

E[|An,m − X̄|] = 0
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Subadditive ergodic theorem

Theorem 3.21 Suppose {Xm,n, 0 ≤ m < n} satisfies

i) X0,m +Xm,n ≥ X0,n

ii) For each k = 1, 2, . . ., {Xnk,(n+1)k, n ≥ 1} is stationary.

iii) The joint distribution of {Xm,m+k, k ≥ 1} does not depend on m.

iv) E[X+
0,1] <∞, and there exists γ0 > −∞ such the E[X0,n] ≥ γ0n.

Then

a) limn→∞ n−1E[X0,n] = infmm
−1E[X0,m] ≡ γ.

b) X = limn→∞ n−1X0,n exists a.s. and in L1.

c) If all the stationary sequences in (ii) are ergodic, then X = γ a.s.
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Examples

Maximum: Let {Yi} be stationary with E[|Yi|] <∞, and define

Xm,n = ( max
m<k≤n

k∑
i=m+1

Yi) ∨ 0.

Range: {Yn} stationary in Rd. Sn =
∑n

k=1 Yk, Xm,n = number of distinct values in
{Sm+1, . . . , Sn}. (Rn = X0,n.)

Longest common subsequences: {(Xi, Yi)} stationary.

Lm,n = max{K : ∃m < i1 < i2 < · · · < iK ≤ n,m < j1 < j2 < · · · < jK ≤ n,Xik = Yjk
}
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Random permutations
Let Σn be the collection of all permutations of (1, 2, . . . , n), and letZn = (Zn

1 , . . . , Z
n
n)

be a uniform draw from this set

For example, if {ξi, 1 ≤ i ≤ n} are iid uniform, then we can let Zn
k be the index l

such that ξl = ξn
(k), the kth order statistic.

Let
Ln = max{K : i1 < i2 < · · · < iK ≤ n, Zn

i1
< · · · < Zn

iK
}
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Poisson construction

Let η be a Poisson random measure on [0,∞) × [0,∞) with mean Lebesgue mean
measure.

Let τ(n) = inf{t : η([0, t]× [0, t]) ≥ n+ 1}

Order the points (Xn
k , Y

n
k ) in the square so that Xn

1 < Xn
2 < · · · < Xn

n . Then
ξn
k = τ(n)−1Y n

k are iid uniform [0, 1].

Consequently, Ln is the length of the longest (in the sense of number of points
connected) increasing path in the square [0, τ(n))× [0, τ(n)).

LetRs,t be the length of the longest (in the same sense) increasing path in the square
[s, t)× [s, t). Then R0,s +Rs,t ≤ R0,t.
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4. Continuous time stochastic processes

• Measurability for stochastic processes

• Stopping times

• A process observed at a stopping time

• Right continuous processes are progressive

• Approximation of a stopping time by discrete stopping times

• Right-continuous filtrations
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Measurability for stochastic processes

A stochastic process is an indexed family of random variables, but if the index set is
[0,∞), then we may want to know more about X(t, ω) than that it is a measurable
function of ω for each t. For example, for a R-valued process X , when are∫ b

a

X(s, ω)ds and X(τ(ω), ω)

random variables?

X is measurable if (t, ω) ∈ [0,∞)× Ω → X(t, ω) ∈ E is B([0,∞))×F-measurable.

Lemma 4.1 If X is measurable and
∫ b

a
|X(s, ω)|ds < ∞, then

∫ b

a
X(s, ω)ds is a random

variable.

If, in addition, τ is a nonnegative random variable, then X(τ(ω), ω) is a random variable.



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 81

Proof. The first part is a standard result for measurable functions on a product
space. Verify the result for X(s, ω) = 1A(s)1B(ω), A ∈ B[0,∞), B ∈ F and apply
the Dynkin class theorem to extend the result to 1C , C ∈ B[0,∞)×F .

If τ is a nonnegative random variable, then ω ∈ Ω → (τ(ω), ω) ∈ [0,∞)×Ω is mea-
surable. Consequently, X(τ(ω), ω) is the composition of two measurble functions.
�
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Measurability continued

A stochastic process X is {Ft}-adapted if for all t ≥ 0, X(t) is Ft-measurable.

If X is measurable and adapted, the restriction of X to [0, t] × Ω is B[0, t] × F-
measurable, but it may not be B[0, t]×Ft-measurable.

X is progressive if for each t ≥ 0, (s, ω) ∈ [0, t] × Ω → X(s, ω) ∈ E is B[0, t] × Ft-
measurable.

Let
W = {A ∈ B[0,∞)×F : A ∩ [0, t]× Ω ∈ B[0, t]×Ft, t ≥ 0}.

Then W is a σ-algebra and X is progressive if and only if (s, ω) → X(s, ω) is W-
measurable.

Since pointwise limits of measurable functions are measurable, pointwise limits of
progressive processes are progressive.



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 83

Stopping times

Let {Ft} be a filtration. τ is a Ft-stopping time if and only if {τ ≤ t} ∈ Ft for each
t ≥ 0.

If τ is a stopping time, Fτ ≡ {A ∈ F : A ∩ {τ ≤ t} ∈ Ft, t ≥ 0}.

If τ1 and τ2 are stopping times with τ1 ≤ τ2, then Fτ1 ⊂ Fτ2 .

If τ1 and τ2 are stopping times then τ1 and τ1 ∧ τ2 are Fτ1-measurable.
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A process observed at a stopping time

If X is measurable and τ is a stopping time, then X(τ(ω), ω) is a random variable.

Lemma 4.2 If τ is a stopping time and X is progressive, then X(τ) is Fτ -measurable.

Proof. ω ∈ Ω → (τ(ω) ∧ t, ω) ∈ [0, t] × Ω is measurable as a mapping from (Ω,Ft)
to ([0, t]× Ω,B[0, t]×Ft). Consequently, ω → X(τ(ω) ∧ t, ω) is Ft-measurable, and

{X(τ) ∈ A} ∩ {τ ≤ t} = {X(τ ∧ t) ∈ A} ∩ {τ ≤ t} ∈ Ft.

�
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Right continuous processes

Most of the processes you know are either continous (e.g., Brownian motion) or
right continuous (e.g., Poisson process).

Lemma 4.3 If X is right continuous and adapted, then X is progressive.

Proof. If X is adapted, then

(s, ω) ∈ [0, t]× Ω → Yn(s, ω) ≡ X(
[ns] + 1

n
∧ t, ω) =

∑
k

X(
k + 1

n
∧ t, ω)1[ k

n
, k+1

n
)(s)

is B[0, t]×Ft-measurable. By the right continuity ofX , Yn(s, ω) → X(s, ω) on [0, t]×
Ft, so (s, ω) ∈ [0, t]×Ω → X(s, ω) is [0, t]×Ft-measurable and X is progressive. �
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More on stopping times

Lemma 4.4 Let τ be a nonnegative random variable. If {τ < t} ∈ Ft, t ≥ 0, then there
exists a sequence of stopping times τn ≥ τ such that limn→∞ τn = τ .

Proof. Define
τn =

k + 1

2n
on { k

2n
≤ τ <

k + 1

2n
}. (4.1)

Then τn > τ on {τ <∞}, and

{τn ≤ t} = {τn ≤
[2nt]

2n
} = {τ < [2nt]

2n
} ∈ Ft.

�
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Example: Optional sampling theorem

For a discrete time {Fn}-martingale {Mn}, the optional sampling theorem states
that if τ1 and τ2 are stopping times, then

E[Mn∧τ2|Fτ1 ] = Mn∧τ1∧τ2 .

Suppose M is a right-continuous {Ft}-martingale. For t ≥ 0, let tn = [2nt]+1
2n . The

restriction of M to { k
2n , k = 0, 1, 2, . . .} gives a discrete-time martingale, so defining

τi,n as in (4.1),
E[M(tn ∧ τ2,n)|Fτ1,n ] = M(tn ∧ τ1,n ∧ τ2,n)

and
E[M(tn ∧ τ2,n)|Fτ1 ] = E[M(tn ∧ τ1,n ∧ τ2,n)|Fτ1 ].

By the right continuity ofM and the fact that {M(tn∧τ2,n),M(tn∧τ1,n∧τ2,n), n ≥ 1}
is uniformly integrable (why?),

E[M(t ∧ τ2)|Fτ1 ] = E[M(t ∧ τ1 ∧ τ2)|Fτ1 ] = M(t ∧ τ1 ∧ τ2).
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Right continuous filtrations

If Ft = Ft+ ≡ ∩s>tFs, t ≥ 0, the filtration is right continuous.

If {Ft} is right continuous, then τ is a stopping time if and only if {τ < t} ∈ Ft,
t ≥ 0.

If {Ft} is right continuous and {τn} are stopping times, then infn τn is a stopping
time, since

{inf
n
τn < t} = ∪n{τn < t}.
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Example: First entrance time of an open set

Let X be a right-continuous, {Ft}-adapted process, and let O ⊂ E be open. Define

τ = inf{t ≥ 0 : X(t) ∈ O} τn = min{ k
2n

: X(
k

2n
) ∈ O}.

Then τn is an {Ft}-stopping time and τ = infn τn. Consequently, τ is an {Ft+}-
stopping time but may not be an {Ft}-stopping time.
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Projections from product spaces

For A ⊂ R2, define π1A = {x : ∃(x, y) ∈ A}. If A ∈ B(R2), then π1A need not be in
B(R).

Γ1 = {A ∈ B(R2) : π1A ∈ B(R)} is not a Dynkin class.

Γ1 is closed under countable unions but not intersections or complements.
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Projections onto complete probability spaces

Theorem 4.5 Let (Ω,F , P ) be a complete probability space, and let S be a locally compact,
separable metric space. Suppose A ∈ B(S)×F . Then πΩA ∈ F .

Proof. See Theorem T32 of Dellacherie (1972). �
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Debut theorem

A filtration {Ft} is complete if F0 contains all subsets of sets of probability zero.

Theorem 4.6 Let (Ω,F , P ) be a complete probability space, and let {Ft} be a complete,
right-continuous filtration. If A is progressive, then τ(ω) = inf{t : (t, ω) ∈ A} is a
{Ft}-stopping time.

Proof. By the right-continuity of {Ft}, we only need to verify that {τ < t} ∈ Ft.
But since (Ω,Ft, P ) is a complete probability space and

{ω : τ(ω) < t} = πΩ(A ∩ [0, t)× Ω),

by Theorem 4.5, {τ < t} ∈ Ft. �
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Further notions of measurability

If X is right continuous and adapted, then X is progressive.

Consequently, O = σ(X : X right continuous and adapted) ⊂ B[0,∞) × F is a
sub-σ-algebra of W . O is the σ-algebra of optional sets.

Similarly, P = σ(X : X continuous and adapted) ⊂ B[0,∞)×F is the σ-algebra of
predictable sets.

Clearly, P ⊂ O ⊂ W .
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5. Martingales

• Definitions

• Optional sampling theorem

• Doob’s inequalities

• Upcrossing inequality

• Martingale convergence theorem

• Martingales and finance
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Definitions

Let X be a {Ft}-adapted process.

X is a submartingale if

E[X(t+ s)|Ft] ≥ X(t), t, s,≥ 0.

X is a supermartingale if

E[X(t+ s)|Ft] ≤ X(t), t, s,≥ 0.

X is a martingale if
E[X(t+ s)|Ft] = X(t), t, s,≥ 0.



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 96

Applications of Jensen’s inequality

If ϕ is convex, Y is a martingale, and E[|ϕ(Y (t))|] <∞, t ≥ 0, then X(t) = ϕ(Y (t))
is a submartingale.

If ϕ is convex and nondecreasing, Y is a submartingale, and E[|ϕ(Y (t))|] < ∞,
t ≥ 0, thenX(t) = ϕ(Y (t)) is a submartingale. In particular, if Y is a submartingale,
then X(t) = Y (t) ∨ c is a submartingale.
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Optional sampling theorem

Lemma 5.1 Let X be a right-continuous submartingale, τ1 a stopping time assuming
values in a countable set t1 < t2 < · · · and τ2 a stopping time assuming values in the finite
set t1 < · · · < tm. Then

E[X(τ2)|Fτ1 ] ≥ X(τ1 ∧ τ2)

Proof. Recall that

E[X(τ2)|Fτ1 ] =
∑

ti

E[X(τ2)|Fti ]1{τ1=ti}.

Then for i ≥ m, E[X(τ2)|Fti ] = X(τ2), and

E[X(τ2)|Ftm−1 ] = E[1{τ2=tm}X(tm) + 1{τ2≤tm−1}X(τ2 ∧ tm−1)|Ftm−1 ]

≥ 1{τ2=tm}X(tm−1) + 1{τ2≤tm−1}X(τ2 ∧ tm−1)

= X(τ2 ∧ tm−1),

so by induction on m,
E[X(τ2)|Fti ] ≥ X(τ2 ∧ ti)

and the lemma follows. �
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Theorem 5.2 LetX be a right-continuous submartingale, and τ1 and τ2 be stopping times.
Then

E[X(τ2 ∧ t)|Fτ1 ] ≥ X(τ1 ∧ τ2 ∧ t) (5.1)

Proof. Taking τ1,n and τ2,n as in the optional sampling theorem example, and using
the fact that X(t) ∨ c is a submartingale,

E[X(τ2,n ∧ t) ∨ c|Fτ1,n ] ≥ X(τ1,n ∧ τ2,n ∧ t) ∨ c.

Since E[X(t)∨c|Fτ2,n∧t] ≥ X(τ2,n∧ t)∨c ≥ c, {X(τ2,n∧t)∨c} is uniformly integrable,
passing to the limit gives (5.1). �
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Doob’s inequalities

Theorem 5.3 LetX be a right-continuous submartingale. Then for each c > 0 and T > 0,

P{sup
t≤T

X(t) ≥ c} ≤ c−1E[X+(T )],

P{inf
t≤T

X(t) ≤ −c} ≤ c−1(E[X+(T )]− E[X(0)])

and for α > 1,

E[sup
t≤T

X+(t)α] ≤
(

α

α− 1

)α

E[X+(T )α].

Proof. Let τ = inf{t : X(t) > c}. Then

{sup
t≤T

X(t) > c} ⊂ {τ ≤ T} ⊂ {sup
t≤T

X(t) ≥ c},

and
cP{τ ≤ T} ≤ E[X+(τ ∧ T )] ≤ E[X+(T )],

or more precisely,

cP{sup
t≤T

X+(t) > c} ≤ E[X+(T )1{τ≤T}].
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Setting Z = supt≤T X
+(t), for nondecreasing, absolutely continuous ϕ with ϕ(0) =

0 and ψ(z) =
∫ z

0
ϕ′(x)x−1dx,

E[ϕ(Z ∧ β)] =

∫ β

0

ϕ′(x)P{Z > x}dx

≤
∫ β

0

ϕ′(x)x−1E[X+(T )1{Z≥x}]dx

= E[X+(T )ψ(Z ∧ β)].

If ϕ(x) = xα, ψ(x) = α
α−1

xα−1, and the result follows by Hölder’s inequality. �
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Upcrossing inequality

For a < b, let τ1 = inf{t : X(t) ≤ a}, and for k = 1, 2, . . ., σk = inf{t > τk : X(t) ≥ b}
and τk+1 = inf{t > σk : X(t) ≤ a}.

U(a, b, T ) = max{k : σk ≤ T}.
If X is a submartingale,

0 ≤ E[
∞∑

k=1

(X(τk+1 ∧ T )−X(σk ∧ T ))]

= E[

U(a,b,T )∑
k=1

(X(τk+1 ∧ T )−X(σk ∧ T ))]

= E[−
U(a,b,T )∑

k=2

(X(σk ∧ T )−X(τk ∧ T ))]

+E[X(τU(a,b,T )+1 ∧ T )− a− (X(σ1 ∧ T )− a)]

≤ E[−(b− a)U(a, b, T ) + (X(T )− a)+]

so

E[U(a, b, T )] ≤ E[(X(T )− a)+]

b− a
.
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Martingale convergence theorem

Theorem 5.4 Let X be a right-continuous submartingale. Then lims→t−X(s) exists a.s.

If supE[X+(t)] <∞, then limt→∞X(t) exists a.s.

Reverse martingale convergence theorem

Theorem 5.5 Suppose the submartingale is defined for−∞ < t <∞ and inftE[X(t)] >
−∞. Then limt→−∞X(t) exists a.s.
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Model of a market

Consider financial activity over a time interval [0, T ] modeled by a probability
space (Ω,F , P ).

Assume that there is a “fair casino” or market which is complete in the sense that at
time 0, for each event A ∈ F , a price Q(A) ≥ 0 is fixed for a bet or a contract that
pays one dollar at time T if and only if A occurs.

Assume that the market is frictionless in that an investor can either buy or sell the
contract at the same price and that it is liquid in that there is always a buyer or
seller available. Also assume that Q(Ω) <∞.

An investor can construct a portfolio by buying or selling a variety of contracts
(possibly countably many) in arbitrary multiples.
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No arbitrage condition
If ai is the “quantity” of a contract forAi (ai < 0 corresponds to selling the contract),
then the payoff at time T is ∑

i

ai1Ai
.

Require
∑

i |ai|Q(Ai) < ∞ (only a finite amount of money changes hands) so that
the initial cost of the portfolio is (unambiguously)∑

i

aiQ(Ai).

The market has no arbitrage if no combination (buying and selling) of countably
many policies with a net cost of zero results in a positive profit at no risk.

That is, if
∑
|ai|Q(Ai) <∞,∑

i

aiQ(Ai) = 0, and
∑

i

ai1Ai
≥ 0 a.s.,

then ∑
i

ai1Ai
= 0 a.s.
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Consequences of the no arbitrage condition

Lemma 5.6 Assume that there is no arbitrage. If P (A) = 0, thenQ(A) = 0. IfQ(A) = 0,
then P (A) = 0.

Proof. Suppose P (A) = 0 and Q(A) > 0. Buy one unit of Ω and sell Q(Ω)/Q(A)
units of A.

Cost = Q(Ω)− Q(Ω)

Q(A)
Q(A) = 0

Payoff = 1− Q(Ω)

Q(A)
1A = 1 a.s.

which contradicts the no arbitrage assumption.

Now suppose Q(A) = 0. Buy one unit of A. The cost of the portfolio is Q(A) = 0
and the payoff is 1A ≥ 0. So by the no arbitrage assumption, 1A = 0 a.s., that is,
P (A) = 0. �
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Price monotonicity

Lemma 5.7 If there is no arbitrage andA ⊂ B, thenQ(A) ≤ Q(B), with strict inequality
if P (A) < P (B).

Proof. Suppose P (B) > 0 (otherwise Q(A) = Q(B) = 0) and Q(B) ≤ Q(A). Buy
one unit of B and sell Q(B)/Q(A) units of A.

Cost = Q(B)− Q(B)

Q(A)
Q(A) = 0

Payoff = 1B −
Q(B)

Q(A)
1A = 1B−A + (1− Q(B)

Q(A)
)1A ≥ 0,

Payoff = 0 a.s. implies Q(B) = Q(A) and P (B − A) = 0. �
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Q must be a measure

Theorem 5.8 If there is no arbitrage, Q must be a measure on F .

Proof. A1, A2, . . . disjoint and A = ∪∞i=1Ai. Assume P (Ai) > 0 for some i. (Other-
wise, Q(A) = Q(Ai) = 0.)

Let ρ ≡
∑

iQ(Ai), and buy one unit of A and sell Q(A)/ρ units of Ai for each i.

Cost = Q(A)− Q(A)

ρ

∑
i

Q(Ai) = 0

Payoff = 1A −
Q(A)

ρ

∑
i

1Ai
= (1− Q(A)

ρ
)1A.

If Q(A) ≤ ρ, then Q(A) = ρ.

If Q(A) ≥ ρ, sell one unit of A and buy Q(A)/ρ units of Ai. �

Theorem 5.9 If there is no arbitrage, Q << P and P << Q. (P and Q are equivalent
measures.)

Proof. The result follows from Lemma 5.6. �
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Pricing general payoffs

If X and Y are random variables satisfying X ≤ Y a.s., then no arbitrage should
mean

Q(X) ≤ Q(Y ).

It follows that for any Q-integrable X , the price of X is

Q(X) =

∫
XdQ.
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Assets that can be traded at intermediate times

{Ft} represents the information available at time t.

B(t) is the price at time t of a bond that is worth $1 at time T (e.g. B(t) = e−r(T−t)),
that is, at any time 0 ≤ t ≤ T , B(t) is the price of a contract that pays exactly $1 at
time T .

Note that B(0) = Q(Ω)

Define Q̂(A) = Q(A)/B(0).
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Martingale properties of tradeable assets

Let X(t) be the price at time t of another tradeable asset.

For any stopping time τ ≤ T , we can buy one unit of the asset at time 0, sell the
asset at time τ and use the money received (X(τ)) to buy X(τ)/B(τ) units of the
bond. Since the payoff for this strategy is X(τ)/B(τ), we must have

X(0) =

∫
X(τ)

B(τ)
dQ =

∫
B(0)X(τ)

B(τ)
dQ̂.

Lemma 5.10 If E[Z(τ)] = E[Z(0)] for all bounded stopping times τ , then Z is a martin-
gale.

Corollary 5.11 IfX is the price of a tradeable asset, thenX/B is a martingale on (Ω,F , Q̂).
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6. Poisson and general counting processes

• Poisson process

• Martingale properties of the Poisson process

• Strong Markov property for the Poisson process

• General counting processes

• Intensities

• Counting processes as time changes of Poisson processes

• Martingale characterizations of a counting process

• Multivariate counting processes
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Poisson process

A Poisson process is a model for a series for random observations occurring in
time. For example, the process could model the arrivals of customers in a bank,
the arrivals of telephone calls at a switch, or the counts registered by radiation
detection equipment.

x x x x x x x x
t

Let N(t) denote the number of observations by time t. In the figure above, N(t) =
6. Note that for t < s,N(s)−N(t) is the number of observations in the time interval
(t, s]. We make the following assumptions about the model.

1) Observations occur one at a time.

2) Numbers of observations in disjoint time intervals are independent random
variables, i.e., if t0 < t1 < · · · < tm, then N(tk) − N(tk−1), k = 1, . . . ,m are
independent random variables.

3) The distribution of N(t+ a)−N(t) does not depend on t.
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Characterization of a Poisson process

Theorem 6.1 Under assumptions 1), 2), and 3), there is a constant λ > 0 such that, for
t < s, N(s)−N(t) is Poisson distributed with parameter λ(s− t), that is,

P{N(s)−N(t) = k} =
(λ(s− t))k

k!
e−λ(s−t).

Proof. LetNn(t) be the number of time intervals ( k
n
, k+1

n
], k = 0, . . . , [nt] that contain

at least one observation. Then Nn(t) is binomially distributed with parameters n
and pn = P{N( 1

n
) > 0}. Then

P{Nn(1) = 0} = (1− pn)n ≤ P{N(1) = 0} ≤ (1− pn)n−1

and npn → λ ≡ − logP{N(1) = 0}, and the rest follows by standard Poisson
approximation of the binomial. �
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Interarrival times

Let Sk be the time of the kth observation. Then

P{Sk ≤ t} = P{N(t) ≥ k} = 1−
k−1∑
i=0

(λt)i

i!
e−λt, t ≥ 0.

Differentiating to obtain the probability density function gives

fSk
(t) =

{
1

(k−1)!
λ(λt)k−1e−λt t ≥ 0

0 t < 0

Theorem 6.2 Let T1 = S1 and for k > 1, Tk = Sk−Sk−1. Then T1, T2, . . . are independent
and exponentially distributed with parameter λ.



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 115

Martingale properties of the Poisson process

Theorem 6.3 (Watanabe) If N is a Poisson process with parameter λ, then N(t)− λt is a
martingale. Conversely, if N is a counting process and N(t)− λt is a martingale, then N
is a Poisson process.

Proof.

E[eiθ(N(t+r)−N(t))|Ft]

= 1 +
n−1∑
k=0

E[(eiθ(N(sk+1)−N(sk) − 1− (eiθ − 1)(N(sk+1)−N(sk))e
iθ(N(sk)−N(t))|Ft]

+
n−1∑
k=0

λ(sk+1 − sk)(e
iθ − 1)E[eiθ(N(sk)−N(t))|Ft]

The first term converges to zero by the dominated convergence theorem, so we
have

E[eiθ(N(t+r)−N(t))|Ft] = 1 + λ(eiθ − 1)

∫ r

0

E[eiθ(N(t+s)−N(t))|Ft]ds

and E[eiθ(N(t+r)−N(t))|Ft] = eλ(eiθ−1)t. (See Exercise 5.) �



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 116

Strong Markov property

A Poisson process N is compatible with a filtration {Ft}, if N is {Ft}-adapted and
N(t+ ·)−N(t) is independent of Ft for every t ≥ 0.

Lemma 6.4 Let N be a Poisson process with parameter λ > 0 that is compatible with
{Ft}, and let τ be a {Ft}-stopping time such that τ <∞ a.s. Define Nτ (t) = N(τ + t)−
N(τ). ThenNτ is a Poisson process that is independent of Fτ and compatible with {Fτ+t}.

Proof. Let M(t) = N(t)− λt. By the optional sampling theorem,

E[M((τ + t+ r) ∧ T )|Fτ+t] = M((τ + t) ∧ T ),

so

E[N((τ + t+ r) ∧ T )−N((τ + t) ∧ T )|Fτ+t] = λ((τ + t+ r) ∧ T − (τ + t) ∧ T ).

By the monotone convergence theorem

E[N(τ + t+ r)−N(τ + t)|Fτ+t] = λr

which gives the lemma. �
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General counting processes

N is a counting process ifN(0) = 0,N is right continuous, andN is constant except
for jumps of +1.

N is determined by its jump times 0 < σ1 < σ2 < · · ·. If N is adapted to Ft, then
the σk are Ft-stopping times.
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Intensity for a counting process

If N is a Poisson process with parameter λ and N is compatible with {Ft}, then

P{N(t+ ∆t) > N(t)|Ft} = 1− e−λ∆t ≈ λ∆t.

For a general counting process N , at least intuitively, a nonnegative, {Ft}-adapted
stochastic process λ(·) is an {Ft}-intensity for N if

P{N(t+ ∆t) > N(t)|Ft} ≈ E[

∫ t+∆t

t

λ(s)ds|Ft] ≈ λ(t)∆t.

Let σn be the nth jump time of N .

Definition 6.5 λ is an {Ft}-intensity for N if and only if for each n = 1, 2, . . ..

N(t ∧ σn)−
∫ t∧σn

0

λ(s)ds

is a {Ft}-martingale.
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Modeling with intensities

Let Z be a stochastic process (cadlag, E-valued for simplicity) that models “exter-
nal noise.” Let Dc[0,∞) denote the space of counting paths (zero at time zero and
constant except for jumps of +1).

Condition 6.6

λ : [0,∞)×DE[0,∞)×Dc[0,∞) → [0,∞)

is measurable and satisfies λ(t, z, v) = λ(t, zt, vt), where zt(s) = z(s ∧ t) (λ is nonantic-
ipating), and ∫ t

0

λ(s, z, v)ds <∞

for all z ∈ DE[0,∞) and v ∈ Dc[0,∞).

Let Y be a unit Poisson process that is {Ft}-compatible and assume that Z(s) is
F0-measurable for every s ≥ 0. (In particular, Z is independent of Y .) Consider

N(t) = Y (

∫ t

0

λ(s, Z,N)ds). (6.1)
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Solution of the stochastic equation

Theorem 6.7 There exists a unique solution of (6.1) up to limn→∞ σn, τ(t) =
∫ t

0
λ(s, Z,N)ds

is a {Fu}-stopping time, and for each n = 1, 2, . . .,

N(t ∧ σn)−
∫ t∧σn

0

λ(s, Z,N)ds

is a {Fτ(t)}-martingale.
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Proof. Existence and uniqueness follows by solving from one jump to the next. Let
Y r(u) = Y (r ∧ u) and let

N r(t) = Y r(

∫ t

0

λ(s, Z,N r)ds).

Then N r(t) = N(t), if τ(t) =
∫ t

0
λ(s, Z,N)ds ≤ r. Consequently,

{τ(t) ≤ r} = {
∫ t

0

λ(s, Z,N r)ds ≤ r} ∈ Fr,

as is {τ(t ∧ σn) ≤ r}. By the optional sampling theorem

E[M(τ((t+ v)∧ σn)∧ T )|Fτ(t)] = M(τ((t+ v)∧ σn))∧ τ(t)∧ T ) = M(τ(t∧ σn)∧ T ).

We can let T → ∞ by the monotone convergence argument used in the proof of
the strong Markov property for Poisson processes. �
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Martingale problems for counting processes

Definition 6.8 Let Z be a cadlag, E-valued stochastic process, and let λ satisfy Condition
6.6. A counting process N is a solution of the martingale problem for (λ, Z) if

N(t ∧ σn)−
∫ t∧σn

0

λ(s, Z,N)ds

is a martingale with respect to the filtration

Ft = σ(N(s), Z(r) : s ≤ t, r ≥ 0)

Theorem 6.9 If N is a solution of the martingale problem for (λ, Z), then N has the same
distribution as the solution of the stochastic equation (6.1).
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Proof. Suppose λ is an intensity for a counting process N and
∫∞

0
λ(s)ds = ∞ a.s.

Let γ(u) satisfy

γ(u) = inf{t :

∫ t

0

λ(s)ds ≥ u}.

Then, since γ(u+ v) ≥ γ(u),

E[N(γ(u+v)∧σn∧T )−
∫ γ(u+v)∧σn∧T

0

λ(s)ds|Fγ(u)] = N(γ(u)∧σn∧T )−
∫ γ(u)∧σn∧T

0

λ(s)ds.

The monotone convergence argument lets us send T and n to infinity. We then
have

E[N(γ(u+ v))− (u+ v)|Fγ(u)] = N(γ(u))− u,

so Y (u) = N(γ(u)) is a Poisson process. But γ(τ(t)) = t, so (6.1) is satisfied.

If
∫∞

0
λ(s)ds < ∞ with positive probability, then let Y ∗ be a unit Poisson process

that is independent of Ft for all t ≥ 0 and consider N ε(t) = N(t) + Y ∗(εt). N ε has
intensity λ(t) + ε, and Y ε, obtained as above, converges to

Y (u) =

{
N(γ(u)) u < τ(∞)

N(∞) + Y ∗(u− τ(∞)) u ≥ τ(∞)

(except at points of discontinuity). �
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Multivariate counting processes

Dc
d[0,∞): The collection of d-dimensional counting paths

Condition 6.10 λk : [0,∞) ×Dc
d[0,∞) ×DE[0,∞) → [0,∞), measurable and nonan-

ticipating with∫ t

0

∑
k

λk(s, z, v)ds <∞, v ∈ Dc
d[0,∞), z ∈ DE[0,∞).

Z cadlag, E-valued and independent of independent Poisson processes Y1, . . . , Yd.

Nk(t) = Yk(

∫ t

0

λk(s, Z,N)ds), (6.2)

where N = (N1, . . . , Nd). Existence and uniqueness holds (including for d = ∞)
and

Nk(t ∧ σn)−
∫ t∧σn

0

λk(s, Z,N)ds

is a martingale for σn = inf{t :
∑

k Nk(t) ≥ n}, but what is the correct filtration?
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Multiparameter optional sampling theorem

I is a directed set with partial ordering t ≤ s. If t1, t2 ∈ I, there exists t3 ∈ I such
that t1 ≤ t3 and t2 ≤ t3.

{Ft, t ∈ I}, s ≤ t implies Fs ⊂ Ft.

A stochastic process X(t) indexed by I is a martingale if and only if for s ≤ t,

E[X(t)|Fs] = X(s).

An I valued random variable is a stopping time if and only if {τ ≤ t} ∈ Ft, t ∈ I.

Fτ = {A ∈ F : A ∩ {τ ≤ t} ∈ Ft, t ∈ I}

Lemma 6.11 Let X be a martingale and let τ1 and τ2 be stopping times assuming count-
ably many values and satisfying τ1 ≤ τ2 a.s. If there exists a sequence {Tm} ⊂ I such
that limm→∞ P{τ2 ≤ Tm} = 1, limm→∞E[|X(Tm)|1{τ2≤Tm}c ] = 0, and E[|X(τ2)|] <∞,
then

E[X(τ2)|Fτ1 ] = X(τ1)
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Proof. Define

τm
i =

{
τi on {τi ≤ Tm}
Tm on {τi ≤ Tm}c

Then τm
i is a stopping time, since

{τm
i ≤ t} = ({τm

i ≤ t} ∩ {τi ≤ Tm}) ∪ ({τm
i ≤ t} ∩ {τi ≤ Tm}c

= (∪s∈Γ,s≤t,s≤Tm{τi = s}) ∪ ({Tm ≤ t} ∩ {τi ≤ Tm}c

Let Γ ⊂ I be countable and satisfy P{τi ∈ Γ} = 1 and {Tm} ⊂ Γ. For A ∈ Fτ1 ,∫
A∩{τm

1 =t}
X(τm

2 )dP =
∑

s∈Γ,s≤Tm

∫
A∩{τm

1 =t}∩{τm
2 =s}

X(s)dP

=
∑

s∈Γ,s≤Tm

∫
A∩{τm

1 =t}∩{τm
2 =s}

X(Tm)dP

=

∫
A∩{τm

1 =t}
X(Tm)dP

=

∫
A∩{τm

1 =t}
X(t)dP =

∫
A∩{τm

1 =t}
X(τm

1 )dP

�
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Multiple time change

I = [0,∞)d, u ∈ I, Fu = σ(Yk(sk) : sk ≤ uk, k = 1, . . . , d). Then

Mk(u) ≡ Yk(uk)− uk

is a {Fu}-martingale. For

Nk(t) = Yk(

∫ t

0

λk(s, Z,N)ds),

define τk(t) =
∫ t

0
λk(s, Z,N)ds and τ(t) = (τ1(t), . . . , τd(t)). Then τ(t) is a {Fu}-

stopping time.

Lemma 6.12 Let Gt = Fτ(t). If σ is a {Gt}-stopping time, then τ(σ) is a {Fu}-stopping
time.
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Approximation by discrete stopping times

Lemma 6.13 If τ is a {Fu}-stopping time, then τ (n) defined by

τ
(n)
k =

[τk2
n] + 1

2n

is a {Fu}-stopping time.

Proof.

{τ (n) ≤ u} = ∩k{τ (n)
k ≤ uk} = ∩k{[τk2n] + 1 ≤ [uk2

n]} = ∩k{τk <
[uk2

n]

2n
}

�

Note that τ (n)
k decreases to τk.
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Martingale problems for multivariate counting processes

Let σn = inf{t :
∑

k Nk(t) ≥ n}.

Theorem 6.14 Let Condition 6.10 hold. For n = 1, 2, . . ., there exists a unique solution
of (6.2) up to σn, τk(t) =

∫ t

0
λk(s, Z,N)ds defines a {Fu}-stopping time, and

Nk(t ∧ σn)−
∫ t∧σn

0

λk(s, Z,N)ds

is a {Fτ(t)}-martingale.

Definition 6.15 Let Z be a cadlag, E-valued stochastic process, and let λ = (λ1, . . . , λd)
satisfy Condition 6.10. A multivariate counting process N is a solution of the martingale
problem for (λ, Z) if for each k,

Nk(t ∧ σn)−
∫ t∧σn

0

λk(s, Z,N)ds

is a martingale with respect to the filtration

Gt = σ(N(s), Z(r) : s ≤ t, r ≥ 0)
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Existence and uniqueness for the martingale problem

Theorem 6.16 Let Z be a cadlag, E-valued stochastic process, and let λ = (λ1, . . . , λd)
satisfy Condition 6.10. Then there exists a unique solution of the martingale problem for
(λ, Z).
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Continuous time Markov chains

Let X be a Markov chain with values in Zd. Let Nl(t) be the number of jumps with
X(s)−X(s−) = l up to time t. Then

X(t) = X(0) +
∑

l

lNl(t).

Define βl(k) = qk,k+l, qk,k+l is the usual intensity for a transition from k to k + l.
Then

X(t) = X(0) +
∑

l

lYl(

∫ t

0

βl(X(s))ds).
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7. Convergence in distribution

• Prohorov metric

• Weak convergence

• Skorohod representation theorem

• Continuous mapping theorem

• Prohorov theorem

• Skorohod topology
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Prohorov metric
(S, d) a metric space

ρ(µ, ν) ≡ inf{ε > 0 : µ(F ) ≤ ν(F ε) + ε, F ∈ B(S)}
= inf{ε > 0 : µ(F ) ≤ ν(F ε) + ε, F ∈ C(S)}

The equality follows from the fact that F ε = F̄ ε.

If ρ(µn, µ) → 0, then
lim sup

n→∞
µn(F ) ≤ µ(∩εF

ε) = µ(F̄ )

which is equivalent to

lim inf µn(G) ≥ µ(G), all open G.

It follows that
µ(Ao) ≤ lim inf µn(A) ≤ lim supµn(A) ≤ µ(Ā)

If PXn = µn and PX = µ, then for f bounded, continuous and nonnegative

E[f(Xn)] =

∫ ‖f‖

0

P{f(Xn) > z}dz =

∫ ‖f‖

0

P{f(Xn) ≥ z}dz.

Since {x : f(x) > z} is open and {x : f(x) ≥ z} is closed, E[f(Xn)] → E[f(X)].
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Weak convergence and convergence in the Prohorov met-
ric

Lemma 7.1 If E[f(Xn)] → E[f(X)] for all bounded continous f , then ρ(µn, µ) → 0.

Proof. Let {xi} be dense in S. For ε > 0, select N such that µ(∪N
i=1Bε(xi)) ≥ 1 − ε.

For I ⊂ {1, . . . , N}, let

fI(x) = (1− d(x,∪i∈IBε(xi))/ε) ∨ 0.

Let n satisfy
max

I⊂{1,...,N}
|E[fI(Xn)]− E[fI(X)]| ≤ ε

For F closed, let

F0,ε = ∪{Bε(xi) : i ≤ N,Bε(xi) ∩ F 6= ∅} ⊂ F ε.

Then

µ(F ) ≤ µ(F0,ε) + ε ≤ E[fI(X)] + ε ≤ E[fI(Xn)] + 2ε ≤ µn(F ε) + 2ε,

so ρ(µ, µn) ≤ 2ε. �
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Skorohod representation

Theorem 7.2 Let (S, d) be complete and separable. If µn, µ ∈ P(S) and µn ⇒ µ, then
there exists a probability space (Ω,F , P ) and random variables Xn, X such that µXn = µn

and µX = µ and Xn → X a.s.

More precisely, there exist H : P(S)× [0, 1] → S such that if ξ is uniform [0, 1], then
P{H(µ, ξ) ∈ Γ} = µ(Γ) for all µ ∈ P(S) and µn ⇒ µ implies H(µn, ξ) → H(µ, ξ) a.s.

See Blackwell and Dubins (1983).
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Continuous mapping theorem

Theorem 7.3 Suppose {Xn} is a sequence of S-valued random variables and Xn ⇒ X .
Let F : S → Ŝ and CF = {x ∈ S : F is continuous at x}. Suppose that

P{X ∈ CF} = 1.

Then F (Xn) ⇒ F (X).
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Donsker invariance principle

ξ1, ξ2, . . . iid E[ξ] = 0, V ar(ξ) = σ2 <∞

Xn(t) =
1√
n

[nt]∑
i=1

ξi

If {ξ2
i , 1 ≤ i ≤ n} are uniformly integrable, then

P{max
i≤n

|ξi| >
√
nε} ≤

n∑
i=1

P{|ξi| ≥
√
nε} ≤ 1

nε2

n∑
i=1

E[ξ2
i 1{|ξi|≥

√
nε}] → 0

Let X̂n be the linear interpolation of Xn, so X̂n has values in C[0,∞)
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Empirical distribution function

Let ξ1, ξ2, . . . be iid with distribution function F . Define

Fn(t) =
1

n

n∑
i=1

1(−∞,t](ξi)

Then Fn → F uniformly in t. Define

BF
n (t) =

√
n(Fn(t)− F (t))

and letBn(t) denote the uniform [0,1] case. BF
n has the same distribution asBn(F (·)).

(Bn(t1), . . . , Bn(tm)) ⇒ (B(t1), . . . , B(tm)) where (B(t1), . . . , B(tm)) is jointly Gaussian
with mean zero and covariance given by

E[Bn(t)Bn(s)] = E[(1[0,t](ξ)− t)(1[0,s](ξ)− s)] = t ∧ s− ts
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Wright-Fisher

Let {Yk} be a Markov chain with state space { k
N

: 0 ≤ k ≤ N}

P{Yk+1 =
l

N
|Yk = x} =

(
N

l

)
xl(1− x)N−l

Note that E[Yk+1|Yk] = E[Yk+1|Fk] = Yk, and

E[(Yk+m − Yk)
2] =

m−1∑
i=0

E[(Yk+i+1 − Yk+i)
2] =

m−1∑
i=0

1

N
E[Yi(1− Yi)]

XN(t) = Y[Nt]

XN is a martingale as is

X2
N(t)−

[Nt]−1∑
i=0

1

N
Yi(1− Yi) = X2

N(t)−
∫ [Nt]/N

0

XN(s)(1−XN(s))ds
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Topological proof of convergence

• Prove relative compactness of {µn}

• Prove that there is at most one limit point.

Claim: The three examples are relatively compact (tight).

The limits for the first two are characterized by their finite dimensional distribu-
tions.

The limit for the third is characterized by its martingale properties.

To carry out a topological proof of convergence, we need to characterize compact
subsets of P(S).
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A metric for convergence in probability

For X , Y , S-valued random variables, let

γ(X, Y ) = inf{ε > 0 : P{d(X, Y ) > ε} < ε}.

Claim: γ is a metric on the space of S-valued random variable on (Ω,F , P ).

limn→∞ γ(Xn, X) if and only if Xn → X in probability.

Note: Almost sure convergence is not metrizable.
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Probabilistic interpretation of ρ

Lemma 7.4 Let ρ(µ, ν) < ε. Then there exist random variables X and Y such that µX =
µ and µY = ν and

P{d(X, Y ) ≥ ε} ≤ ε

Specifically,
ρ(µ, ν) = inf{γ(X,Y ) : µX = µ, µY = ν}

Remark 7.5 Note that the converse is straight forward since

P{X ∈ F} ≤ P{Y ∈ F ε}+ P{d(X, Y ) ≥ ε}.
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Completeness and separability

Lemma 7.6 (P(S), ρ) is complete iff (S, d) is complete. (P(S), ρ) is separable iff (S, d) is
separable.

Proof. Suppose ρ(µn, µm) → 0. There exists a subsequence such that ρ(µnk
, µnk+1

) ≤
2−k and hence joint distributions µXk,Xk+1

with µXk
= µnk

and P{d(Xk, Xk+1) ≥
2−k} ≤ 2−k. By Tulcea’s theorem, {Xk} on a single probability space. Then

P{sup
m>n

d(Xn, Xm) ≥ 2−(n+1)} ≤ 2−(n+1),

and the completeness of S implies Xn converges a.s.

If S is separable and {xk} is dense in S, then {
∑n

k=1 pkδxk
:
∑
pk = 1, pk rational }

is dense in P(S). �
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Total boundedness

K is totally bounded if and only if for each ε > 0, there exist x1, x2, . . . , xn such that
K ⊂ ∪n

i=1Bε(xi).

Lemma 7.7 A set K is compact if and only if it is complete and totally bounded.

Proof. Total boundedness follows from compactness by the definition of compact-
ness. Total boundedness and completeness imply sequential compactness which
in turn implies compactness. �
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Prohorov’s theorem

Theorem 7.8 {µα} ⊂ P(S) is relatively compact in the topology generated by the Pro-
horov metric if and only if for each ε > 0, there exists a compact Kε ⊂ S such that

inf
α
µα(Kε) ≥ 1− ε. [tightness]

Proof. Suppose {µα} is tight. Let x1, . . . , xn satisfy Kε ⊂ ∪n
i=1Bε(xi) and x0 ∈ S.

Select m ≥ n/ε, and let Γm = {ν : ν =
∑n

i=0
ki

m
δxi
}. Let E1 = Bε(x1) and Ei =

Bε(xi) ∩ (∪i−1
j=1Bε(xj))

c. Define

να =
n∑

i=1

[mµα(Ei)]

m
δxi

+ (1−
n∑

i=1

[mµα(Ei)]

m
)δx0

Then

µα(F ) ≤ µα(∪F∩Ei 6=∅Ei) + ε ≤
∑

F∩Ei 6=∅

[mµα(Ei)]

m
+
n

m
+ ε ≤ να(F 2ε) + 2ε

and ρ(µα, να) ≤ 2ε. Consequently, {µα} is totally bounded. �
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Arzela-Ascoli Theorem

The following is a special case of the Arzela-Ascoli theorem.

Lemma 7.9 K ⊂ CRd [0, 1] is relatively compact if and only if supx∈K |x(0)| < ∞ and
limδ→0 sup|s−t|≤δ |x(s)− x(t)| = 0.

Proof. The proof can be found in http://www.math.byu.edu/∼klkuttle/
lecturenotes641.pdf �

Corollary 7.10 Let c, ηk, δk > 0 and ηk, δk → 0. Then

Kc,{(ηk,δk)} ≡ {x ∈ C[0, 1] : |x(0)| ≤ c, sup
|s−t|≤δk

|x(s)− x(t)| ≤ ηk, k = 1, 2, . . .}

is compact.

http://www.math.byu.edu/~klkuttle/lecturenotes641.pdf
http://www.math.byu.edu/~klkuttle/lecturenotes641.pdf
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Tightness for S = C[0, 1]

Theorem 7.11 {Xα} is relatively compact in distribution if and only if for each ε, η > 0,
there exist c, δ > 0 such that

sup
α
P{|X(0)| ≥ c} ≤ ε

and
sup

α
P{ sup

|s−t|≤δ

|Xα(s)−Xα(t)| ≥ η} ≤ ε.

Proof. Let ηk > 0, ηk → 0. For ε > 0, select cε > 0 so that supα P{|X(0)| ≥ c} ≤ ε/2
and δk > 0 so that

sup
α
P{ sup

|s−t|≤δk

|Xα(s)−Xα(t)| ≥ ηk} ≤ 2−(k+1)ε.

Then P{Xα /∈ Kc,{(ηk,δk)}} ≤ ε. �
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Kolmogrov criterion

Theorem 7.12 Let {Xα} be process in CRd [0, 1]. Suppose that there exist C > 0, β > 0,
and θ > 1 such that

sup
α

sup
|t−s|≤δ

E[|Xα(t)−Xβ(s)|β ∧ 1] ≤ Cδθ.

Then {Xα} is relatively compact in distribution.



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 149

Chaining argument

Suppose δ < 2−(n+1) and |t − s| ≤ δ. Let tm = 2−m[2mt] and sm = 2−m[2ms]. Then
|tm+1 − tm| ≤ 2−(m+1), |sm+1 − sm| ≤ 2−(m+1), |sn − tn| ≤ 2−n, limm→∞ tm = t,
limm→∞ sm = s, and for x ∈ C[0, 1],

|x(t)− x(s)| ≤ |x(tn)− x(sn)|+
∞∑

m=n

(|x(tm+1)− x(tm)|+ |x(sm+1)− x(sm)|).

Define ηα
m =

∑2m−1
k=0 |Xα(2−m(k + 1))−Xα(2−mk)|β ∧ 1.

Then for δ < 2−(n+1),

sup
|t−s|≤δ

|Xα(t)−Xα(s)| ∧ 1 ≤ 2
∞∑

m=n

(ηα
m)1/β.

Consequently,

E[ sup
|t−s|≤δ

|Xα(t)−Xα(s)| ∧ 1] ≤ 2E[
∞∑

m=n

(ηα
m)1/β] ≤ 2C1/β

(
∞∑

m=n

2−m(θ−1)

)1/β

.

As δ → 0, we can let n→∞ and the right side goes to zero.
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Donsker’s invariance principle

ξ1, ξ2, . . . iid E[ξ] = 0, V ar(ξ) = σ2 <∞

Xn(t) =
1√
n

[nt]∑
i=1

ξi

Let
X̂n(t) = Xn(t) +

nt− [nt]√
n

ξ[nt]+1.

Assuing t > s, Let γ = E[ξ4]. Then, assuming [nt] > [ns]

E[(X̂n(t)− X̂n(s))4]

=
γ

n2

(
(nt− [nt])4 + [nt]− [ns]− 1 + ([ns] + 1− ns)4

)
+

12σ2

n2

(
((nt− [nt])2 + ([ns] + 1− ns)2)([nt]− [ns]− 1)

+([ns] + 1− ns)2(nt− [nt])2 + 2−1([nt]− [ns]− 1)([nt]− [ns]− 2)
)
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Conditions for convergence in C[0, 1]

Lemma 7.13 If Xn ⇒ X , then (Xn(t1), . . . , Xn(tm)) ⇒ (X(t1), . . . , X(tm)), 0 ≤ t1 <
· · · < tm ≤ 1. If µ1, µ2 ∈ P(C[0, 1]) have the same finite dimensional distributions, then
µ1 = µ2.

Proof. πt : x ∈ C[0, 1] → x(t) is continuous, so the first part follows. The second
follows from the fact that B(C[0, 1]) = σ(πt, 0 ≤ t ≤ 1) (Br(y) = ∩t∈Q∩[0,1]{y :
|πt(x)− πt(y)| ≤ r}. µ1 = µ2 on σ(πt, 0 ≤ t ≤ 1) by the Dynkin-class theorem. �

Theorem 7.14 Suppose {Xn} is relatively compact in distribution in C[0, 1] and

(Xn(t1), . . . , Xn(tm)) ⇒ (X(t1), . . . , X(tm)), 0 ≤ t1 < · · · < tm ≤ 1.

Then X has a continuous version and Xn ⇒ X .
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Poisson approximation

Suppose that for each n, {ξn
k } is a Bernoulli sequence with npn → λ, and define

Xn(t) =

[nt]∑
k=1

ξn
k .

“Clearly” Xn ⇒ X where X is a Poisson process with parameter λ, but in what
sense. Assuming the Skorhod representation theorem applies, supt≤T |X(t)−Xn(t)|
does not converge to zero.
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Skorohod topology on DE[0,∞)

(E, r) complete, separable metric space

DE[0,∞) space of cadlag, E-valued functions

xn → x ∈ DE[0,∞) in the Skorohod (J1) topology if and only if there exist strictly
increasing λn mapping [0,∞) onto [0,∞) such that for each T > 0,

lim
n→∞

sup
t≤T

(|λn(t)− t|+ r(xn ◦ λn(t), x(t))) = 0.

The Skorohod topology is metrizable so that DE[0,∞) is a complete, separable
metric space.

Note that 1[1+ 1
n

,∞) → 1[1,∞) in DR[0,∞), but (1[1+ 1
n

,∞),1[1,∞)) does not converge in
DR2 [0,∞). (It does converge in DR[0,∞)×DR[0,∞).
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Conditions for tightness
Sn

0 (T ) collection of discrete {Fn
t }-stopping times q(x, y) = 1 ∧ r(x, y)

Theorem 7.15 Suppose that for t ∈ T0, a dense subset of [0,∞), {Xn(t)} is tight. Then
the following are equivalent.

a) {Xn} is tight in DE[0,∞).

b) (Kurtz) For T > 0, there exist β > 0 and random variables γn(δ, T ) such that for
0 ≤ t ≤ T , 0 ≤ u ≤ δ, and 0 ≤ v ≤ t ∧ δ

E[qβ(Xn(t+ u), Xn(t)) ∧ qβ(Xn(t), Xn(t− v))|Fn
t ] ≤ E[γn(δ, T )|Fn

t ]

lim
δ→0

lim sup
n→∞

E[γn(δ, T )] = 0,

and
lim
δ→0

lim sup
n→∞

E[qβ(Xn(δ), Xn(0))] = 0. (7.1)

c) (Aldous) Condition (7.1) holds, and for each T > 0, there exists β > 0 such that

Cn(δ, T ) ≡ sup
τ∈Sn

0 (T )

sup
u≤δ

E[ sup
v≤δ∧τ

qβ(Xn(τ + u), Xn(τ)) ∧ qβ(Xn(τ), Xn(τ − v))]

satisfies limδ→0 lim supn→∞Cn(δ, T ) = 0.
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Example

η1, η2, . . . iid, E[ηi] = 0, σ2 = E[η2
i ] <∞

Xn(t) =
1√
n

[nt]∑
i=1

ηi

Then
E[(Xn(t+ u)−Xn(t))2|FXn

t ] =
[n(t+ u)]− [nt]

n
σ2 ≤ (δ +

1

n
)σ2

for u ≤ δ.
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Uniqueness of limit

Theorem 7.16 If {Xn} is tight in DE[0,∞) and

(Xn(t1), . . . , Xn(tk)) ⇒ (X(t1), . . . , X(tk))

for t1, . . . , tk ∈ T0, T0 dense in [0,∞), then Xn ⇒ X .

For the example, this condition follows from the central limit theorem.
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Some continuous functions

F1 : x ∈ DE[0,∞) → y ∈ DR[0,∞), y(t) = sups≤t r(x(s).x(s−))

F2 : x ∈ DR[0,∞) → y ∈ DR[0,∞), y(t) = sups≤t x(s)

Gt : x ∈ DR[0,∞) → R, Gt(x) = sups≤t x(s) is not continuous. (Exercise: Identify
the continuity set for Gt.)

If f : E → Ê is continuous, then
Hf : x ∈ DE[0,∞) → y ∈ DÊ[0,∞), y(t) = f(x(t)) is continuous, but
Gf,t : x ∈ DE[0,∞) → y ∈ Ê, y(t) = f(x(t)) is not continuous.
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Compact uniform topology

du(x, y) =

∫ ∞

0

e−t sup
s≤t

1 ∧ r(x(s), y(s)) dt

defines a metric on DE[0,∞), but DE[0,∞) is not separable under du.

However:

Lemma 7.17 Suppose xn → x in the Skorohod topology. Then F1(xn) → 0 if and only if
x is continuous, and if x is continuous, du(xn, x) → 0. In particular, CE[0,∞) is closed
in the Skorohod topology, and the restriction of the Skorohod topology to CE[0,∞) is the
compact uniform topology.
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Other conditions

Let {Xα} be processes with sample paths in DE[0,∞).

The compact containment condition holds if and only if for each T, ε > 0, there exists
a compact set Kε,T ⊂ E

inf
α
P{Xα(t) ∈ Kε,T} ≥ 1− ε.

Let C ⊂ C̄(E) be linear and separate points.

Theorem 7.18 {Xα} is relatively compact in DE[0,∞) if and only if the compact con-
tainment condition holds and for each f ∈ C, {f ◦Xα} is relatively compact in DR[0,∞).
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8. Brownian motion

• Construction by Donsker invariance

• Markov property

• Transition density and heat semigroup

• Strong Markov property

• Sample path properties

• Lévy characterization

• Martingale central limit theorem
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Construction by Donsker invariance

ξ1, ξ2, . . . iid E[ξ] = 0, V ar(ξ) = 1

Xn(t) =
1√
n

[nt]∑
i=1

ξi

Then Xn ⇒ W , standard Browian motion.

W is continuous

W has independent increments

E[W (t)] = 0, V ar(W (t)) = t, Cov(W (t),W (s)) = t ∧ s

W is a martingale.
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Markov property

X(t) = X(0) +W (t), X(0) independent of W .

T (t)f(x) ≡ E[f(x+W (t))] =

∫ ∞

−∞
f(y)

1√
2πt

e−
(y−x)2

2t dy

E[f(X(t+ s))|FX
t ] = E[f(X(t) +W (t+ s)−W (t))|FX

t ] = T (s)f(X(t))
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Transition density

The transity density is

p(t, x, y) =
1√
2πt

e−
(y−x)2

2t

which satisfies the Chapman-Kolmogorov equation

p(t+ s, x, y) =

∫
R
p(t, x, z)p(s, z, y)dz

Note that
∂

∂t
T (t)f(x) =

1

2

d2

dx2
T (t)f(x)
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Right continuous filtration

E[f(X(t+s))|FX
t+] = lim

h→0
E[f(X(t+s))|FX

t+h] = lim
h→0

T (s−h)f(X(t+h)) = T (s)f(X(t))

Lemma 8.1 If Z is bounded and measurable with respect to σ(X(0),W (s), s ≥ 0), then

E[Z|FX
t ] = E[Z|FX

t+] a.s.

Proof. Consider
E[
∏

i

fi(X(ti))|FX
t+]

and apply the Dynkin-class theorem. �

Corollary 8.2 Let F̄X
t be the completion of FX

t . Then F̄X
t = F̄X

t+.

Proof. If C ∈ FX
t+, then E[1C |FX

t ] = 1C a.s. Consequently, setting

Co = {E[1C |FX
t ] = 1} P (Co4C) = 0

�
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Strong Markov Property

Prove first for discrete stopping times

E[f(X(τ + t))|Fτ ] = T (t)f(X(τ)

Every stopping time is the limit of a decreasing sequence of discrete stopping times

If γ ≥ 0 is Fτ -measurable, then

E[f(X(τ + γ))|Fτ ] = T (γ)f(X(τ)



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 166

Reflection principle

P{sup
s≤t

W (s) > c} = 2P{W (t) > c}
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Samplepath properties

Finite, nonzero quadratic variation

lim
∑

(W (ti+1)−W (ti))
2 = t.

Brownian paths are nowhere differentiable (Theorem 1.8)
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Law of the Iterated Logarithm

lim sup
t→∞

W (t)√
2t log log t

= 1

Ŵ (t) = tW (1/t) is Brownian motion. V ar(Ŵ (t)) = t2 1
t

= t Therefore

lim sup
t→0

W (1/t)√
2t−1 log log 1/t

= lim sup
t→0

Ŵ (t)√
2t log log 1/t

= 1

Consequently,

lim sup
h→0

W (t+ h)−W (t)√
2h log log 1/h

= 1
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The tail of the normal distribution

Lemma 8.3 ∫ ∞

a

e−
x2

2 dx < a−1e−
a2

2 =

∫ ∞

a

(1 + x−2)e−
x2

2 dx

< (1 + a−2)

∫ ∞

a

e−
x2

2 dx

Proof. Differentiate
d

da
a−1e−

a2

2 = −(a−2 + 1)e−
a2

2

�
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Modulus of continuity

Theorem 8.4 Let h(t) =
√

2t log 1/t. Then

P{lim
ε→0

sup
t1,t2∈[0,1],|t1−t2|≤ε

|W (t1)−W (t2)|
h(|t1 − t2|)

= 1} = 1

Proof.

P{max
k≤2n

(W (k2−n)−W ((k − 1)2−n)) ≤ (1− δ)h(2−n)} = (1− I)2n

< e−2nI

for
I =

∫ ∞

(1−δ)
√

2 log 2n

1√
2π
e−x2/2dx > C

1√
n
e−(1−δ)2 log 2n

>
C√
n

2−(1−δ)2n

so 2nI > 2nδ for n sufficiently large and Borel-Cantelli implies

P{lim sup
n→∞

max
k≤2n

(W (k2−n)−W ((k − 1)2−n))/h(2−n) ≥ 1} = 1.

For δ > 0 and ε > 1+δ
1−δ

− 1

P{ max
0<k≤2nδ,0≤i≤2n−2nδ

|W ((i+ k)2−n)−W (i2−n)|
h(k2−n)

≥ (1 + ε)}
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≤
∑

2(1− Φ((1 + ε)
√

2 log(2n/k)))

≤ C
∑ 1

(1 + ε)
√

2 log(2n/k))
e−2(1+ε)2 log(2n/k))

≤ C
1√
n

2n(1+δ)2−2n(1−δ)(1+ε)2

and the right side is a term in a convergent series. Consequently, for almost every
ω, there exists N(ω) such that n > N(ω) and 0 < k ≤ 2nδ, 0 ≤ i ≤ 2n − 2nδ implies

|W ((i+ k)2−n)−W (i2−n)| ≤ (1 + ε)h(k2−n)

If |t1 − t2| ≤ 2−(N(ω)+1)(1−δ),

|W (t1)−W (t2)| ≤ |W ([2N(ω)t1]2
−N(ω))−W ([2N(ω)t2]2

−N(ω))|∑
n≥N(ω)

|W ([2nt1]2
−n)−W ([2n+1t1]2

−(n+1))|+
∑

n≥N(ω)

|W ([2nt2]2
−n)−W ([2n+1t2]2

−(n+1))|+

so
|W (t1)−W (t2)| ≤ h(|[2N(ω)t1]− [2N(ω)t2]|)

�
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Quadratic variation for continuous martingales

Lemma 8.5 Let M be a (local) square integrable martingale. Then

[M ]t = lim
max |ti+1−ti|→0

∑
i

(M(ti+1 ∧ t)−M(ti ∧ t))2

exists in probability and M2 − [M ] is a local martingale.

Remark 8.6 Any local martingale with bounded jumps in a local square integrable mar-
tingale.

Proof. Assume that M is a square integrable martingale (otherwise, consider the
stopped martingale). Let τc = inf{t : |M(t)| ≥ c}, and replace M be M(· ∧ τc).
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Suppose {si} is a refinement of {ti}. Then

Z(t) =
∑

i

(M(ti+1 ∧ t)−M(ti ∧ t))2 −
∑

i

(M(sj+1 ∧ t)−M(sj ∧ t))2

=
∑

i

2
∑

j<k∈Γi

(M(sk+1 ∧ t)−M(sk ∧ t))(M(sj+1)−M(sj))

Each term in the sum is a martingale, so Z is a martingale. Let γ(s) = max{ti : ti <
s}. Then

Z(t) = 2
∑

j

(M(sj+1 ∧ t)−M(sj ∧ t))(M(sj)−M(γ(sj+1))).

Note that if sj ≥ τc, then the jth term is zero, and if sj < τc, the jth term is bounded
by

4c|M(sj+1 ∧ t)−M(sj ∧ t)|.
In particular,

E[Z(t)2] ≤ 16c2E[M(t)2].

Then, if max |ti+1 − ti| ≤ δ,

E[Z(t ∧ βδ,ε)
2] ≤ ε2E[M(t)2].
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For εn → 0, there exist δn → 0 such that βn ≡ βδn,εn → ∞ and hence if max |tni+1 −
tni | ≤ δn ∑

i

(M(tni+1 ∧ t ∧ βn)−M(tni ∧ t ∧ βn))2 L1→ [M ]t

�
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Lévy characterization

Theorem 8.7 Let M be a continuous local martingale with [M ]t = t. Then M is a stan-
dard Brownian motion

Proof. For each c > 0, E[M(t∧ τc)2] = E[t∧ τc], and by Fatou, E[M(t)2] <∞. Then
M(t∧τc)2 ≤ sups≤tM(s)2, so by Doob’s inequality and the dominated convergence
theorem E[M(t ∧ τc)2] → E[M(t)2] = t. It follows that∑

i

(M(ti+1 ∧ t)−M(ti ∧ t))2 L1→ t.

E[eiθ(M(t+r)−M(t))|Ft]

= 1 +
n−1∑
k=0

E[
(
eiθ(M(sk+1)−M(sk) − 1− iθ(M(sk+1)−M(sk))

+
1

2
θ2(M(sk+1)−M(sk))

2
)
eiθ(M(sk)−M(t))|Ft]

−1

2
θ2

n−1∑
k=0

(sk+1 − sk)E[eiθ(M(sk)−M(t))|Ft]
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The first term converges to zero by the dominated convergence theorem, so we
have

E[eiθ(M(t+r)−M(t))|Ft] = 1− 1

2
θ2

∫ r

0

E[eiθ(M(t+s)−M(t))|Ft]ds

and E[eiθ(M(t+r)−M(t))|Ft] = e−
θ2r
2 . �
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Limits of martingales are martingales

Lemma 8.8 Suppose that for n = 1, 2, . . ., Mn is a cadlag martingale, Mn ⇒ M and for
each t ≥ 0, {Mn(t)} is uniformly integrable. Then M is a martingale.

Proof. There exists a countable set D such that if (t1, . . . , tm) ∈ [0,∞)−D, then

(Mn(t1), . . . ,Mn(tm)) ⇒ (M(t1), . . . ,M(tm)).

If fi ∈ C̄(R), then {Mn(tm)
∏

i fi(Mn(ti))} is uniformly integrable and converges in
distribution to M(tm)

∏
i fi(M(ti)). It follows that for 0 ≤ t1 < t2 < · · · < tm+1,

ti /∈ D,

0 = lim
n→∞

E[(Mn(tm+1)−Mn(tm))
∏

i

fi(Mn(ti))] = E[(M(tm+1)−M(tm))
∏

i

fi(M(ti))]

By the right continuity ofM , the right side is zero for all ti, and henceM is a {FM
t }-

martingale. �
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Martingale central limit theorem

Theorem 8.9 Let {Mn} be a sequence of martingales. Suppose that

lim
n→∞

E[sup
s≤t

|Mn(s)−Mn(s−)|] = 0

and
[Mn]t → c(t) (8.1)

for each t > 0, where c(t) is continuous and deterministic. Then Mn ⇒M = W ◦ c.

Remark 8.10 If
lim

n→∞
E[|[Mn]t − c(t)|] = 0, ∀t ≥ 0, (8.2)

then by the continuity of c, the conditions hold. If (8.1) holds and limn→∞E[[Mn]t] = c(t)
for each t ≥ 0, then (8.2) holds by the dominated convergence theorem.

Proof.(Assuming (8.2).) For 0 ≤ u ≤ δ, s ≤ t,

E[(Mn(s+u)−Mn(s))2|Fn
s ] = E[[Mn]s+u− [Mn]s|Fn

s ] ≤ E[sup
s≤t

([Mn]s+δ− [Mn]s)|Fn
s ],

so by the tightness criterion, {Mn} is relatively compact. �
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Example 8.11 If Mn ⇒ W ◦ c, then

P{sup
s≤t

Mn(s) ≤ x} → P{sup
s≤t

W (c(s)) ≤ x} = P{ sup
u≤c(t)

W (u) ≤ x}.



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 180

Corollary 8.12 (Donsker’s invariance principle.) Let ξk be iid with mean zero and vari-
ance σ2. Let

Mn(t) =
1√
n

[nt]∑
k=1

ξk.

Then Mn is a martingale for every n, and Mn ⇒ σW .

Proof.Since Mn is a finite variation process, we have

[Mn]t =
∑
s≤t

(∆Mn(s))2

=
1

n

[nt]∑
k=1

ξ2
k

=
[nt]

n[nt]

[nt]∑
k=1

ξ2
k → tσ2.

where the limit holds by the law of large numbers. Note that the convergence is in
L1, and Mn ⇒ W (σ2·). �
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Corollary 8.13 (CLT for renewal processes.) Let ξk be iid, positive and have mean µ and
variance σ2. Let

N(t) = max{k :
k∑

i=1

ξi ≤ t}.

Then

Zn(t) ≡ N(nt)− nt/µ√
n

⇒ W (
tσ2

µ3
).

Proof. The renewal theorem states that

E[|N(t)

t
− 1

µ
|] → 0

and
N(t)

t
→ 1

µ
, a.s.

Let Sk =
∑k

i=1 ξi, M(k) = Sk − µk and Fk = σ{ξ1, . . . , ξk}. Then M is a {Fk}-
martingale andN(t)+1 is a {Fk}-stopping time. By the optional sampling theorem
M(N(t) + 1) is a martingale with respect to the filtration {FN(t)+1}.



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 182

Note that

Mn(t) = −M(N(nt) + 1)/(µ
√
n)

=
N(nt) + 1√

n
−
SN(nt)+1 − nt

µ
√
n

− nt

µ
√
n

=
N(nt)− nt/µ√

n
+

1√
n
− 1

µ
√
n

(SN(nt)+1 − nt) .

So asymptotically Zn behaves like Mn, which is a martingale for each n.

[Mn]t =
1

µ2n

N(nt)+1∑
1

|ξk − µ|2 L1→ tσ2

µ3
.

�
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Corollary 8.14 Let N(t) be a Poisson process with parameter λ and

X(t) =

∫ t

0

(−1)N(s)ds.

Define Xn(t) = X(nt)√
n
. Then Xn ⇒ 1√

λ
W .

Proof. Note that

(−1)N(t) = 1− 2

∫ t

0

(−1)N(s−)dN(s) = 1− 2M(t)− 2λ

∫ t

0

(−1)N(s)ds,

where

M(t) =

∫ t

0

(−1)N(s−)d(N(s)− λs)

is a martingale. Thus

Xn(t) =
X(nt)√

n
=

1− (−1)N(nt)

2λ
√
n

− M(nt)

λ
√
n
.

[Mn]t = N(nt)/(nλ2) → t

λ
.

�
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Multidimensional case

Theorem 8.15 (Multidimensional Martingale CLT). Let {Mn} be a sequence of Rd-valued
martingales. Suppose

lim
n→∞

E[sup
s≤t

|Mn(s)−Mn(s−)|] = 0

and
[M i

n,M
j
n]t → ci,j(t)

for all t ≥ 0 where, C = ((ci,j)) is deterministic and continuous. Then Mn ⇒ M , where
M is Gaussian with independent increments and E[M(t)M(t)T ] = C(t).

Remark 8.16 Note that C(t)− C(s) is nonnegative definite for t ≥ s ≥ 0. If C is differ-
entiable, then the derivative will also be nonnegative definite and will have a nonnegative
definite square root. Suppose C(t) = σ(t)2 where σ is symmetric. Then M can be written
as

M(t) =

∫ t

0

σ(s)dW (s)

where W is d-dimensional standard Brownian motion.
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9. Continuous-time Markov processes

• Markov processes corresponding to an operator semigroup

• Markov processes: Martingale problems

• Markov processes: Stability and stationary distributions
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Markov processes: Semigroups
{T (t) : B(E) → B(E), t ≥ 0} is an operator semigroup if T (t)T (s)f = T (t+ s)f

X is a Markov process with operator semigroup {T (t)} if and only if

E[f(X(t+ s))|FX
t ] = T (s)f(X(t)), t, s ≥ 0, f ∈ B(E).

T (s+ r)f(X(t)) = E[f(X(t+ s+ r))|FX
t ]

= E[E[f(X(t+ s+ r))|FX
t+s]|FX

t ]

= E[T (r)f(X(t+ s))|FX
t ]

= T (s)T (r)f(X(t))

Lemma 9.1 If X is a Markov processe corresponding to {T (t)}, then the finite dimen-
sional distributions of X are determined by {T (t)} and the distribution of X(0).

Proof.For 0 ≤ t1 ≤ t2,

E[f1(X(t1))f2(X(t2))] = E[f1(X(t1))T (t2 − t1)f2(X(t1))]

= E[T (t1)[f1T (t2 − t1)f2](X(0))]

�
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Semigroup generators

f is in the domain of the strong generator of the semigroup if there exists g ∈ B(E)
such that

lim
t→0+

‖g − T (t)f − f

t
‖ = 0.

Then Af ≡ g.

f is in the domain of the weak generator Ã, if supt ‖t−1(T (t)f − f)‖ < ∞, and there
exists g ∈ B(E) such that

lim
t→0+

T (t)f(x)− f(x)

t
= g(x) ≡ Ãf(x), x ∈ E.

See Dynkin (1965).

The full generator Â is

Â = {(f, g) ∈ B(E)×B(E) : T (t)f = f +

∫ t

0

T (s)gds

A ⊂ Ã ⊂ Â.
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Martingale properties

Lemma 9.2 IfX is a progressive Markov process corresponding to {T (t)} and (f, g) ∈ Â,
then

Mf (t) = f(X(t))− f(X(0))−
∫ t

0

g(X(s))ds

is a martingale.

Proof.

E[Mf (t+ r)−Mf (t)|Ft] = T (r)f(X(t))− f(X(t))−
∫ t+r

t

T (s− t)g(X(t))ds = 0

�
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Dynkin’s identity

Change of notation: Simply write Âf for g, if (f, g) ∈ Â.

The optional sampling theorem implies

E[f(X(t ∧ τ))] = E[f(X(0))] + E[

∫ t∧τ

0

Âf(X(s))ds].

Assume D is open and X is right continuous. Let τD = inf{t : X(t) /∈ D}. Write Ex

for expectations under the condition that X(0) = x.

Suppose f is bounded and continuous, Âf = 0, and τD <∞ a.s. Then

f(x) = Ex[f(X(τD))].

If f is bounded and continuous, Âf(x) = −1, x ∈ D, and f(y) = 0, y /∈ D, then

f(x) = Ex[τD]
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Exit distributions in one dimension

For a one-dimensional diffusion process

Lf(x) =
1

2
a(x)f ′′(x) + b(x)f ′(x).

Find f such that Lf(x) = 0 (i.e., solve the linear first order differential equation for
f ′). Then f(X(t)) is a local martingale.

Fix a < b, and define τ = inf{t : X(t) /∈ (a, b)}. If supa<x<b |f(x)| <∞, then

Ex[f(X(t ∧ τ))] = f(x).

Moreover, if τ <∞ a.s.
Ex[f(X(τ))] = f(x).

Hence
f(a)Px(X(τ) = a) + f(b)Px(X(τ) = b) = f(x),

and therefore the probability of exiting the interval at the right endpoint is given
by

Px(X(τ) = b) =
f(x)− f(a)

f(b)− f(a)
(9.1)
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Exit time

To find conditions under which Px(τ < ∞) = 1, or more precisely, under which
Ex[τ ] <∞, solve Lg(x) = −1. Then

g(X(t))− g((X(0))− t,

is a local martingale and C = supa<x<b |g(x)| <∞,

Ex[g(X(t ∧ τ))] = g(x) + Ex[t ∧ τ ]

and 2C ≥ E[t ∧ τ ], so 2C ≥ E[τ ], which implies τ <∞ a.s. By (9.1),

Ex[τ ] = Ex[g(X(τ))]− g(x)

= g(b)
f(x)− f(a)

f(b)− f(a)
+ g(a)

f(b)− f(x)

f(b)− f(a)
− g(x)
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Strongly continuous contraction semigroup

Semigroups associated with Markov processes are contraction semigroups, i.e.,

‖T (t)f‖ ≤ ‖f‖, f ∈ B(E).

Let L0 = {f ∈ B(E) : limt→0+ ‖T (t)f − f‖ = 0. Then

• D(A) is dense in L0.

• ‖λf − Af‖ ≥ λ‖f‖, f ∈ D(A), λ > 0.

• R(λ− A) = L0, ∀λ > 0.



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 193

The resolvent

Lemma 9.3 For λ > 0 and h ∈ L0,

(λ− A)−1h =

∫ ∞

0

e−λtT (t)hdt

Proof. Let f =
∫∞

0
e−λtT (t)hdt. Then

r−1(T (r)f − f) = r−1(

∫ ∞

0

e−λtT (t+ r)hdt−
∫ ∞

0

e−λtT (t)hdt)

= r−1(eλr

∫ ∞

r

e−λtT (t)hdt−
∫ ∞

0

e−λtT (t)hdt)

→ λf − h

�
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Hille-Yosida theorem

Theorem 9.4 The closure of A is the generator of a strongly continuous contraction semi-
group on L0 if and only if

• D(A) is dense in L0.

• ‖λf − Af‖ ≥ λ‖f‖, f ∈ D(A), λ > 0.

• R(λ− A) is dense in L0.

Proof. Necessity is discussed above. Assuming A is closed (otherwise, replace A
by its closure), the conditions imply R(λ−A) = L0 and the semigroup is obtained
by

T (t)f = lim
n→∞

(I − 1

n
A)−[nt]f.

(One must show that the right side is Cauchy.) �
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Probabilistic interpretation of the limit

If T (t) is given by a transition function, then

(I − 1

n
A)−1f(x) = Ex[f(X(

1

n
∆))],

where ∆ is a unit exponential independent of X , and

(I − 1

n
A)−[nt]f(x) = Ex[f(X(

1

n

[nt]∑
i=1

∆i))]
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The resolvent for the full generator

Lemma 9.5 Suppose T (t) : B(E) → B(E) is given by a transition function, T (t)f(x) =∫
E
f(y)P (t, x, dy). For h ∈ B(E), define

f(x) =

∫ ∞

0

e−λtT (t)h(x)dt.

Then (f, λf − h) ∈ Â.

Proof. ∫ t

0

T (s)(λf − h)ds = λ

∫ t

0

∫ ∞

0

e−λuT (s+ u)hduds−
∫ t

0

T (s)hds

= λ

∫ t

0

eλs

∫ ∞

s

e−λuT (u)hduds−
∫ t

0

T (s)hds

= eλt

∫ ∞

t

e−λuT (u)hdu−
∫ ∞

0

e−λuT (u)hdu

= T (t)f − f

�
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A convergence lemma

Lemma 9.6 Let E be compact and suppose {fk} ⊂ C(E) separates points. If {xn} satis-
fies limn→∞ fk(xn) exists for every fk, then limn→∞ xn exists.

Proof. If x and x′ are limit points of {xn}, we must have fk(x) = fk(x
′) for all k.

But then x = x′, since {fk} separates points. �
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Feller processes

Lemma 9.7 Assume E is compact, T (t) : C(E) → C(E), and limt→0 T (t)f(x) = f(x),
x ∈ E, f ∈ C(E). If X is a Markov process corresponding to {T (t)}, then X has a
modification with cadlag sample paths.

Proof. For h ∈ C(E), f = Rλh ≡
∫∞

0
e−λtT (t)hdt ∈ C(E), so setting g = λf − h,

f(X(t))− f(X(0))−
∫ t

0

g(X(s))ds

is a martingale. By the upcrossing inequality, there exists a set Ωf ⊂ Ω with
P (Ωf ) = 1 such that for ω ∈ Ωf , lims→t+,s∈Q f(X(s, ω)) exists for each t ≥ 0 and
lims→t−,s∈Q f(X(s, ω)) exists for each t > 0.

Suppose {hk, k ≥ 1} ⊂ C(E) is dense. Then {Rλhk : λ ∈ Q ∩ (0,∞), k ≥ 1}
separates points in E. �
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Markov processes: Martingale problems

E state space (a complete, separable metric space)

A generator (a linear operator with domain and range in B(E)

µ ∈ P(E)

X is a solution of the martingale problem for (A, µ) if and only if µ = PX(0)−1 and
there exists a filtration {Ft} such that

f(X(t))−
∫ t

0

Af(X(s))ds

is an {Ft}-martingale for each f ∈ D(A)
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Examples of generators

Standard Brownian motion (E = Rd)

Af =
1

2
∆f, D(A) = C2

c (Rd)

Poisson process (E = {0, 1, 2 . . .}, D(A) = B(E))

Af(k) = λ(f(k + 1)− f(k))

Pure jump process (E arbitrary)

Af(x) = λ(x)

∫
E

(f(y)− f(x))µ(x, dy)

Diffusion (E = Rd, D(A) = C2
c (Rd))

Af(x) =
1

2

∑
i,j

aij(x)
∂2

∂xi∂xj

f(x) +
∑

i

bi(x)
∂

∂xi

f(x) (9.2)



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 201

Conditions for the martingale property

Lemma 9.8 For (f, g) ∈ A, h1, . . . , hm ∈ C̄(E), and t1 ≤ t2 ≤ · · · ≤ tm+1, let

η(Y ) ≡ η(Y, (f, g), {hi}, {ti}) = (f(Y (tm+1)−f(Y (tm))−
∫ tm+1

tm

g(Y (s)ds)
m∏

i=1

hi(Y (ti)).

Then Y is a solution of the martingale problem for A if and only if E[η(Y )] = 0 for all
such η.

The assertion that Y is a solution of the martingale problem for A is an assertion
about the finite dimensional distributions of Y .
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Uniqueness and the Markov property

Theorem 9.9 If any two solutions of the martingale problem forA satisfying PX1(0)
−1 =

PX2(0)
−1 also satisfy PX1(t)

−1 = PX2(t)
−1 for all t ≥ 0, then the f.d.d. of a solution X

are uniquely determined by PX(0)−1

If X is a solution of the MGP for A and Ya(t) = X(a+ t), then Ya is a solution of the
MGP for A.
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Markov property

Theorem 9.10 Suppose the conclusion of Theorem 9.9 holds. If X is a solution of the
martingale problem for A with respect to a filtration {Ft}, then X is Markov with respect
to {Ft}.

Proof. Assuming that P (F ) > 0, let F ∈ Fr and define

P1(B) =
E[1FE[1B|Fr]]

P (F )
, P2(B) =

E[1FE[1B|X(r)]]

P (F )
.

Define Y (t) = X(r + t). Then

P1{Y (0) ∈ Γ} =
E[1FE[1{Y (0)∈Γ}|Fr]]

P (F )
=
E[1FE[1{X(r)∈Γ}|Fr]]

P (F )
= P2{Y (0) ∈ Γ}

Check the EP1 [η(Y )] = EP2 [η(Y )] = 0 for all η(Y ) as in Lemma 9.8. Therefore

E[1FE[f(X(r+t))|Fr]] = P (F )EP1 [f(Y (t))] = P (F )EP2 [f(Y (t))] = E[1FE[f(X(r+t))|X(r)]]

�
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Cadlag versions

Lemma 9.11 Suppose E is compact and A ⊂ C̄(E)× B(E). If D(A) is separating, then
any solution of the martingale problem for A has a cadlag modification.
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Quasi-left continuity

X is quasi-left continuous if and only if for each sequence of stopping times τ1 ≤
τ2 ≤ · · · such that τ ≡ limn→∞ τn <∞ a.s.,

lim
n→∞

X(τn) = X(τ) a.s.

Lemma 9.12 Let A ⊂ C̄(E) × B(E), and suppose that D(A) is separating. Let X be a
cadlag solution of the martingale problems for A. Then X is quasi-left continuous

Proof. For (f, g) ∈ A,

lim
n→∞

f(X(τn ∧ t) = lim
n→∞

E[f(X(X(τ ∧ t))−
∫ τ∧t

τn∧t

g(X(s))ds|Fτn ]

= E[f(X(τ ∧ t))| ∨n Fτn ] .

See Exercise 10. �
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Continuity of diffusion process

Lemma 9.13 Suppose E = Rd and

Af(x) =
1

2

∑
i,j

aij(x)
∂2

∂xi∂xj

f(x) +
∑

i

bi(x)
∂

∂xi

f(x), D(A) = C2
c (Rd).

If X is a solution of the martingale problem for A, then X has a modification that is cadlag
in Rd ∪ {∞}. If X is cadlag, then X is continuous.

Proof. The existence of a cadlag modification follows by Lemma 9.11. To show
continuity, it is enough to show that for f ∈ C∞

c (Rd), f ◦X is continuous. To show
f ◦X is continuous, it is enough to show

lim
max |ti+1−ti|→0

∑
(f(X(ti+1 ∧ t)− f(X(ti ∧ t)))4 = 0.
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¿From the martingale properties,

E[(f(X(t+ h))− f(X(t)))4]

=

∫ t+h

t

E
[
Af 4(X(s))− 4f(X(t))Af 3(X(s))

+6f 2(X(t))Af 2(X(s))− 4f 3(X(t))Af(X(s))
]
ds

Check that

Af 4(x)− 4f(x)Af 3(x) + 6f 2(x)Af 2(x)− 4f 3(x)Af(x) = 0

�
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Markov processes: Stability and stationary distributions

• Extension of martingale properties

• Moment estimates

• Stationary distributions
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Extension of martingale properties

Lemma 9.14 Suppose X is a solution of the martingale problem for A, {(fn, gn)} ⊂ A,
infx,n fn(x) > −∞, supx,n gn(x) <∞, fn(x) → f(x), gn(x) → g(x), x ∈ E. Then

Zf (t) = f(X(t))− f(X(0))−
∫ t

0

g(X(s))ds

is a supermartingale.
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Extension for diffusion processes

Let L be the differential operator that defines A in (9.2) for f ∈ C2
c (Rd).

Lemma 9.15 Suppose f ∈ C2(Rd), infx f(x) > −∞ and supx Lf(x) <∞. Then

f(X(t))− f(X(0))−
∫ t

0

Lf(X(s))ds

is a supermartingale

Proof. For each r, there exist fr ∈ C2
c (Rd) such that f(x) = fr(x) for |x| ≤ r.

Consequently, defining τr = inf{t : |X(t)| ≥ r},

f(X(t ∧ τr))− f(X(0))−
∫ t∧τr

0

Lf(X(s))ds

is a martingale. Letting r → ∞, the lemma follows by Fatou’s lemma. (We as-
sumed here that τr →∞ for r →∞.) �
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Moment estimates

Lemma 9.16 Suppose A is given by (9.2) and

g(x) =
∑

i

aii(x) + 2x · b(x) ≤ K1 +K2|x|2.

IfX is a solution of the martingale problem forA, andE[|X(0)|2] <∞, thenE[|X(t)|2] <
∞ for all t > 0.

Proof. Taking f(x) = |x|2, Lf =
∑

i aii(x) + 2x · b(x), and

E[|X(t ∧ τr)|2] = E[|X(0)|2] + E[

∫ t∧τr

0

g(X(s))ds]

≤ E[|X(0)|2] +

∫ t

0

(K1 +K2E[|X(s ∧ τr)|2)ds

so E[|X(t ∧ τr|2] ≤ (E[|X(0)|2] +K1t)e
K2t. �
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Lemma 9.17 If X is a solution of the martingale problem for A, f ∈ D(A), and γ :
[0,∞) → R continuously differentiable, then

γ(t)f(X(t))−
∫ t

0

(γ′(s)f(X(s)) + γ(s)Af(X(s)))ds

is a martingale

Proof.

E[γ(t+ r)f(X(t+ r))− γ(t)f(X(t))|Ft]

= E[
∑

γ(ti+1)f(X(ti+1))− γ(ti)f(X(ti))|Ft]

= E[
∑

γ(ti+1)

∫ ti+1

ti

Af(X(s))ds+ (γ(ti+1)− γ(ti))f(X(ti))|Ft]

�



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 213

Lemma 9.18 Suppose A is given by (9.2) and

g(x) =
∑

i

aii(x) + 2x · b(x) ≤ K1 −K2|x|2, K1, K2 > 0.

IfX is a solution of the martingale problem forA, andE[|X(0)|2] <∞, then suptE[|X(t)|2] <
∞.

Proof.

Z(t) = |X(t)|2eK2t −
∫ t

0

K1e
K2sds

is a supermartingale, so

E[|X(t)|2]eK2t ≤ E[|X(0)|2] +
K1

K2

(eK2t − 1)

�
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Stationary distributions

µ ∈ P(E) is a stationary distribution for A is there is a solution of the martingale
problem for (A, µ) that is a stationary process.

Lemma 9.19 If µ is a stationary distribution for A, then∫
E

Afdµ = 0, f ∈ D(A).

Proof. If X is a stationary solution, then

0 = E[f(X(t))− f(X(0))−
∫ t

0

Af(X(s))ds]

= 〈f, µ〉 − 〈f, µ〉 −
∫ t

0

〈Af, µ〉ds

�



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 215

Stationary distributions for semigroups

Lemma 9.20 If A is the generator for a semigroup on L ⊂ B(E), µ ∈ P(E), and
〈Af, µ〉 = 0, then 〈T (t)f, µ〉 = 〈f, µ〉, f ∈ L.

Proof. If f ∈ D(A), then T (t)f ∈ D(A) and AT (t)f = T (t)Af . Consequently,

〈T (t)f, µ〉 = 〈f, µ〉+

∫ t

0

〈AT (s)f, µ〉ds = 〈f, µ〉.

Since D(A) is dense in L, the identity extends to all f ∈ L. �

Note: The assertion that A generates the semigroup requires verification of the
range condition in the Hille-Yosdia theorem.
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Conditions on the generator

A ⊂ B(E) × B(E) is a pre-generator if A is dissipative (if A is linear, ‖λf − Af‖ ≥
λ‖f‖, λ > 0, f ∈ D(A)) and there are sequences of functions µn : E → P(E) and
λn : E → [0,∞) such that for each (f, g) ∈ A

g(x) = lim
n→∞

λn(x)(

∫
E

(f(y)− f(x))µn(x, dy)

for each x ∈ E.

A is bp-separable if there exists a countable subset {gk} ⊂ D(A)∩ C̄(E) such that the
graph of A is contained in the bounded, pointwise closure of {(gk, Agk)}.

i) A : D(A) ⊂ C(E) → C(E), 1 ∈ D(A), and A1 = 0.

ii) There exist ψ ∈ C(E), ψ ≥ 1, and constants af , f ∈ D(A), such that

|Af(x)| ≤ afψ(x), x ∈ E.

iii) DefiningA0 = {(f, ψ−1Af) : f ∈ D(A)},A0 is bp-separable and a pre-generator.

iv) D(A) is closed under multiplication and separates points.
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Echeverria’s theorem

Theorem 9.21 Suppose that A satisfies the condtions above. Let µ ∈ P(E) satisfy∫
E

ψdµ <∞

and ∫
E

Afdµ = 0, f ∈ D(A).

Then there exists a stationary solution of the martingale problem for (A, µ).
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Example: Diffusion processes

Let d = 1. Integrating by parts, we have∫ ∞

−∞
p(x)

(
1

2
a(x)f ′′(x) + b(x)f ′(x)

)
dx

=
1

2
p(x)a(x)f ′(x)

∣∣∣∣∞
−∞

−
∫ ∞

−∞
f ′(x)

(
1

2

d

dx
(a(x)p(x))− b(x)p(x)

)
dx.

The first term is zero, and integrating by parts again∫ ∞

−∞
f(x)

d

dx

(
1

2

d

dx
(a(x)p(x))− b(x)p(x)

)
dx

so solve
d

dx

(
1

2

d

dx
(a(x)p(x))− b(x)p(x)

)
︸ ︷︷ ︸

this is a constant:
let the constant be 0

= 0,

so
1

2

d

dx
(a(x)p(x)) = b(x)p(x).
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Applying the integrating factor exp(−
∫ x

0
2b(z)/a(z)dz) to get a perfect differential,

we have
1

2
e−

R x
0

2b(z)
a(z)

dz d

dx
(a(x)p(x))− b(x)e−

R x
0

2b(z)
a(z)

dzp(x) = 0

a(x)e−
R x
0

2b(z)
a(z)

dzp(x) = C

p(x) =
C

a(x)
e
R x
0

2b(z)
a(z)

dz.

Assume a(x) > 0 for all x. The condition for the existence of a stationary distribu-
tion is ∫ ∞

−∞

1

a(x)
e
R x
0

2b(z)
a(z)

dzdx <∞.
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Example: Spatial birth and death processes

Let ν ∈Mf (S)

Af(η) =

∫
S

(f(η + δy)− f(η))ν(dy) +

∫
S

(f(η − δx)− f(η))η(dx)

for
f ∈ D(A) = {e−〈h,η〉 : inf

x
h(x) > 0}.
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The stationary distribution

Let ξ be a Poisson random measure with mean measure ν. Then

E[

∫
S

h(ξ − δx, x)ξ(dx)] = E[

∫
S

h(ξ, x)ν(dx)]. (9.3)

Consequently,

E[

∫
S

(f(ξ − δx)− f(ξ))ξ(dx)] = E[

∫
S

f(ξ)ν(dx)]− E[

∫
S

f(ξ + δx)ν(dx)]

so ∫
N (S)

Af(η)µ0
ν(dη) = 0.

where µ0
ν is the distribution of the Poisson random measure with mean measure ν.
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Moment lemma for Poisson random measures

Let ξ be a Poisson random measure on E with nonatomic mean measure ν. Let
{En

k } be a sequence of partitions of E with max diam(En
k ) → 0, and let xn

k ∈ En
k .

Then for bounded, continuous, h : N (E)× E → R and F ∈ B(E) with ν(F ) <∞,

E[

∫
F

h(ξ − δx, x)ξ(dx)] = lim
n→∞

∑
k

E[h(ξ − ξEn
k∩F , x

n
k)ξ(En

k ∩ F )]

= lim
n→∞

∑
k

E[h(ξ − ξEn
k∩F , x

n
k)ν(En

k ∩ F )]

=

∫
F

E[h(ξ, x)]ν(dx)
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Existence of stationary distributions: Feller case

Lemma 9.22 Suppose {T (t)} is a Feller semigroup corresponding to a Markov processX .
Let νt = PX−1(t), and define

µt =
1

t

∫ t

0

νsds

If {µt} is tight, then any limit point is a stationary measure for {T (t)}.

Proof. Suppose µtn converges weakly to µ∞. Then for f ∈ C̄(E),

〈T (r)f, µ∞〉 = lim
n→∞

〈T (r)f, µtn〉

= lim
n→∞

1

tn

∫ tn

0

〈T (r)f, νs〉ds

= lim
n→∞

1

tn

∫ tn

0

〈f, νs+r〉ds

= lim
n→∞

1

tn

∫ r+tn

r

〈f, νs〉 = 〈f, µ∞〉

�
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Existence of stationary distributions: Generators

Lemma 9.23 Suppose A ⊂ C̄(E)× C̄(E) and A satisfies the conditions of Theorem 9.21.
Suppose f , g satisfy the conditions of Lemma 9.14 and that Ka = {x : g(x) ≥ −a} is
compact for each a > 0. Then there exists a stationary distribution

Proof. Assume that E[f(X(0))] <∞. Then

E[f(X(t))] ≤ E[f(X(0))] + E[

∫ t

0

g(X(s))ds]

and letting C1 = supx g(x) and C2 = infx f(x),

aE[

∫ t

0

1Kc
a
(X(s))]− C1E

∫ t

0

1Ka(X(s))ds] ≤ [E[

∫ t

0

(−g)(X(s))ds]

≤ E[f(X(0)]− C2

and
µt(K

c
a) ≤

E[f(X(0))]− C2

ta
+
C1

a
,

so {µt} is tight. Since t−1(〈f, νt〉 − 〈f, ν0〉)− 〈Af, µt〉 = 0, and Af ∈ C̄(E), any limit
point of {µt} will satisfy 〈Af, µ∞〉 = 0. �



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 225

Example

Let Af(x) = 1
2

∑
aij(x)∂i∂jf(x) +

∑
i bi(x)∂if(x), and let f(x) = |x|2. Then

g(x) =
∑

aii(x) + 2b(x) · x

so if lim|x|→∞
∑
aii(x) + 2b(x) · x = −∞ and the aij and bi are continuous, there

exists a stationary distribution.
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Birth and death processes: Stationary distribution

Want ∑
k

πkAf(k) = 0, f with finite support.

For f = δk,
πk+1µk+1 + πk−1λk−1 − πk(λk + µk) = 0,

which is implied by πkµk = πk−1λk−1, k = 1, 2, . . . . Consequently,

πk = π0

k−1∏
i=0

λi

µi+1
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Example: Spatial birth and death processes

Let ν ∈Mf (S)

Af(η) =

∫
S

β(y, η)(f(η + δy)− f(η))ν(dy) +

∫
S

δ(x, η)(f(η − δx)− f(η))η(dx)

where β and δ are continuous. Let f(η) = eα|η|. Then

g(η) = eα|η|
(∫

S

(eα − 1)β(y, η)ν(dy)−
∫

S

(1− e−α)δ(x, η)η(dx)

)
.

Suppose ∫
S

β(y, η)ν(dy) ≤ β̄(|η|)∫
S

δ(x, η)η(dx) ≥ δ(|η|)

If ∑
k

k−1∏
i=0

β̄(i)

δ(i+ 1)
<∞,

then there is a unique stationary distribution for A.



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 228

MCMC for spatial point processes

Consider the class of spatial point processes specified through a density (Radon-
Nikodym derivative) with respect to a Poisson point process with mean measure
ν, that is, the distribution of the point process is given by

µν,H(dη) =
1

Zν,H

e−H(η)µ0
ν(dη), (9.4)

where H(η) is referred to as the energy function, Zν,H is a normalizing constant, and
µ0

ν is the law of a Poisson process with mean measure ν.

Assuming Zν,H exists, µν,H is a probability measure on S = {η ∈ N (S);H(η) <∞}.

H is hereditary in the sense of Ripley (1977), if H(η) <∞ and η̃ ⊂ η implies H(η̃) <
∞.
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Conditions to be a stationary distribution

Suppose that β(x, η) > 0 if H(η + δx) <∞ and that β and δ satisfy

β(x, η)e−H(η) = δ(x, η + δx)e
−H(η+δx). (9.5)

This equation is a detailed balance condition which ensures that births from η to η+δx
match deaths from η + δx to η and that the process is time-reversible with (9.4) as
its stationary distribution. Since

Af(η) =

∫
S

δ(y, η + δy)e
H(η)−H(η+δy)(f(η + δy)− f(η))ν(dy)

+

∫
S

δ(x, η)(f(η − δx)− f(η))η(dx),

the Poisson identity implies∫
Af(η)µν,H(dη) =

1

Zν,H

∫
Af(η)e−H(η)µ0

ν(dη) = 0.

(9.5) holds for any pair of birth and death rates such that

β(x, η)

δ(x, η + δx)
= exp{−H(η + δx) +H(η)}.
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Pairwise interaction point processes

Take δ(x, η) = 1, that is, whenever a point is added to the configuration, it lives an
exponential length of time independently of the configuration of the process.

Hρ(η) =
∑
i<j

ρ(xi, xj)

=
1

2
[

∫ ∫
ρ(x, y)η(dx)η(dy)−

∫
ρ(x, x)η(dx)]}

Then β(x, η) = exp{−
∫
ρ(x, y)η(dy)} and

Af(η) =

∫
e−

R
ρ(x,y)η(dy)(f(η + δx)− f(η))dx+

∫
(f(η − δx)− f(η))η(dx).
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10. Diffusion approximations

• Convergence of generators

• Limits of martingales should be martingales

• Tightness based on generator estimates

• Diffusion approximations

• Heavy traffic limits for queueing models
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Convergence of generators

{An} a sequence of generators for Markov processes with state space E.

Convergence condition: For each (f, g) ∈ A ⊂ C̄(E)× C̄(E), there exist (fn, gn) ∈
An, n = 1, 2, . . ., such that supn(‖fn‖+ ‖gn‖) <∞ and

fn → f, gn → g uniformly on compact subsets of E
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Limits of martingales should be martingales

Lemma 10.1 Assume that the Convergence Condition holds. Suppose {(Xn, Zn)} is rela-
tively compact in DE×E′ [0,∞) and Xn is a solution of the martingale problem for An with
respect to the filtration {FXn,Zn

t }. If (X,Z) is a limit point of {(Xn, Zn)}, then X is a
solution of the martingale problem for A with respect to {FX,Z

t }.

Proof. Suppose (Xn, Zn) ⇒ (X,Z). Let Td = {t : P{(X(t), Z(t)) 6= (X(t−), Z(t−))} >
0}. (Td is countable.) Then for {ti} ⊂ T c

d , hi ∈ C̄(E × E ′), and (fn, gn) → (f, g) as in
the convergence condition,

(fn(Xn(tm+1))− fn(Xn(tm))−
∫ tm+1

tm

gn(Xn(s))ds)
∏

hi(Xn(ti), Zn(ti))

converges in distribution to

(f(X(tm+1))− f(X(tm))−
∫ tm+1

tm

g(X(s))ds)
∏

hi(X(ti), Z(ti))

which by the martingale properties of Xn and the boundedness of {(fn, gn)} must
have expectation zero. �



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 234

Tightness based on generator estimates

Suppose D(A) is closed under multiplication. Then for f ∈ D(A) and τn
K = inf{s >

0 : Xn(s) 6= K},

E[(f(Xn(t+ u))− f(Xn(t)))2|Fn
t ]

= E[f 2(Xn(t+ u))− f 2(Xn(t))|Fn
t ]− 2f(Xn(t))E[f(Xn(t+ u))− f(Xn(t))|Fn

t ]

≤ 2 sup
x∈K

|f 2(x)− f̃n(x)|+ C sup
x∈K

|f(x)− fn(x)|+ CE[1{τn
K≤t+u}|Fn

t ]

+E[

∫ t+u

t

(g̃n(Xn(s)) + C|gn(Xn(s))|)ds|Fn
t ]

Consequently, if the convergence condition holds and there exists a sequence of
compact sets Km such that

lim
m→∞

lim sup
n→∞

P{τn
Km

≤ T} = 0,

{Xn} is relatively compact.
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Diffusion approximations

For n = 1, 2, . . ., let {Y n
k , k ≥ 0} be a Markov chain in Rd with transition function

µn(x, dy). Suppose

lim
n→∞

n

∫
(y − x)µn(x, dy) = b(x), lim

n→∞
n

∫
(y − x)(y − x)Tµn(x, dy) = a(x)

uniformly on compact K ⊂ Rd, and

lim
n→∞

sup
x
n

∫
|x− y|3µn(x, dy) = 0.

Let
Xn(t) = Y n

[nt].

Define Anf(x) = n(
∫
f(y)µn(x, dy)− f(x))

f(Xn(t))−f(Xn(0))−
[nt]−1∑
k=0

(µnf(Y n
k )−f(Y n

k ) = f(Xn(t))−f(Xn(0))−
∫ [nt]

n

0

Anf(Xn(s))ds

is a martingale, and for f ∈ Cc
2(Rd)

lim
n→∞

Anf(x) =
1

2

∑
i,j

aij(x)∂i∂jf(x) +
∑

i

bi(x)∂if(x).
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Heavy traffic limits for queueing models

Queueing model with Poisson arrivals and exponential service times:

Bf(k) = λ(f(k + 1)− f(k)) + µ1{k>0}(f(k − 1)− f(k))

Suppose
√
n(µn − λn) → c and λn → λ. Define Xn(t) = Q(nt)√

n
, and

Anf(x) = nλn(f(x+
1√
n

)− f(x)) + nµn1{x>0}(f(x− 1√
n

)− f(x))

=
√
n(λn − µn)f ′(x) +

1

2
(λn + µn)f ′′(x) +O(

1√
n

)

−nµn1{x=0}(f(x− 1√
n

)− f(x))

If f ′(0) = 0,

lim
n→∞

Anf(x) = λf ′′(x)− cf ′(x)− λ

2
1{x=0}f

′′(0)

Let fn(x) = f(x) + 1√
n
h(x). Then

lim
n→∞

Anfn(x) = λf ′′(x)− cf ′(x)− λ

2
1{x=0}f

′′(0) + λ1{x=0}h
′(0).
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Quality control schemes

Y1, Y2, . . . process measurements in Rd

a target mean, that is, we want E[Yk] = a

CUSUM (cumulative sum) procedures

Page: For d = 1, K− < a < K+,

SH
k+1 = max(0, SH

k + Yk+1 −K+)

SL
k+1 = min(0, SL

k + Yk+1 −K−)

Crosier: Two-sided procedure

Sk+1 = (Sk + Yk+1 − a)× 0 ∨ (1− K

|Sk + Yk+1 − a|
)

If the Yk are independent, then the recursions give Markov chains.



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 238

Figure 1: Triglyceride data
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Figure 2: Page’s CUSUM statistics
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Scaling limit (think CLT)

Assume a = 0, E[Yk] = c√
n

, and replace K+ by K+
√

n
. Define XH

n (t) = 1√
n
SH

[nt], so

XH
n (t+ n−1) = max(0, XH

n (t) +
1√
n
Y[nt]+1 −

K+

n
)

Anf(x) = n(E[f(0 ∨ (x+
1√
n
ξ +

c

n
− K+

n
))]− f(x))

≈ E[(−
√
nx) ∨ (ξ +

c−K+

√
n

))]
√
nf ′(x)

+
1

2
E[((−

√
nx) ∨ (ξ +

c−K+

√
n

)))2]f ′′(x)

= E[(−
√
nx− c−K+

√
n

) ∨ ξ]
√
nf ′(x) + (c−K+)f ′(x)

+
1

2
E[((−

√
nx) ∨ (ξ +

c−K+

√
n

)))2]f ′′(x)
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Estimates
For simplicity, assume Y n

k = ξk + c√
n

for iid ξk with E[ξk] = 0 and V ar(ξk) < ∞.
More generally, one could assume that {|Y n

k |2} are uniformly integrable.

Lemma 10.2 If E[ξ2] <∞, then

lim
c→∞

c2P{|ξ| ≥ c} = 0 lim
c→∞

cE[|ξ|1{|ξ|≥c}] = 0.

If, in addition, E[ξ] = 0, then limc→∞ cE[(−c) ∨ ξ] = 0.

Proof. Note that

E[|ξ|21{|ξ|≥c}] ≥ cE[|ξ|1{|ξ|≥c}] ≥ c2P{|ξ| ≥ c}.

If E[ξ] = 0, then

cE[(−c) ∨ ξ] = −c2P{ξ ≤ −c}+ cE[ξ1{ξ>−c}] = −c2P{ξ ≤ −c} − cE[ξ1{ξ≤−c}]

�

Note that if E[ξ] = 0 and E[ξ2] <∞, then for z > 0,

lim
n→∞

√
nE[ξ ∨ (−

√
nz)] = lim

n→∞
(−nzP{ξ < −

√
nz} −

√
nE[ξ1{ξ<−

√
nz}] = 0



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 242

Boundary condition

If f ′(0) = 0. Then

E[(−
√
nx) ∨ (ξ +

c−K+

√
n

))]
√
nf ′(x) ≤ E[(−

√
nx) ∨ (ξ +

c−K+

√
n

))]
√
nx‖f ′′‖,

which converges to zero if
√
nx→∞. If

√
nx→ u, then

E[(−
√
nx) ∨ (ξ +

c−K+

√
n

))]
√
nf ′(x) → E[(−u) ∨ ξ]uf ′′(0).

Claim: If f ′(0) = 0, then

sup
x
|E[(−

√
nx) ∨ (ξ +

c−K+

√
n

))]
√
nf ′(x)| <∞.

and for
√
nεn →∞

sup
x≥εn

|E[(−
√
nx) ∨ (ξ +

c−K+

√
n

))]
√
nf ′(x)| → 0.

Need to show

E

∫ t

0

1{XH
n (s)≤εn}ds] → 0.
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Scaling the two-sided procedure

Recall
Sk+1 = (Sk + Yk+1 − a)× 0 ∨ (1− K

|Sk + Yk+1 − a|
)

Again, assume a = 0, Yk+1 = ξk+1 + c√
n

, and replace K by K√
n

. Then

Xn(t+ n−1) = (Xn(t) +
1√
n
Y[nt]+1)× 0 ∨

(
1− K

n|Xn(t) + 1√
n
Y[nt]+1|

)
and

Anf(x) = n(E[f((x+
1√
n
ξ +

c

n
)(1− (n−1K|x+

1√
n
ξ +

c

n
|−1) ∧ 1)− f(x)]

≈ cf ′(x)− E[
x+ 1√

n
ξ + c

n

|x+ 1√
n
ξ + c

n
|
(K ∧ (n|x+

1√
n
ξ +

c

n
|)]f ′(x) +

1

2
E[ξ2]f ′′(x)
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11. φ-irreducibility and Harris recurrence

• Uniqueness of stationary distributions

• Ergodicity under uniqueness assumption

• Example: Spatial birth and death processes

• Standard assumptions for Markov processes (Borel right processes)

• Generator conditions

• φ-irreducibility

• Equivalent condition
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Renewal conditions

Lemma 11.1 Suppose A ⊂ B(E) × B(E), and X is strong Markov solution of the mar-
tingale problem for A. Let z ∈ E, and let τ1 = inf{t : X(t) = z} and τk+1 = inf{t > τk :
X(t) = z}. Suppose τ1 <∞ a.s. and E[τk+1− τk] <∞. Then there is a stationary distri-
bution for A. If τ1 <∞ a.s. for all initial distributions, then the stationary distribution is
unique.

Proof. We have

lim
n→∞

1

τn − τ1

∫ τn

τ1

f(X(s))ds =
E[
∫ τk+1

τk
f(X(s))ds]

E[τk+1 − τk]
≡
∫
fdµ

If X corresponds to a semigroup {T (t)}, then

1

t

∫ t

0

∫
T (s)fdνds = E[

1

t

∫ t

0

f(X(s))ds] →
∫
fdµ

�
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Birth and death processes: Recurrence

For λk > 0, k = 0, 1, . . ., µ0 = 0, and µk > 0, k = 1, 2, . . ., consider

Af(k) = λk(f(k + 1)− f(k)) + µk(f(k − 1)− f(k)) = 0, k ≥ 1

Then

f(k + 1)− f(k) =
µk

λk

(f(k)− f(k − 1) = (f(0)− f(1))
k∑

l=1

l∏
i=1

µi

λi

, k ≥ 1,

and

f(k) = f(1) + (f(1)− f(0))
k−1∑
l=1

l∏
i=1

µi

λi

If f(k) → ∞, then process hits zero with probability one. If the limit is finite, the
process is transient.
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Example: Spatial birth and death processes

Let ν ∈Mf (S)

Af(η) =

∫
S

β(y, η)(f(η + δy)− f(η))ν(dy) +

∫
S

δ(x, η)(f(η − δx)− f(η))η(dx)

where β and δ are continuous. Suppose

β(y, η) ≤ λ|η|, δ(x, η) ≥ µ|η|

Then for f(η) = f(|η|) from above

E[f(|Z((t+ s) ∧ τ0)|)− f(|Z(t ∧ τ0)|)|Ft] ≤ 0
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Markov processes: Transition functions
E a complete, separable metric space and E0 ∈ B(E). (This assumption is essen-
tially equivalent to the assumption that E0 is a Lusin space.)

Definition 11.2 P (t, x,Γ) is a time-homogeneous, Markov transition function onE0,
if

a) For each Γ ∈ B(E0), (t, x) ∈ [0,∞) × E0 → P (t, x,Γ) is B([0,∞)) × B(E0)-
measurable.

b) For each (t, x) ∈ [0,∞)× E0, P (t, x, ·) ∈ P(E0).

c) (The Chapman-Kolmogorov Equation) For all t, s ≥ 0, x ∈ E0, and Γ ∈ B(E0),

P (t+ s, x.Γ) =

∫
E0

P (t, y,Γ)P (s, x, dy).
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Markov processes: The semigroup

Define
T (t)f(x) ≡

∫
E

f(y)P (t, x, dy), f ∈ B(E0), t ≥ 0,

and note that {T (t)} defines a semigroup of operators onB(E0), that is, T (t+s)f =
T (t)T (s)f , s, t ≥ 0. We will refer to {T (t)} as a transition semigroup.

Definition 11.3 X is a Markov process with transition semigroup {T (t)} if and only
if there exists a filtration {Ft} such that X is adapted to {Ft} and

E[f(X(t+ s))|Ft] = T (s)f(X(t)) a.s. ∀t, s ≥ 0, f ∈ B(E0). (11.1)

X is strong Markov if for each {Ft}-stopping time τ ,

E[f(X(τ + s))|Fτ ] = T (s)f(X(τ)) a.s. ∀t, s ≥ 0, f ∈ B(E0).
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Markov processes: Basic conditions

For each µ ∈ P(E0), let Xµ be a Markov process with respect to a filtration {Fµ
t }

with semigroup {T (t)} and P{Xµ(0) ∈ C} = µ(C), C ∈ B(E0). (µ is the initial
distribution for Xµ.) If µ = δx, we write Xx.

We assume the following basic conditions on Xµ and {Fµ
t }.

Condition 11.4

a) Xµ is right continuous.

b) Xµ is strong Markov with respect to the filtration {Fµ
t }.

c) {Fµ
t } is complete and right continuous.
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σ-algebra on the right continuous functions

Let RE0 [0,∞) denote the collection of right-continuous, E0-valued functions. Let
SE0 be the σ-algebra generated by the evaluation functions t→ x(t).

• DE0 [0,∞) ∈ SE0

• For y ∈ RE0 [0,∞) {x : sup0≤s≤t r(x(s), y(s)) ≤ ε} ∈ SE0

• For each closed F ⊂ E0, {x : x(s) ∈ F, s ≤ t} ∈ SE0 .

P{Xµ ∈ C} =

∫
E0

P{Xx ∈ C}µ(dx), C ∈ SE0
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SE0-measurability

Lemma 11.5 Let
d(x, y) =

∫ ∞

0

e−t sup
s≤t

r(x(s), y(s))dt

Then SE0 is the σ-algebra generated by Bδ(y), y ∈ RE0 [0,∞).

Proof. Let
Bn

δ (y) = {x :

∫ ∞

0

e−t sup
s≤t

r(x(
[ns]

n
), y(

[ns]

n
))dt ≤ δ}.

Then Bn
δ (y) ∈ σ(s→ x(s) : s = k

n
, k = 0, 1, . . .) ⊂ SE0 and Bδ(y) = ∩nB

n
δ (y). �
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Markov processes: Sufficient conditions

Lemma 11.6 Let E0 be compact, and let A ⊂ C(E0) × B(E0). Suppose that for each
µ ∈ P(E0) there exists a unique solution Xµ of the martingale problems for (A, µ). Then
Xµ has a modification satisfying Condition 11.4.
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φ-irreducibility
ForB ∈ B(E0), let τB = inf{t : X(t) ∈ B}, and let φ ∈ P(E0). {T (t)} is φ-irreducible
if φ(B) > 0 implies Px{τB <∞} > 0 for all x ∈ E0.

Lemma 11.7 Suppose {T (t)} is φ-irreducible, and define

ψ(B) = Eφ[

∫ ∞

0

e−t1B(X(t))dt] =

∫
E0

Ex[

∫ ∞

0

e−t1B(X(t))dt]φ(dx). (11.2)

If ψ(B) > 0, then Px{
∫∞

0
e−t1B(X(t))dt > 0} > 0 for every x ∈ E0.

Proof. Let Γ = {x : Px{
∫∞

0
e−t1B(X(t))dt > ε} > δ}. There exist ε > 0 and δ > 0

such that φ(Γ) > 0. There exists compact K ⊂ Γ such that φ(K) > 0. Therefore, for
every x ∈ E0, Px{τK <∞} > 0.
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Note that ∫ ∞

0

e−t1B(X(t))dt ≥ e−τK

∫ ∞

0

e−t1B(X(τK + t))dt.

By the strong Markov property,

Px{τK <∞,

∫ ∞

0

e−t1B(X(τK + t))dt > ε}

= Ex[1{τK<∞}PX(τK){
∫ ∞

0

e−t1B(X(t))dt > ε}

≥ δPx{τK <∞}

and Px{
∫∞

0
e−t1B(X(t))dt > εe−τK} > δPx{τK <∞}. �
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Equivalent notions of irreducibility

Let ψ ∈ P(E0). Suppose that ψ(B) > 0 implies Px{
∫∞

0
e−t1B(X(s))ds > 0} > 0 for

every x. Then {T (t)} is ψ-irreducible.

Lemma 11.8 If {T (t)} is φ1-irreducible and φ2-irreducible and ψ1 and ψ2 are defined as
in (11.2), then ψ1 and ψ2 are equivalent (mutually absolutely continuous) measures.

Proof. If ψ1(B) > 0, then
∫
Ex[
∫∞

0
e−t1B(X(t))dt]φ2(dx) = ψ2(B) > 0. �
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Ergodicity and φ-irreducibility

Lemma 11.9 Suppose π is the unique stationary distribution for {T (t)}, and {T (t)} is
φ-irreducible. If π(B) > 0, then φ({x : Px{

∫∞
0
e−t1B(X(t))dt = 0} = 1}) = 0, and

hence, π(B) > 0 implies ψ(B) > 0.

Proof. Suppose not. Let K ⊂ {x : Px{
∫∞

0
e−t1B(X(t))dt = 0} = 1} be compact.

Then ∫ ∞

0

1B(Xπ(s))ds ≤ τK (11.3)

But uniqueness of the stationary distribution implies Xπ is ergodic and π(B) > 0
implies the integral on the left of (11.3) is infinite a.s. − π. Consequently, Pπ{τK <
∞} = 0, and hence φ(K) = 0. �



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 258

Equivalence of stationary distribution

Theorem 11.10 Suppose {T (t)} is φ-irreducible and ψ is defined as above. If π is a sta-
tionary distribution for {T (t)}, then π and ψ are equivalent measures and π is the unique
stationary distribution.

Proof. If ψ(B) > 0, then

π(B) =

∫
Ex[

∫ ∞

0

e−t1B(X(t))dt]π(dx) > 0.

Consequently, ψ << π.

If there were more than one stationary distribution, there would be two mutually
singular stationary distributions. (See Lemma 3.14.) But if π1(B) = π2(B

c) = 0,
then ψ(B) ∨ ψ(Bc) > 0 implies a contradiction.

By Lemma 11.9 π(B) > 0 implies ψ(B) > 0 so π << ψ. �
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Harris recurrence

Definition 11.11 {T (t)} is Harris recurrent, if there exists ψ ∈ P(E0) such that
ψ(B) > 0 implies

Px{
∫ ∞

0

1B(X(t))dt = ∞} = 1, ∀x ∈ E0.
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Equivalent definition

Theorem 11.12 {T (t)} is Harris recurrent if and only if there exists φ ∈ P(E0) such that
φ(B) > 0 implies Px{τB <∞} = 1 for all x ∈ E0.

Proof. If {T (t)} is Harris recurrent then φ = ψ has the desired property. Con-
versely, if φ(B) > 0 implies Px{τB <∞} = 1 for all x ∈ E0, then ψ defined by (11.2)
satisfies the condition in the definition of Harris recurrence.

In particular, as in the proof of Lemma 11.7, there exist ε, δ > 0, compact K ⊂ E0

with φ(K) > 0, and t0 > 0 such that

Px{
∫ t0

0

1B(X(s))ds ≥ ε} ≥ δ, x ∈ K.

For µ ∈ P(E0), define

τ1 = inf{t > 0 : Xµ(t) ∈ K}, τn+1 = inf{t > τn + t0 : Xµ(t) ∈ K}.

Then τn < ∞ a.s., for every n, and by the right continuity of Xµ and the com-
pactness of K, Xµ(τn) ∈ K a.s. Consequently, by the strong Markov property,
P{
∫ τn+t0

τn
1B(Xµ(s))ds ≥ ε|Fτn} ≥ δ. It follows that

∫ τn+1

τn
1B(Xµ(s))ds ≥ ε infinitely
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often, so ∫ ∞

0

1B(Xµ(s))ds = ∞ a.s. (11.4)

�
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Example: Workload process

Poisson arrivals at rate one. Single server, FIFO (first in first out) queue.

V (t) = V (0) +

N(t)∑
k=1

ξk −
∫ t

0

1{V (s)>0}ds

Af(v) = λ

∫ ∞

0

(f(v + z)− f(z))µξ(dz)− 1(0,∞)(v)f
′(v)
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Diffusions
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Relationship between discrete and continuous time

Let
R1(x,B) =

∫ ∞

0

e−tT (t)1B(x)dt = Ex[

∫ ∞

0

e−t1B(X(t))dt].

Then R1 is a transition function on E0. The corresponding discrete-time Markov
chain can be obtained by

Yk = X(
k∑

i=1

∆i),

where {∆i} are iid unit exponential random variables, independent of X . Clearly,
if π is a stationary distribution for {T (t)} it is a stationary distribution for R1.

Lemma 11.13 If π is a stationary distribution for R1, then π is a stationary distribution
for {T (t)}.

Proof. Let A be the full generator for {T (t)}. Then R1f = (I − A)−1f . Setting
g = (I − A)−1f , (I − A)g = f . But∫

gdπ =

∫
R1fdπ =

∫
fdπ,
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so
∫
Agdπ = 0. Consequently, π is a stationary distribution for {T (t)}. �
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“Petite” sets

With reference to Lemma 2.18.

C ∈ B(E0) is petite if there is a probability measure ν ∈ P(E0) and ε > 0 such that

R1(x, ·) ≥ εν, x ∈ C.
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Conventions and caveats

State spaces are always complete, separable metric spaces (sometimes called Polish
spaces), usually denoted (E, r).

All probability spaces are complete.

All identities involving conditional expectations (or conditional probabilities) only
hold almost surely (even when I don’t say so).

If the filtration {Ft} involved is obvious, I will say adapted, rather than {Ft}-
adapted, stopping time, rather than {Ft}-stopping time, etc.

All processes are cadlag (right continuous with left limits at each t > 0), unless
otherwise noted.

A process is real-valued if that is the only way the formula makes sense.



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 268

Assignments

1. Durrett Problems 5.1.6 and 5.1.8 due 1/26/06

2. Durrett Problems 5.3.4 and 5.4.1 due 2/07/06

3. Durrett Problem 6.3.4

4. Exercises 1 and 2 due 2/21/06

5. Exercises 3 and 4 due 2/28/06

6. Exercises 5 through 8

7. Exercise 9 and Durrett Problems 7.2.2 and 7.51
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Exercises
1. Let E be the space of permutations of the positive integers. Let pk > 0, k = 1, 2, . . . and

P
pk = 1.

Let {ξn} be iid with P{ξn = k} = pk and let X0 be an E-valued random variable independent of {ξn}.
Let {Xn} be the Markov chain in which if ξn+1 = k, Xn+1 is obtained from Xn by moving k to the
beginning of the permutation and leaving the order of the other elements unchanged. Write

Xn = (X1
n, X2

n, X3
n, . . .)

(a) For n > 0, what is P{X1
n = k|X0}, P{X1

n = k, X2
n = l|X0}?

(b) Find a stationary distribution for this Markov chain and show that it is unique.

2. Let {ξn} be iid with P{ξn = 1
2k } = pk > 0, for k = 1, 2, . . .. Let E = [0, 1) and Xn+1 = Xn+ξn+1 mod 1.

Show that this Markov chain has a unique stationary distribution.

3. Let X be {Ft}-progressive. Suppose that E[X(τ)] = E[X(0)] for every {Ft}-stopping time τ . Show
that X is a {Ft}-martingale.

4. Let 0 = τ0 < τ1 < · · · be stopping times satisfying limk→∞ τk = ∞, and for k = 0, 1, 2, . . ., let ξk ∈ Fτk .
Define

X(t) =

∞X
k=0

ξk1[τk,τk+1)(t).

Show that X is adapted.
Example: Let X be a cadlag adapted process and let ε > 0. Define τ ε

0 = 0 and for k = 0, 1, 2, . . .,

τ ε
k+1 = inf{t > τ ε

k : |X(t)−X(τ ε
k)| ∨ |X(t−)−X(τ ε

k)| ≥ ε}.
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Note that the τ ε
K are stopping times, by Problem 1. Define

Xε(t) =

∞X
k=0

X(τ ε
k)1[τε

k
,τε

k+1)(t).

Then Xε is a piecewise constant, adapted process satisfying

sup
t
|X(t)−Xε(t)| ≤ ε.

5. Show that E[f(X)|D] = E[f(X)] for all bounded continuous fucntions (all bounded measurable func-
tions) if and only if X is independent of D.

6. Let N be a Poisson process with parameter λ, and let X1, X2, . . . be a sequence of Bernoulli trials with
parameter p. Assume that the Xk are independent of N , and define

M(t) =

N(t)X
k=1

Xk.

(a) What is P{M(t) = k|N(t) = n}?

(b) What is the distribution of M(t)?

(c) For t < s, calculate the probability that P{N(t) = 1, N(s) = 1}.

(d) Give an event in terms of S1 and S2 that is equivalent to the event {N(t) = 1, N(s) = 1}, and use
the calculation in the previous part to calculate the joint density function for S1 and S2.

(e) For k ≥ 1, find the conditional density of S1 given that N(t) = k. (Hint: First calculate P{S1 ≤
s, N(t) = k} for s ≤ t.)
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7. Verify tightness (relative compactness) for the renormalized empirical distribuiton Bn.

8. Functional convergence and the continuous mapping theorem enable one to obtain convergence for
many interesting quantities; however, the continuity properties of the quantities of interest need to be
checked.

(a) Show that F : x ∈ C[0, 1] → sup0≤t≤1 x(s) ∈ R is continuous.

(b) Let τc : x ∈ C[0,∞) → inf{t : x(t) ≥ c} ∈ [0,∞] and Let τ0
c : x ∈ C[0,∞) → inf{t : x(t) > c} ∈

[0,∞]. Describe the points of continuity for τc and τ0
c .

9. Consider the Markov chain with transition matrix
2
4

1− α α 0
γ 1− 2γ γ
0 α 1− α

3
5

Derive the maximum likelihood estimators for α and γ and apply the martingale central limit theorem
to show asymptotic normality.

10. Let X and Y S-valued random variables defined on (Ω,F , P ), and let G ⊂ F be a sub-σ-algebra.
Suppose that M ⊂ C̄(S) is separating and

E[f(X)|G] = f(Y ) a.s.

for every f ∈ M . Show that X = Y a.s.
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Glossary

Complete. We say that a metric space (E, r) is complete if every Cauchy sequence
in it converges.

Conditional expectation. Let D ⊂ F and E[|X|] < ∞. Then E[X|D] is the, essen-
tially unique, D-measurable random variable satisfying∫

D

XdP =

∫
D

E[X|D]dP, ∀D ∈ D.

Consistent. Assume we have an arbitrary state space (E,B) and an index set I .
For each nonempty subset J ⊂ I we denote by EJ the product set

∏
t∈J E, and we

define BJ to be the product-σ-algebra ⊗t∈JB. Obviously, if J ⊂ H ⊂ I then there is
a projection map

pH
J : EH → EJ .

If for every two such subsets J and H we have

PJ = pH
J (PH)

then the family (PJ)∅6=J⊂H is called consistent.

Closure of an operator. Let L be a Banach space and A ⊂ L × L. The closure Ā
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of A is the collection of (f, g) ∈ L × L such that there exist (fn, gn) ∈ A satisfying
limn→∞ fn = f and limn→∞ gn = g. If Ā = A, then A is closed.

Separable. A metric space (E, r) is called separable if it contains a countable dense
subset; that is, a set with a countable number of elements whose closure is the
entire space. Standard example: R, whose countable dense subset is Q.

Separating set A collection of function M ⊂ C̄(S) is separating is µ, ν ∈Mf (S) and∫
gdν =

∫
gdµ, g ∈M , implies that µ = ν.
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12. Technical lemmas

• Caratheodary extension theorem

• Dynkin class theorem

• Essential supremum

• Martingale convergence theorem

• Kronecker’s lemma

• Law of large numbers for martingales

• Geometric rates

• Uniform integrability

• Dominated convergence theorem

• Metric spaces
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Caratheodary extension theorem

Theorem 12.1 Let M be a set, and let A be an algebra of subsets of M . If µ is a σ-finite
measure on A, then there exists a unique extension of µ to a measure on σ(A).



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 276

Dynkin class theorem
A collectionD of subsets of Ω is a Dynkin class if Ω ∈ D, A,B ∈ D and A ⊂ B imply
B − A ∈ D, and {An} ⊂ D with A1 ⊂ A2 ⊂ · · · imply ∪nAn ∈ D.

Theorem 12.2 Let S be a collection of subsets of Ω such thatA,B ∈ S impliesA∩B ∈ S .
If D is a Dynkin class with S ⊂ D, then σ(S) ⊂ D.
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Essential Supremum

Let {Zα, α ∈ I} be a collection of random variables. Note that if I is uncountable,
supα∈I Zα may not be a random variable; however, we have the following:

Lemma 12.3 There exists a random variable Z̄ such that P{Zα ≤ Z̄} = 1 for each α ∈ I
and there exist αk, k = 1, 2, . . . such that Z̄ = supk Zαk

.

Proof. Without loss of generality, we can assume 0 < Zα < 1. (Otherwise, replace
Zα by 1

1+e−Zα .) Let C = sup{E[Zα1 ∨ · · · ∨ Zαm ], α1, . . . , αm ∈ I,m = 1, 2, . . .}. Then
there exist (αn

1 , . . . , α
n
mn

) such that

C = lim
n→∞

E[Zαn
1
∨ · · · ∨ Zαn

mn
].

Define Z̄ = sup{Zαn
i
, 1 ≤ i ≤ mn, n = 1, 2, . . .}, and note that C = E[Z̄] and

C = E[Z̄ ∨ Zα] for each α ∈ I. Consequently, P{Zα ≤ Z̄} = 1. �
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Martingale convergence theorem

Theorem 12.4 Suppose {Xn} is a submartingale and supnE[|Xn|] <∞. Then limn→∞Xn

exists a.s.
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Kronecker’s lemma

Lemma 12.5 Let {An} and {Yn} be sequences of random variables where A0 > 0 and
An+1 ≥ An, n = 0, 1, 2, . . .. Define Rn =

∑n
k=1

1
Ak−1

(Yk − Yk−1). and suppose that
limn→∞An = ∞ and that limn→∞Rn exists a.s. Then, limn→∞

Yn

An
= 0 a.s.

Proof.

AnRn =
n∑

k=1

(AkRk − Ak−1Rk−1) =
n∑

k=1

Rk−1(Ak − Ak−1) +
n∑

k=1

Ak(Rk −Rk−1)

= Yn − Y0 +
n∑

k=1

Rk−1(Ak − Ak−1) +
n∑

k=1

1

Ak−1

(Yk − Yk−1)(Ak − Ak−1)

and

Yn

An

=
Y0

An

+Rn −
1

An

n∑
k=1

Rk−1(Ak − Ak−1)−
1

An

n∑
k=1

1

Ak−1

(Yk − Yk−1)(Ak − Ak−1)

�



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 280

Law of large numbers for martingales

Lemma 12.6 Suppose {An} is as in Lemma 12.5 and is adapted to {Fn}, and suppose
{Mn} is a {Fn}-martingale such that for each {Fn}-stopping time τ ,E[(Mτ−Mτ−1)

21{τ<∞}] <
∞. If

∞∑
k=1

1

A2
k−1

(Mk −Mk−1)
2 <∞ a.s.,

then limn→∞
Mn

An
= 0 a.s.

Proof. Without loss of generality, we can assume that An ≥ 1. Let

τc = min{n :
n∑

k=1

1

A2
k−1

(Mk −Mk−1)
2 ≥ c}.

Then
∞∑

k=1

1

A2
k−1

(Mk∧τc −M(k−1)∧τc)
2 ≤ c+ (Mτc −Mτc−1)

21{τc<∞}.

It follows that Rc
n =

∑n
k=1

1
Ak−1

(Mk∧τc − M(k−1)∧τc) converges a.s. and hence, by

Lemma 12.5, that limn→∞
Mn∧τc

An
= 0. �
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Geometric convergence

Lemma 12.7 Let {Mn} be a martingale with |Mn+1−Mn| ≤ c a.s. for each n andM0 = 0.
Then for each ε > 0, there exist C and η such that

P{ 1

n
|Mn| ≥ ε} ≤ Ce−nη.

Proof. Let ϕ̂(x) = e−x + ex and ϕ(x) = ex − 1− x. Then, setting Xk = Mk −Mk−1

E[ϕ̂(aMn)] = 2 +
n∑

k=1

E[ϕ̂(aMk)− ϕ̂(aMk−1)]

= 2 +
n∑

k=1

E[exp{aMk−1}ϕ(aXk) + exp{−aMk−1}ϕ(−aXk)]

≤ 2 +
n∑

k=1

ϕ(ac)E[ϕ̂(aMk−1)],

and hence
E[ϕ̂(aMn)] ≤ 2enϕ(ac).
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Consequently,

P{sup
k≤n

1

n
|Mk| ≥ ε} ≤ E[ϕ̂(aMn)]

ϕ̂(anε)
≤ 2en(ϕ(ac)−aε).

Then η = supa(aε− ϕ(ac)) > 0, and the lemma follows. �
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Uniform integrability

Lemma 12.8 If X is integrable, then for ε > 0 there exists a K > 0 such that∫
{|X|>K}

|X|dP < ε.

Proof. limK→∞ |X|1{|X|>K} = 0 a.s. �

Lemma 12.9 If X is integrable, then for ε > 0 there exists a δ > 0 such that P (F ) < δ
implies

∫
F
|X|dP < ε.

Proof.Let Fn = {|X| ≥ n}. Then nP (Fn) ≤ E[|X|1Fn ] → 0. Select n so that
E[|X|1Fn ] ≤ ε/2, and let δ = ε

2n
. Then P (F ) < δ implies∫

F

|X|dP ≤
∫

Fn

|X|dP +

∫
F c

n∩F

|X|dP <
ε

2
+ nδ = ε

�
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Theorem 12.10 Let {Xα} be a collection of integrable random variables. The following
are equivalent:

a) supE[|Xα|] < ∞ and for ε > 0 there exists δ > 0 such that P (F ) < δ implies
supα

∫
F
|Xα|dP < ε.

b) limK→∞ supαE[|Xα|1{|Xα|>K}] = 0.

c) limK→∞ supαE[|Xα| − |Xα| ∧K] = 0

d) There exists a convex functionϕwith lim|x|→∞
ϕ(x)
|x| = ∞ such that supαE[ϕ(|Xα|)] <

∞.
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Proof. a) implies b) follows by

P{|Xα| > K} ≤ E[|Xα|]
K

b) implies d): Select Nk such that

∞∑
k=1

k sup
α
E[1{|Xα|>Nk}|Xα|] <∞

Define ϕ(0) = 0 and
ϕ′(x) = k, Nk ≤ x < Nk+1.

Recall that E[ϕ(|X|)] =
∫∞

0
ϕ′(x)P{|X| > x}dx, so

E[ϕ(|Xα|)] =
∞∑

k=1

k

∫ Nk+1

Nk

P{|Xα| > x}dx ≤
∞∑

k=1

k sup
α
E[1{|Xα|>Nk}|Xα|].

d) implies b): E[1{|Xα|>K}|Xα|] < E[ϕ(|Xα|)]
ϕ(K)/K

b) implies a):
∫

F
|Xα|dP ≤ P (F )K + E[1{|Xα|>K}|Xα|].
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To see that (b) is equivalent to (c), observe that

E[|Xα| − |Xα| ∧K] ≤ E[|Xα|1{|Xα|>K}] ≤ 2E[|Xα| − |Xα| ∧
K

2
]

�
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Uniformly integrable families

• For X integrable, Γ = {E[X|D] : D ⊂ F}

• For X1, X2, . . . integrable and identically distributed

Γ = {X1 + · · ·+Xn

n
: n = 1, 2, . . .}

• For Y ≥ 0 integrable, Γ = {X : |X| ≤ Y }.
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Uniform integrability and L1 convergence

Theorem 12.11 Xn → X in L1 iff Xn → X in probability and {Xn} is uniformly
integrable.

Proof. If Xn → X in L1, then

lim
n→∞

E[|Xn| − |Xn| ∧K] = E[|X| − |X| ∧K]

and Part (c) of Theorem 12.10 follows from the fact that

lim
K→∞

E[|X| − |X| ∧K] = lim
K→∞

E[|Xn| − |Xn| ∧K] = 0.

�
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Measurable functions

Let (Mi,Mi) be measurable spaces.

f : M1 →M2 is measurable if f−1(A) = {x ∈M1 : f(x) ∈ A} ∈ M1 for each A ∈M2.

Lemma 12.12 If f : M1 →M2 and g : M2 →M3 are measurable, then g ◦ f : M1 →M3

is measurable.
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Dominated convergence theorem

Theorem 12.13 Let Xn → X and Yn → Y in probability. Suppose that |Xn| ≤ Yn a.s.
and E[Yn|D] → E[Y |D] in probability. Then

E[Xn|D] → E[X|D] in probability

Proof. A sequence converges in probability iff every subsequence has a further
subsequence that converges a.s., so we may as well assume almost sure conver-
gence. Let Dm,c = {supn≥mE[Yn|D] ≤ c}. Then

E[Yn1Dm,c |D] = E[Yn|D]1Dm,c

L1→ E[Y |D]1Dm,c = E[Y 1Dm,c |D].

Consequently, E[Yn1Dm,c ] → E[Y 1Dm,c ], so Yn1Dm,c → Y 1Dm,c in L1 by the ordinary
dominated convergence theorem. It follows that Xn1Dm,c → X1Dm,c in L1 and
hence

E[Xn|D]1Dm,c = E[Xn1Dm,c |D]
L1→ E[X1Dm,c |D] = E[X|D]1Dm,c .

Since m and c are arbitrary, the lemma follows. �
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Metric spaces

d : S × S → [0,∞) is a metric on S if and only if d(x, y) = d(y, x), d(x, y) = 0 if and
only if x = y, and d(x, y) ≤ d(x, z) + d(z, y).

If d is a metric then d ∧ 1 is a metric.

Examples

• Rm d(x, y) = |x− y|

• C[0, 1] d(x, y) = sup0≤t≤1 |x(t)− y(t)|

• C[0,∞) d(x, y) =
∫∞

0
e−t sups≤t 1 ∧ |x(s)− y(s)| dt
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Sequential compactness

K ⊂ S is sequentially compact if every sequence {xn} ⊂ K has a convergent subse-
quence with limit in K.

Lemma 12.14 If (S, d) is a metric space, then K ⊂ S is compact if and only if K is
sequentially compact.

Proof. Suppose K is compact. Let {xn} ⊂ K. If x is not a limit point of {xn}, then
there exists εx > 0 such max{n : xn ∈ Bεx(x)} < ∞. If {xn} has no limit points,
then {Bεx(x), x ∈ K} is an open cover of K. The existence of a finite subcover
contradicts the definition of εx.

If K is sequentially compact, and {Uα} is an open cover of K. Let x1 ∈ K and
ε1 >

1
2
supα sup{r : Br(x1) ⊂ Uα} and define recursively, xk+1 ∈ K ∩ (∪k

l=1Bεl
(xl))

and εk+1 >
1
2
supα sup{r : Br(xk+1) ⊂ Uα}. (If xk+1 does not exist, then there is a

finite subcover in {Uα}.) By sequential compactness, {xk} has a limit point x and
x /∈ Bεk

(xk) for any k. But setting ε = 1
2
supα sup{r : Br(x) ⊂ Uα}, εk > ε− d(x, xk),

so if d(x, xk) < ε/2, x ∈ Bεk
(xk). �
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Completeness

A metric space (S, d) is complete if and only if every Cauchy sequence has a limit.

Completeness depends on the metric, not the topology: For example

r(x, y) = | x

1 + |x|
− y

1 + |y|
|

is a metric giving the usual topology on the real line, but R is not complete under
this metric.
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