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Preliminaries

Definition
Let σ be a locally-finite, positive Borel measure and let

Tf(x) =

ˆ
f(x− y) dσ(y).

Definition
1 Lp-improving: T : Lp → Lq is bounded for some p < q

2 Operator norm: ∥T∥p,q = supf ∥Tf∥q/∥f∥p
3 Extremizer: f ∈ Lp such that ∥Tf∥q = ∥T∥p,q∥f∥p
4 Normalized extremizing sequence: fn ∈ Lp such that ∥fn∥p = 1

and limn→∞ ∥Tfn∥q = ∥T∥p,q
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Motivation

There are several reasons to study extremizers for operators in
harmonic analysis.

1 The analysis of extremizers frequently yields refinements of
well-known inequalities, such as the Sobolev (Bianchi-Egnell ’91)
and Hausdorff-Young (Christ ’14) inequalities.

2 Similar arguments can be used to prove the existence of minimal
blowup solutions for mass and energy critical NLS (eg Killip-Visan
’13).

3 If we can explicitly identify extremizers (Flock ’16), then we can
compute the operator norm (Drouot ’12).
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Paraboloid

Let σP be surface measure on the paraboloid in Rd. Set p = d+1
d and

q = d+ 1.

Theorem (Christ ’11)

Extremizing sequences for ∥Tf∥q ≲ ∥f∥p are precompact modulo
scaling and translation.

Theorem (Christ, Xue ’11)

Critical points of the functional f 7→ ∥Tf∥q
∥f∥p (including extremizers)

belong to C∞.

Theorem (Christ ’11)

All extremizers are of the form c(1 + |(x′, xd + 1
2 |x

′|2)|2)−d/2 modulo
some affine transformations.
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Sphere

• Let σS be surface measure on the hypersurface {y ∈ Rd : |y| = 1}.
We’re still focused on the inequality ∥σS ∗ f∥d+1 ≲ ∥f∥ d+1

d
.

• No scaling symmetry! Extremizing sequences might go up the
spout.

• An analysis of f such that ∥Tf∥d+1 ≳ ∥f∥ d+1
d

is possible (Stovall
’09).

Question

Do the additional L1 → L1 and L∞ → L∞ estimates for the sphere tell
us anything?

Yes!
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Main result

Let X ∈ {Rd,Td}.

Theorem (T. ’23)
Let σ be a compactly-supported probability measure such that
|σ̂(ξ)| ≲ ⟨ξ⟩−α for some α > 0. If 1 < s < p < q <∞ are such that
∥T∥p,q <∞ and ∥T∥s,q <∞, then extremizing sequences for
T : Lp(X) → Lq(X) are precompact (modulo translation when X = Rd).
In particular, extremizers exist.
Furthermore, for all extremizers f there exists a unimodular ω0 ∈ C
such that

inf
x∈W

ω0f(x) > 0

for all compact W ⊂ X and f ∈ C∞
loc(X) ∩ L∞(X).
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Concentration lemma

Obstacles to convergence:
1 spreading to infinity;
2 going up the spout; and
3 oscillating to death.

Lemma
Let fn be an extremizing sequence such that ∥fn∥p = 1. Then there
exists a sequence xn ∈ X such that

lim
R→∞

lim sup
n→∞

∥1|fn|>Rfn∥p + ∥1|·|>Rfn(· − xn)∥p = 0.
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Compactness lemma

• Tfn converges locally in Lq by Fourier decay and compact
Sobolev embedding.

• The concentration lemmas from before upgrade the convergence
to Tfn → F for some F ∈ Lq.

• There also exists f ∈ Lp such that fn ⇀ f by Banach-Alaoglu.

Lemma
If Tfn → F and fn ⇀ f , then F = Tf and fn → f .

Proof.
This follows by duality, the boundedness of T , and the convexity of
Lp.

This completes the existence part of the theorem.

9 / 13



Compactness lemma

• Tfn converges locally in Lq by Fourier decay and compact
Sobolev embedding.

• The concentration lemmas from before upgrade the convergence
to Tfn → F for some F ∈ Lq.

• There also exists f ∈ Lp such that fn ⇀ f by Banach-Alaoglu.

Lemma
If Tfn → F and fn ⇀ f , then F = Tf and fn → f .

Proof.
This follows by duality, the boundedness of T , and the convexity of
Lp.

This completes the existence part of the theorem.

9 / 13



Compactness lemma

• Tfn converges locally in Lq by Fourier decay and compact
Sobolev embedding.

• The concentration lemmas from before upgrade the convergence
to Tfn → F for some F ∈ Lq.

• There also exists f ∈ Lp such that fn ⇀ f by Banach-Alaoglu.

Lemma
If Tfn → F and fn ⇀ f , then F = Tf and fn → f .

Proof.
This follows by duality, the boundedness of T , and the convexity of
Lp.

This completes the existence part of the theorem.

9 / 13



Compactness lemma

• Tfn converges locally in Lq by Fourier decay and compact
Sobolev embedding.

• The concentration lemmas from before upgrade the convergence
to Tfn → F for some F ∈ Lq.

• There also exists f ∈ Lp such that fn ⇀ f by Banach-Alaoglu.

Lemma
If Tfn → F and fn ⇀ f , then F = Tf and fn → f .

Proof.
This follows by duality, the boundedness of T , and the convexity of
Lp.

This completes the existence part of the theorem.

9 / 13



Smoothness

Lemma (Euler-Lagrange equation)

All extremizers f with ∥f∥p = 1 satisfy

|f | = ∥T∥
− q

q−p
p,q

(
T ∗|Tf |q−1

) 1
p−1 .

We would like to iterate a Sobolev-improving estimate for this quantity
to prove smoothness.

Problem

When p > 2, d
dt t

1
p−1 is unbounded near 0.

Solution
Strong positivity and local estimates.
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Positivity

Lemma
For all extremizers f there exists a unimodular ω0 ∈ C such that

inf
x∈W

ω0f(x) > 0

for all compact W ⊂ X.

Lemma
Let a ̸= 1, W ⊂ X be compact, and f be a non-negative extremizer.
Then there exists η ∈ C∞ such that ∂kη(0) = 0 for all k ≥ 0 and

fa|W ≡ η ◦ f |W .
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Smoothness

Lemma
For all ψ1 ∈ C∞

cpct, there exists ψ2 ∈ C∞
cpct such that

Tf |suppψ1 ≡ T (ψ2f)|suppψ1 .

Lemma
There exists κ > 0 such that for all s ≥ 0 and ψ1 ∈ C∞

cpct,∥∥∥ψ1

(
T ∗|Tf |q−1

) 1
p−1

∥∥∥
W s+κ,p

≲ ∥ψ2f∥W s,p

for some ψ2 ∈ C∞
cpct.
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Conclusion

Thank you!

13 / 13


