Extremizers for *L*^{*p*}-improving convolution operators: existence and regularity

James Tautges

This work was partially supported by NSF grants DMS-1653264 and DMS-2037851.

Let σ be a locally-finite, positive Borel measure and let

$$Tf(x) = \int f(x-y) \, d\sigma(y).$$

Let σ be a locally-finite, positive Borel measure and let

$$Tf(x) = \int f(x-y) \, d\sigma(y).$$

Definition

1 L^p -improving: $T: L^p \to L^q$ is bounded for some p < q

Let σ be a locally-finite, positive Borel measure and let

$$Tf(x) = \int f(x-y) \, d\sigma(y).$$

Definition

- **1** L^p -improving: $T: L^p \to L^q$ is bounded for some p < q
- **2** Operator norm: $||T||_{p,q} = \sup_{f} ||Tf||_{q} / ||f||_{p}$

Let σ be a locally-finite, positive Borel measure and let

$$Tf(x) = \int f(x-y) \, d\sigma(y).$$

Definition

- **1** L^p -improving: $T: L^p \to L^q$ is bounded for some p < q
- **2** Operator norm: $||T||_{p,q} = \sup_{f} ||Tf||_{q} / ||f||_{p}$
- **3** Extremizer: $f \in L^p$ such that $||Tf||_q = ||T||_{p,q} ||f||_p$

Let σ be a locally-finite, positive Borel measure and let

$$Tf(x) = \int f(x-y) \, d\sigma(y).$$

Definition

- **1** L^p -improving: $T: L^p \to L^q$ is bounded for some p < q
- **2** Operator norm: $||T||_{p,q} = \sup_{f} ||Tf||_{q} / ||f||_{p}$
- **3** Extremizer: $f \in L^p$ such that $||Tf||_q = ||T||_{p,q} ||f||_p$
- **④** Normalized extremizing sequence: $f_n \in L^p$ such that $||f_n||_p = 1$ and $\lim_{n\to\infty} ||Tf_n||_q = ||T||_{p,q}$

1 The analysis of extremizers frequently yields refinements of well-known inequalities, such as the Sobolev (Bianchi-Egnell '91) and Hausdorff-Young (Christ '14) inequalities.

- 1 The analysis of extremizers frequently yields refinements of well-known inequalities, such as the Sobolev (Bianchi-Egnell '91) and Hausdorff-Young (Christ '14) inequalities.
- Similar arguments can be used to prove the existence of minimal blowup solutions for mass and energy critical NLS (eg Killip-Visan '13).

- 1 The analysis of extremizers frequently yields refinements of well-known inequalities, such as the Sobolev (Bianchi-Egnell '91) and Hausdorff-Young (Christ '14) inequalities.
- Similar arguments can be used to prove the existence of minimal blowup solutions for mass and energy critical NLS (eg Killip-Visan '13).
- If we can explicitly identify extremizers (Flock '16), then we can compute the operator norm (Drouot '12).

Paraboloid

Let σ_P be surface measure on the paraboloid in \mathbb{R}^d . Set $p = \frac{d+1}{d}$ and q = d + 1.

Let σ_P be surface measure on the paraboloid in \mathbb{R}^d . Set $p = \frac{d+1}{d}$ and q = d+1.

Theorem (Christ '11)

Extremizing sequences for $||Tf||_q \leq ||f||_p$ are precompact modulo scaling and translation.

Let σ_P be surface measure on the paraboloid in \mathbb{R}^d . Set $p = \frac{d+1}{d}$ and q = d+1.

Theorem (Christ '11)

Extremizing sequences for $||Tf||_q \leq ||f||_p$ are precompact modulo scaling and translation.

Theorem (Christ, Xue '11)

Critical points of the functional $f \mapsto \frac{\|Tf\|_q}{\|f\|_p}$ (including extremizers) belong to C^{∞} .

Let σ_P be surface measure on the paraboloid in \mathbb{R}^d . Set $p = \frac{d+1}{d}$ and q = d+1.

Theorem (Christ '11)

Extremizing sequences for $||Tf||_q \leq ||f||_p$ are precompact modulo scaling and translation.

Theorem (Christ, Xue '11)

Critical points of the functional $f \mapsto \frac{\|Tf\|_q}{\|f\|_p}$ (including extremizers) belong to C^{∞} .

Theorem (Christ '11)

All extremizers are of the form $c(1 + |(x', x_d + \frac{1}{2}|x'|^2)|^2)^{-d/2}$ modulo some affine transformations.

• Let σ_S be surface measure on the hypersurface $\{y \in \mathbb{R}^d : |y| = 1\}$. We're still focused on the inequality $\|\sigma_S * f\|_{d+1} \lesssim \|f\|_{\frac{d+1}{d}}$.

- Let σ_S be surface measure on the hypersurface $\{y \in \mathbb{R}^d : |y| = 1\}$. We're still focused on the inequality $\|\sigma_S * f\|_{d+1} \lesssim \|f\|_{\frac{d+1}{d}}$.
- No scaling symmetry! Extremizing sequences might go up the spout.

- Let σ_S be surface measure on the hypersurface $\{y \in \mathbb{R}^d : |y| = 1\}$. We're still focused on the inequality $\|\sigma_S * f\|_{d+1} \lesssim \|f\|_{\frac{d+1}{d}}$.
- No scaling symmetry! Extremizing sequences might go up the spout.
- An analysis of f such that $||Tf||_{d+1} \gtrsim ||f||_{\frac{d+1}{d}}$ is possible (Stovall '09).

- Let σ_S be surface measure on the hypersurface $\{y \in \mathbb{R}^d : |y| = 1\}$. We're still focused on the inequality $\|\sigma_S * f\|_{d+1} \lesssim \|f\|_{\frac{d+1}{2}}$.
- No scaling symmetry! Extremizing sequences might go up the spout.
- An analysis of f such that $||Tf||_{d+1} \gtrsim ||f||_{\frac{d+1}{d}}$ is possible (Stovall '09).

Question

Do the additional $L^1 \to L^1$ and $L^{\infty} \to L^{\infty}$ estimates for the sphere tell us anything?

- Let σ_S be surface measure on the hypersurface $\{y \in \mathbb{R}^d : |y| = 1\}$. We're still focused on the inequality $\|\sigma_S * f\|_{d+1} \lesssim \|f\|_{\frac{d+1}{2}}$.
- No scaling symmetry! Extremizing sequences might go up the spout.
- An analysis of f such that $||Tf||_{d+1} \gtrsim ||f||_{\frac{d+1}{d}}$ is possible (Stovall '09).

Question

Do the additional $L^1 \to L^1$ and $L^{\infty} \to L^{\infty}$ estimates for the sphere tell us anything?

Yes!

Let $\mathbb{X} \in \{\mathbb{R}^d, \mathbb{T}^d\}.$

Theorem (T. '23)

Let σ be a compactly-supported probability measure such that $|\hat{\sigma}(\xi)| \leq \langle \xi \rangle^{-\alpha}$ for some $\alpha > 0$. If $1 < s < p < q < \infty$ are such that $||T||_{p,q} < \infty$ and $||T||_{s,q} < \infty$, then extremizing sequences for $T : L^p(\mathbb{X}) \to L^q(\mathbb{X})$ are precompact (modulo translation when $\mathbb{X} = \mathbb{R}^d$). In particular, extremizers exist.

Furthermore, for all extremizers f there exists a unimodular $\omega_0 \in \mathbb{C}$ such that

 $\inf_{x \in W} \omega_0 f(x) > 0$

for all compact $W \subset \mathbb{X}$ and $f \in C^{\infty}_{loc}(\mathbb{X}) \cap L^{\infty}(\mathbb{X})$.

Obstacles to convergence:

- spreading to infinity;
- 2 going up the spout; and
- oscillating to death.

Obstacles to convergence:

- spreading to infinity;
- 2 going up the spout; and
- oscillating to death.

Lemma

Let f_n be an extremizing sequence such that $||f_n||_p = 1$. Then there exists a sequence $x_n \in \mathbb{X}$ such that

$$\lim_{R \to \infty} \limsup_{n \to \infty} \|\mathbf{1}_{|f_n| > R} f_n\|_p + \|\mathbf{1}_{|\cdot| > R} f_n(\cdot - x_n)\|_p = 0.$$

• *T f*^{*n*} converges locally in *L*^{*q*} by Fourier decay and compact Sobolev embedding.

- *T f*^{*n*} converges locally in *L*^{*q*} by Fourier decay and compact Sobolev embedding.
- The concentration lemmas from before upgrade the convergence to Tf_n → F for some F ∈ L^q.

- *T f*_{*n*} converges locally in *L*^{*q*} by Fourier decay and compact Sobolev embedding.
- The concentration lemmas from before upgrade the convergence to Tf_n → F for some F ∈ L^q.
- There also exists $f \in L^p$ such that $f_n \rightharpoonup f$ by Banach-Alaoglu.

- *T f*_{*n*} converges locally in *L*^{*q*} by Fourier decay and compact Sobolev embedding.
- The concentration lemmas from before upgrade the convergence to Tf_n → F for some F ∈ L^q.
- There also exists $f \in L^p$ such that $f_n \rightharpoonup f$ by Banach-Alaoglu.

If
$$Tf_n \to F$$
 and $f_n \rightharpoonup f$, then $F = Tf$ and $f_n \to f$.

Proof.

This follows by duality, the boundedness of T, and the convexity of L^p .

This completes the existence part of the theorem.

All extremizers f with $||f||_p = 1$ satisfy

$$|f| = ||T||_{p,q}^{-\frac{q}{q-p}} \left(T^*|Tf|^{q-1}\right)^{\frac{1}{p-1}}.$$

All extremizers f with $||f||_p = 1$ satisfy

$$|f| = ||T||_{p,q}^{-\frac{q}{q-p}} \left(T^*|Tf|^{q-1}\right)^{\frac{1}{p-1}}.$$

We would like to iterate a Sobolev-improving estimate for this quantity to prove smoothness.

All extremizers f with $||f||_p = 1$ satisfy

$$|f| = ||T||_{p,q}^{-\frac{q}{q-p}} \left(T^* |Tf|^{q-1}\right)^{\frac{1}{p-1}}.$$

We would like to iterate a Sobolev-improving estimate for this quantity to prove smoothness.

Problem

When
$$p > 2$$
, $\frac{d}{dt}t^{\frac{1}{p-1}}$ is unbounded near 0.

All extremizers f with $||f||_p = 1$ satisfy

$$|f| = ||T||_{p,q}^{-\frac{q}{q-p}} \left(T^* |Tf|^{q-1}\right)^{\frac{1}{p-1}}.$$

We would like to iterate a Sobolev-improving estimate for this quantity to prove smoothness.

Problem

When
$$p > 2$$
, $\frac{d}{dt}t^{\frac{1}{p-1}}$ is unbounded near 0.

Solution

Strong positivity and local estimates.

For all extremizers f there exists a unimodular $\omega_0 \in \mathbb{C}$ such that

 $\inf_{x \in W} \omega_0 f(x) > 0$

for all compact $W \subset X$.

For all extremizers f there exists a unimodular $\omega_0 \in \mathbb{C}$ such that

 $\inf_{x \in W} \omega_0 f(x) > 0$

for all compact $W \subset X$.

Lemma

Let $a \neq 1$, $W \subset \mathbb{X}$ be compact, and f be a non-negative extremizer. Then there exists $\eta \in C^{\infty}$ such that $\partial^k \eta(0) = 0$ for all $k \ge 0$ and

$$f^a|_W \equiv \eta \circ f|_W.$$

For all $\psi_1 \in C^{\infty}_{cpct}$, there exists $\psi_2 \in C^{\infty}_{cpct}$ such that

$$Tf|_{\operatorname{supp}\psi_1} \equiv T(\psi_2 f)|_{\operatorname{supp}\psi_1}.$$

For all $\psi_1 \in C^{\infty}_{cpct}$, there exists $\psi_2 \in C^{\infty}_{cpct}$ such that

$$Tf|_{\operatorname{supp}\psi_1} \equiv T(\psi_2 f)|_{\operatorname{supp}\psi_1}.$$

Lemma

There exists $\kappa > 0$ such that for all $s \ge 0$ and $\psi_1 \in C^{\infty}_{cpct}$,

$$\left\|\psi_1\left(T^*|Tf|^{q-1}\right)^{\frac{1}{p-1}}\right\|_{W^{s+\kappa,p}} \lesssim \|\psi_2 f\|_{W^{s,p}}$$

for some $\psi_2 \in C^{\infty}_{cpct}$.

Thank you!