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(Definiton |

Let o be a locally-finite, positive Borel measure and let

zvmw:/fm—dew.

Definition
© LP-improving: T: LP — LY is bounded for some p < ¢
@® Operator norm: [T, = sup; | Tflla/|1f»
® Extremizer: f € LP such that | Tf]|q = [|T||lp.qll fllp

O Normalized extremizing sequence: f,, € L? such that || f, ||, = 1
and limy,—co [T fullq = (|17

p.q
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There are several reasons to study extremizers for operators in
harmonic analysis.
© The analysis of extremizers frequently yields refinements of
well-known inequalities, such as the Sobolev (Bianchi-Egnell '91)
and Hausdorff-Young (Christ ’14) inequalities.

® Similar arguments can be used to prove the existence of minimal
blowup solutions for mass and energy critical NLS (eg Killip-Visan
'13).

@ If we can explicitly identify extremizers (Flock '16), then we can
compute the operator norm (Drouot ’12).
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Paraboloid

Let op be surface measure on the paraboloid in R¢. Set p = ‘%1 and
g=d+1.

Theorem (Christ ’11)
Extremizing sequences for | T f||; < || fll, are precompact modulo

scaling and translation.

Theorem (Christ, Xue ’11)

Critical points of the functional f +— ”HJ;”JTIL';Z (including extremizers)
belong to C*°.

Theorem (Christ ’11)

All extremizers are of the form c(1 + |(2/, x4 + 5|2'|?)[2)~%? modulo
some affine transformations.
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Sphere

e Let o5 be surface measure on the hypersurface {y € R?: |y| = 1}.
We're still focused on the inequality |og * f|la+1 < HfH%.

e No scaling symmetry! Extremizing sequences might go up the
spout.

e An analysis of f such that | Tf||4+1 2 ||f||d%1 is possible (Stovall
'09).

Question
Do the additional L' — L' and L> — L estimates for the sphere tell
us anything?

Yes!
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Main result

Let X € {R4, T9}.
Theorem (T. ’23)

Let o be a compactly-supported probability measure such that

l7(&)| < (&)~ forsomea > 0. If1 < s < p < q < oo are such that
IT|p,q < oo and||T|s, < oo, then extremizing sequences for

T: LP(X) — L(X) are precompact (modulo translation when X = R?).
In particular, extremizers exist.

Furthermore, for all extremizers | there exists a unimodular wg € C
such that

xlgva wof(x) >0

for all compact W C X and f € CX.(X) N L>(X).
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Concentration lemma

Obstacles to convergence:
@ spreading to infinity;
® going up the spout; and
® oscillating to death.

Lemma

Let f,, be an extremizing sequence such that || f,||, = 1. Then there
exists a sequence x.,, € X such that

lim limsup |1z, 15 rfollp + (115 rfn (- = 20)llp = 0.

R—00 n—oo
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Compactness lemma W

e T f, converges locally in L4 by Fourier decay and compact
Sobolev embedding.

e The concentration lemmas from before upgrade the convergence
toTf, — F forsome I € L4.

e There also exists f € LP such that f,, — f by Banach-Alaoglu.

Lemma
IfTf, — Fand f, — f,then F =Tf and f,, — f.

This follows by duality, the boundedness of T, and the convexity of
LP. L]

This completes the existence part of the theorem.
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Smoothness

Lemma (Euler-Lagrange equation)
All extremizers f with || f||, = 1 satisfy

1= Tl (7| i) 7
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Lemma (Euler-Lagrange equation)
All extremizers f with || f||, = 1 satisfy

__a 1
[ I= 1T lpg ™ (7T f17) 7

We would like to iterate a Sobolev-improving estimate for this quantity
to prove smoothness.

Problem

1
Whenp > 2, 4t»-1 is unbounded near 0.

Solution
Strong positivity and local estimates.
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Positivity

Lemma

For all extremizers f there exists a unimodular wy € C such that

xlgva wof(x) >0

for all compact W C X.
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Positivity Y

Lemma

For all extremizers f there exists a unimodular wy € C such that

xlgva wof(x) >0

for all compact W C X.

Lemma

Leta # 1, W C X be compact, and f be a non-negative extremizer.
Then there exists n € C> such that 9*n(0) = 0 for all k > 0 and

flw =mno flw.
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Smoothness

Lemma

For all 4 € C25.,, there exists o € C25., such that

cpet? cpct

Tf’supp Y1 = T(l/’?f)’supp 1+
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Lemma

For all 1 € Cgy.,, there exists 1, € Cgy,, such that

Tf’supp Y1 = T(l/’?f)’supp 1+

Lemma

There exists > 0 such that for all s > 0 and ¢ € Cg,y,

|

Jn (e oty

< s
iy S 2w

for some 1 € Cgyy.
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Conclusion W

Thank you!



