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Existence
Since the proof of existence is fairly standard in the
world of sharp Fourier restriction, let’s focus on the
part specific to this problem. The compact support
of σ means that the Lq norm approximately
decouples.
Proposition
For all ε > 0 sufficiently small, there exists
0 < C < 1 and N > 0 such that, for all f with
∥Tf ∥q ≳ A(p, q)∥f ∥p and ∥f ∥p = 1, there exist
non-negative functions {fj}Nj=1, unit cubes {Qj}Nj=1,
and a function rN ∈ Lp with the following
properties:

1 supp fj ⊂ 3Qj;

2 fj = (f −
∑j−1

k=1 fk)3Qj
;

3 f =
∑N

j=1 fj + rN; and

4 ∥TrN∥q < ε.

We use this as well as the other assumptions to
localize and truncate any near extremizer, and then
prove that extremizing sequences are precompact
modulo translation.
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Let σ be a finite, compactly supported measure on Rd

and define an operator on smooth functions by

Tf (x) =

∫
f (x − y)dσ(y).

When σ has Fourier decay (e.g. surface measure on a
curved hypersurface), T is known to have Lp → Lq

estimates for some p < q ([3]). For truncated surface
measures, we have bounds for exponents in the big
triangle depicted in the figure below.
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Theorem (Preparing)
1 Let σ be a finite measure with compact support

and such that T is bounded on a neighborhood
of (1p,

1
q) and L2 → L2γ for some γ > 0. Then

there exists a non-zero f ∈ Lp such that

∥Tf ∥q = ∥T∥p→q∥f ∥p.
2 If σ is surface measure on a compact subset of

a hypersurface M such that M has d − 1
principal curvatures bounded away from zero
on suppσ and (1p,

1
q) lies in any of the colored

regions, then f ∈ C∞.

Smoothness
Smoothness of extremizers has previously been
proven for convolution with the paraboloid ([1]) as
well as certain k-plane transforms ([2]). We follow
in this vein, but analyzing the Euler-Lagrange
equation. Via Hölder’s inequality, it follows that all
extremizers must satisfy

f = λ(T ∗(Tf )q−1)
1

p−1.

The main difference with previous work is the
consideration of q − 1, 1

p−1 ̸∈ N. To overcome this
obstacle, we use three main tools.

1 Every extremizer f is continuous, and
uniformly bounded below on compact sets.
This follows from the fact that σ ∗ σ is
absolutely continuous with respect to
Lebesgue measure. It is a key ingredient in
the proof of the power rule estimates.

2 Although we can’t take classical derivatives
of the Euler-Lagrange equation, we can
differentiate it weakly. We develop an
algebraic notation to handle the long sums
and products produced by Leibniz’s rule.

3 Finally, we induct over f ∈ C ℓ. Derivative
estimates take us from C ℓ to Lpℓ+1−ε.
Applying the derivative estimates to the
weak derivatives from the previous part
proves that f ∈ Lpℓ+2−ε. Finally, the specific
region of boundedness of T and Sobolev
embedding imply that f ∈ C ℓ+1.
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