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0. About Richard Bellman and Madison, WI

Stanislaw Ulam writes:
“One day in my office in North Hall of the University of Wisconsin,
a young and brilliant graduate student named Richard Bellman
appeared and expressed a desire to work with me.... I remembered
that in Princeton Lefschetz had some new scientifico-technological
enterprise connected with the war efforts. I wrote to him about
Bellman in a sort of Machiavellian way, saying that I had a very
able student who was so good that he deserved considerable
financial support, but I added that I doubt that Princeton could
afford it. This immediately challenged Lefschetz, and he offered
Bellman a position.... Two years later, Dick Bellman appeared in
Los Alamos in uniform as a member of special engineering
detachment....”
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1. Main theorem

Theorem (Nazarov–Reznikov–Vasyunin–Volberg)

There exists an A1 weight w such that
‖H : L1(w)→ L1,∞(w)‖ ≥ c[w ]A1 log1/4(1 + [w ]A1)

Let us fix the notation: Q := [w ]A1 := supx
Mw(x)
w(x) . Notice that

Q <∞ iff for every interval (cube) I , one has

〈w〉I ≤ C inf
x∈I

w(x) .

The smallest C is [w ]A1 =: Q ≥ 1.
In other words, for any sufficiently large Q one can find a weight
w , a function f , and a number λ > 0 such that

w{x : Hf (x) > λ} ≥ cλ−1Q log1/4 Q

∫
|f (x)|w(x)dx . (1)
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2. A brief history

Muckenhoupt 40 years ago posed two problems:
1) prove (or disprove) that

w{x : Hf (x) > λ} ≤ cλ−1

∫
|f (x)|Mw(x)dx . (2)

2) If this inequality is correct, then for any w ∈ A1, with
Q = [w ]A1 one will have automatically

w{x : Hf (x) > λ} ≤ cλ−1Q

∫
|f (x)|w(x)dx . (3)

Suppose inequality (2) is incorrect, then prove (or disprove) (3).
There can be 3 possible answers: a) (2) is correct, b) (2) fails, but
(3) holds (in other words, there is no counterexample for “smooth”
weights), c) (3) fails. Obvious: if (3) fails then (2) fails. But there
is no other obvious claim.
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3. A brief history

Maria Reguera and Christoph Thiele disproved (2) in 2009. That
was a sophisticated counterexample, but the weight w was very
much irregular, and very far from being from A1. So the so-called
“weak Muckenhoupt conjecture” or A1-conjecture was still open:

w ∈ A1 ⇒ w{x : Hf (x) > λ} ≤ cλ−1Q

∫
|f (x)|w(x)dx ??? (4)

As a Theorem on slide 1 or (1) shows, weak Muckenhoupt
conjecture gets also disproved: the claim above is false, and one
can detect a logarithmic blow-up–see log1/4 Q in (1) on slide 1.
What is known for the estimate from above for
‖H : L1(w)→ L1,∞(w)‖ for [w ]A1 = Q <∞,Q >> 1?

Theorem (Lerner–Ombrosi–Pérez)

w{x : Hf (x) > λ} ≤ cλ−1Q log Q

∫
|f (x)|w(x)dx . (5)
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4. Dyadic singular operators first

Our measure space throughout this article will be (X ,A, dx), where
σ-algebra A is generated by a standard dyadic filtration D = ∪kDk

on R. We consider the martingale transform (and the square
function transform) related to this homogeneous dyadic filtration.
For our case of dyadic lattice on the line we have that |∆J f | is
constant on J, and

∆J f =
1

2
[(〈f 〉J+ − 〈f 〉J−)1J+ + (〈f 〉J− − 〈f 〉J+)1J− ] .

The square function transform: (Sϕ)2(x) =
∑

J∈D |∆Jϕ|21J(x) .
Recall that the martingale transform is the operator given by
(|εJ | ≤ 1):

Tϕ =
∑
J∈cD

εJ∆Jϕ .

1

|I |
w{x ∈ I :

∑
J∈D(I )

εJ(ϕ, hJ)hJ(x) > λ} ≤ C[w ]A1

〈|ϕ|w〉I
λ

. (6)
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5. Results for Martingale Transform

Theorem (NRVV)

There is a positive absolute constant c and a weight w ∈ A1 such
that constant C[w ]A1

from (6) satisfies

C[w ]A1
≥ c[w ]A1(log[w ]A1)1/4 .

Theorem (LOP)

For any weight w ∈ A1 constant C[w ]A1
from (6) satisfies

C[w ]A1
≤ c[w ]A1 log[w ]A1 .
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6. Bellman function of a problem

To find the “some estimates on” C[w ]A1
we use again the Bellman

function technique. The idea is to reformulate the infinitely
dimensional problem of optimization of C[w ]A1

, that is finding of

the “smallest” C[w ]A1
that works for all inequalities (6), in terms of

the growth estimate on a certain function of only finite number of
variables (5 in this case).
Here it is. It will depend on number Q ≥ 1.

B(F ,w ,m, f , λ) := BQ(F ,w ,m, f , λ) :=

sup
1

|I |
ω{x ∈ I :

∑
J⊆I ,J∈D

εJ(ϕ, hJ)hJ(x) > λ} , (7)

where the sup is taken over all εJ , |εJ | ≤ 1, J ∈ D(I ), and over all
ϕ ∈ L1(I , ω dx) such that F := 〈|ϕ|ω〉I , f := 〈ϕ〉I ,
w = 〈ω〉I ,m ≤ inf I ω, and ω are all dyadic A1 weights, such that
[w ]A1 ≤ Q.
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7. Properties of BQ : domain and homogeneity

This function is obviously defined in the convex subdomain of R5:

Ω := {(F ,w ,m, f , λ) ∈ R5 : F ≥ |f |m, m ≤ w ≤ Q m} . (8)

sB(
F

s
,

w

s
,

m

s
, f , λ) = B(F ,w ,m, f , λ) ,

B(tF ,w ,m, tf , tλ) = B(F ,w ,m, f , λ) .

Introducing new variables α = F
mλ , β = w

m , γ = f
λ we can see that

1

m
B(F ,w ,m, f , λ) = B(

F

mλ
,

w

m
,

f

λ
) =: B(α, β, γ) , (9)

where function B(α, β, γ) = B(α, β, 1, γ, 1). B is defined in the
domain

G := {(α, β, γ) : |γ| ≤ α, 1 ≤ β ≤ Q} . (10)
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8. Properties of BQ : a special form of concavity

Theorem

Let P,P+,P− ∈ Ω,P = (F ,w ,min(m+,m−), f , λ),
P+ = (F + A,w + u,m+, f + a, λ+ ta),
P− = (F − A,w − u,m−, f − a, λ− ta), 0 ≤ t ≤ 1. Then

B(P)− 1

2
(B(P+) + B(P−)) ≥ 0 . (11)

At the same time, if
P,P+,P− ∈ Ω,P = (F ,w ,min(m+,m−), f , λ),
P+ = (F + A,w + u,m+, f + a, λ− ta),
P− = (F − A,w − u,m−, f − a, λ+ ta), 0 ≤ t ≤ 1. Then

B(P)− 1

2
(B(P+) + B(P−)) ≥ 0 . (12)

In particular B(α, β, γ) of slide 7 is concave: just put t = 0 here.
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9. Properties of BQ : a special form of concavity

In particular, with fixed m, and with all points being inside Ω we
get for all t ∈ [0, 1]

B(F ,w ,m, f , λ) ≥ 1

4

(
B(F − dF ,w − dw ,m, f − dλ, λ− tdλ)+

B(F − dF ,w − dw ,m, f + dλ, λ− tdλ)+

B(F + dF ,w + dw ,m, f − dλ, λ+ tdλ)+

B(F + dF ,w + dw ,m, f + dλ, λ+ tdλ)
)
.

(13)
In fact, only t = 0 and t = 1 should be looked upon. Let us look
at t = 1 case. In lines one and four f+ − f− = λ+ − λ−. In lines
two and three f+ − f− = −(λ+ − λ−). In both case
|f+ − f−| = |λ+ − λ−|.

Remark

1) Differential notation dF , dw , dλ just mean small numbers, 2) in
(13) we loose a bit of information (in comparison with (11),(12)),
but this is exactly (13) that we are going to use in the future.
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10. Sketch of the proof

Fix P,P+,P− ∈ Ω. Let ϕ+, ϕ−, ω+, ω− be functions and weights
giving the supremum in B(P+),B(P−) respectively up to a small
number η > 0. Using the fact that B does not depend on I , we
think that ϕ+, ω+ is on I+ and ϕ−, ω− is on I−. Consider

ϕ(x) :=

{
ϕ+(x) , x ∈ I+

ϕ−(x) , x ∈ I−
; ω(x) :=

{
ω+(x) , x ∈ I+

ω−(x) , x ∈ I−

Put a := ∆Iϕ = 1
2 (P+,4 − P−,4). Notice that for x ∈ I+, εI = −t,

1

|I |
ω+{x ∈ I+ :

∑
J⊆I+,J∈D

εJ(ϕ, hJ)hJ(x) > λ} =

1

|I |
ω+{x ∈ I+ :

∑
J⊆I+,J∈D

εJ(ϕ, hJ)hJ(x) > λ+ ta}

=
1

2|I+|
ω+{x ∈ I+ :

∑
J⊆I+,J∈D

εJ(ϕ+, hJ)hJ(x) > P+,5} ≥
1

2
B(P+)− η .
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11. Sketch of the proof

Similarly, for x ∈ I− we get if εI = −t, 0 ≤ t ≤ 1,

1

|I |
ω−{x ∈ I− :

∑
J⊆I ,J∈D

εJ(ϕ, hJ)hJ(x) > λ} =

1

|I |
ω−{x ∈ I− :

∑
J⊆I−,J∈D

εJ(ϕ, hJ)hJ(x) > λ− ta}

=
1

2|I−|
ω−{x ∈ I− :

∑
J⊆I−,J∈D

εJ(ϕ−, hJ)hJ(x) > P−,5} ≥
1

2
B(P−)− η .

Combining the two left hand sides we obtain for εI = −1

1

|I |
ω{x ∈ I+ :

∑
J⊆I ,J∈D

εJ(ϕ, hJ)hJ(x) > λ} ≥ 1

2
(B(P+)+B(P−))−2η .
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12. Sketch of the proof

Obviously P3 = min(P3,−,P3,+) = min(minI− ω−,minI+ ω+),
P5 = λ,

〈|ϕ|ω〉I = F = P1, 〈ω〉I = w = P2, 〈ϕ〉I = f = P4 . (14)

Let us use now the simple information (14): if we take the
supremum in the left hand side over all functions ϕ, such that
〈|ϕ|ω〉I = F , 〈ϕ〉I = f , 〈ω〉I = w , and weights ω: 〈ω〉I = w , in
dyadic A1 with A1-norm at most Q, and supremum over all
εJ = ±s, s ∈ [0, 1], (only εI = −1 stays fixed), we get a quantity
smaller or equal than the one, where we have the supremum over
all functions ϕ, such that 〈|ϕ|ω〉 = F , 〈ϕ〉I = f , 〈ω〉 = w , and
weights ω: 〈ω〉 = w , in dyadic A1 with A1-norm at most Q, and
an unrestricted supremum over all εJ = ±s, s ∈ [0, 1], εI = −t,
0 ≤ t ≤ 1. The latter quantity is of course B(F ,w ,m, f , λ). So we
proved (11).
To prove (12) we repeat verbatim the same reasoning, only keeping
now εI = t, 0 ≤ t ≤ 1. We are done with “fancy concavity” proof.
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13. Property in m: function t → 1
tB(tα, tβ, γ) is

increasing

Function B is obviously decreasing in m. In fact, if m decreases
(all other coordinates vein fixed) then the collection of weights
increases, and the supremum increases. It is not difficult to see
that B is also continuous.

1

m
B(F ,w ,m, f , λ) = B(

F

mλ
,

w

m
,

f

λ
) =: B(α/m, β/m, γ) , (15)

So t → 1
t B(tα, tβ, γ) is increasing.
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14. Two more properties, domain and symmetry

It is easy to see from the definition of B that it is even in its
variable f . Therefore,

B(α, β, γ) = B(α, β,−γ) .

Notice that the concavity of B (in γ) and this symmetry together
imply that γ → B(·, ·, γ) is decreasing on γ ∈ [0, α].
The domain of definition of B is

GQ := {(α, β, γ) ∈ R3 : 1 ≤ β ≤ Q, |γ| ≤ α} .

For function with all these properties the following holds.

Theorem

There are absolute positive constant c such that for some point
(α, β, γ) ∈ G

B(α, β, γ) ≥ cQ(log Q)1/4α . (16)
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15. Idea of the proof

Now a couple of words about the idea of the proof of Theorem of
slide 14. Ideally we would like to find the formula for B (and
therefore for B because of (15)). To proceed we rewrite the second
property of B as a PDE on B. Then we try to find the boundary
conditions on B on ∂G , and then we may hope to solve this PDE.
Unfortunately there are many roadblocks on this path, starting with
the fact that the second property of B is not a PDE, it is rather a
partial differential inequality in discrete form. We will write it down
as a pointwise partial differential inequality, but for that we will
need a subtle result of Aleksandrov. We also can find boundary
values of B, see some of them in next slides. However, the main
difficulty is that our partial differential expression is in 3D.
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16. Unweighted case

We first consider the simplest case of m = ω = 1 identically. The
we are left with function Bel(F , f , λ) = B(F , 1, 1, f , λ), which is
defined in a convex domain Ω0 ⊂ R3:
Ω0 := {(F , f , λ) ∈ R3 : |f | ≤ F}, and whose concavity properties
are described in

Theorem

Let P,P+,P− ∈ Ω0,P = (F , f , λ), P+ = (F + A, f + a, λ+ ta),
P− = (F − A, f − a, λ− ta), t ∈ [0, 1]. Then

Bel(P)− 1

2
(Bel(P+) + Bel(P−)) ≥ 0 . (17)

At the same time, if P,P+,P− ∈ Ω0,P = (F , f , λ),
P+ = (F + A, f + a, λ− ta), P− = (F − A, f − a, λ+ ta, t ∈ [0, 1].
Then

Bel(P)− 1

2
(Bel(P+) + Bel(P−)) ≥ 0 . (18)
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17. Unweighted case

Let us make the change of variables, (F , f , λ)→ (F , y1, y2):

y1 :=
1

2
(λ+ f ) , y2 :=

1

2
(λ− f ) .

Denote

M(F , y1, y2) := B(F , y1 − y2, y1 + y2) = Bel(F , f , λ).

In terms of function M:

Theorem

The function M is defined in the domain
G := {(F , y1, y2) : |y1 − y2| ≤ F}, and for each fixed y2,
M(F , y1, y2) is concave in (F , y1) and for each fixed y1,
M(F , y1, y2) is concave in (F , y2).

The properties of M remind strongly the properties of Burkholder
function.
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18. Unweighted case

In the unweighted situation we can find B (or M) precisely.

Theorem

Bel(F , f , λ) =

{
1, if λ ≤ F ,

1− (λ−F )2

λ2−f 2 if λ > F .
(19)

This result means that we found a boundary value of the Bellman
function B(F ,w ,m, f , λ) of the weighted problem on the part of
its boundary, namely we found this function of 5 variables on
{P ∈ ∂Ω : w = P2 = P3 = m}.

B(F ,m,m, f , λ) = m

{
1, if λ ≤ F ,

1− (λ−F )2

λ2−f 2 if λ > F .
(20)

Thus, the boundary values of B:

B(α, 1, γ) =

{
1, if α ≥ 1 ,

1− (1−α)2

1−γ2 if 0 ≤ |γ| ≤ α < 1 .
(21)
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18a. Unweighted case: a small miracle

Let Bel0(F , f , λ) = the same function as on slide 11 but εI are
allowed to be only ±1.

Theorem

Bel0(F , f , λ) =

{
1, if λ ≤ F ,

1− (λ−F )2

λ2−f 2 if λ > F
= Bel(F , f , λ) (22)

By definition Bel0 ≤ Bel : εI = ±1 versus εI ∈ [−1, 1]. In Banach
space norm such martingale transforms obviously have the same
norm. But we work now with L1,∞. By Sten–Weiss lemma
‖MT[−1,1]‖L1,∞ ≤ 2(2 + log 2

∑
k2−k)‖MT±1‖L1,∞ . But we got

from the Theorem above that the norms are equal:

‖MT[−1,1]‖L1,∞ = ‖MT±1‖L1,∞ .

How to get this equality without the use of Bellman functions?
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19. Why Aleksandrov’s theorem is necessary below

We can mollify B to make it smooth and still to have its “fancy
concavity properties”. But then we loose homogeneity, and cannot
reduce B to B. We can mollify B to keep its homogeneity–just
choose the mollifier depending on the point–but then we loose its
“fancy concavity property”. In short, we have a problem with the
mollification. This is why Aleksandrov’s theorem is very useful now.
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20. From discrete inequality to differential inequality via
Aleksandrov’s theorem

We saw on slide 8 that b is concave. By the result of Aleksandrov,
B has all second derivatives almost everywhere, this means that for
a. e. x ∈ G ◦ and all small vectors h ∈ R3,

B(x + h) = B(x) +∇B(x) · h + 〈HB(x) · h, h〉+ o(|h|2) , (23)

where HB is the Hessian matrix of B. On the other hand, the
“fancy concavity property” of slide 9 can be rewritten in terms of
B as follows: B(Fλ , β,

f
λ)−

1

4

[
B(

F − dF

λ− dλ
, β − dβ,

f − dλ

λ− dλ
) + B(

F − dF

λ− dλ
, β − dβ,

f + dλ

λ− dλ
)+

B(
F + dF

λ+ dλ
, β + dβ,

f − dλ

λ+ dλ
) + B(

F + dF

λ+ dλ
, β + dβ,

f + dλ

λ+ dλ
)

]
≥ 0 .

(24)
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21. From discrete inequality to differential inequality via
Aleksandrov’s theorem

Theorem

For almost every point P = (α, β, γ) =: (Fλ , β,
f
λ) ∈ G ◦ and every

vector (dF , dβ, dλ) ∈ R3 we have

− α2Bαα(P)

(
dF

F
− dλ

λ

)2

− β2Bββ(P)

(
dβ

β

)2

−

(1 + γ2)Bγγ(P)

(
dλ

λ

)2

− 2αβBαβ(P)

(
dF

F
− dλ

λ

)
dβ

β
+

2βγBβγ(P)
dβ

β

dλ

λ
+ 2αγBαγ(P)

(
dF

F
− dλ

λ

)
dλ

λ
+

2αBα(P)

(
dF

F
− dλ

λ

)
dλ

λ
− 2γBγ(P)

(
dλ

λ

)2

≥ 0 .

(25)
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22. From discrete inequality to differential inequality via
Aleksandrov’s theorem

Let us call by N the matrix of the quadratic form in (25). After a
rather straightforward operation N →M := A∗NA with an
invertible matrix A we can write down the non-negativity of the
differential form in (25) as the a.e. in G ◦ non-negativity of the
following matrix

M1 :=

 −α2Bαα, −αβBαβ, αγBαγ + αBα
−αβBαβ, −β2Bββ , βγBβγ

αγBαγ + αBα, βγBβγ , −(1 + γ2)Bγγ − 2γBγ

 ≥ 0 .

(26)

M2 :=

 −α2Bαα, −αβBαβ, −αγBαγ
−αβBαβ, −β2Bββ , −βγBβγ
−αγBαγ , −βγBβγ , −γ2Bγγ

 ≥ 0 . (27)
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24. From discrete inequality to differential inequality via
Aleksandrov’s theorem

Taking half-sum of (26) and (27), we obtain the following
non-negativity:

M :=

 −α2Bαα, −αβBαβ,
1
2αBα

−αβBαβ, −β2Bββ , 0
1
2αBα, 0, −( 1

2 + γ2)Bγγ − γBγ

 ≥ 0 .

(28)
It is now natural to restrict the quadratic form of this matrix on
certain 2D hyperplanes in the 3D tangent space Tanp of the graph
Γ := {p := (P,B(P)),P ∈ G ◦} at a given point p. Namely, let us
consider the quadratic form of matrix M in (26) on vectors of the
form

(ξ, ξ, η) . (29)
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25.

Then, using the notation

ψ(α, β, γ) := ψB(α, β, γ) := −α2Bαα − 2αβBαβ − β2Bββ , (30)

we get the a.e. in G ◦ non-negativity of the following matrix[
ψ(α, β, γ), 1

2αBα
1
2αBα, −( 1

2 + γ2)Bγγ − γBγ

]
≥ 0 . (31)

Or, [
ψ(α, β, γ), 1

2αBα
1
2αBα, −( 1

2 + γ2)1/2[( 1
2 + γ2)1/2Bγ ]γ

]
≥ 0 . (32)

Or, as γ << 1[
ψ(α, β, γ), 1

2αBα
1
2αBα, −[( 1

2 + γ2)1/2Bγ ]γ

]
≥ 0 . (33)
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26. Mollification of B

Definition

Consider a subdomain of G ,

G1 := {(α, β, γ) ∈ G : |γ| < 1

2
α, 2 < β < Q} .

Denote temporarily Pt := (tα, tβ, γ), (α, β, γ) ∈ G1, 1/2 ≤ t ≤ 1 .
Then we get for every such t and every point Pt the following
inequality for all (ξ, η) ∈ R2:

ξ2[ψ(Pt)] + ξη(αtBα(Pt)) + η2(−[(
1

2
+ γ2)1/2Bγ ]γ(Pt)) ≥ 0 .

(34)
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27. Mollified B is H

Denote H(P) = 2
∫ 1

1/2 B(Pt)dt . Notice several simple facts. First
of all

αHα = 2

∫ 1

1/2
αtB(tα, tβ, γ)dt, α2Hαα = 2

∫ 1

1/2
(αt)2Bαα(tα, tβ, γ)dt .

ψH = −α2Hαα − 2αβHαβ − β2Hββ = 2

∫ 1

1/2
ψB(tα, tβ, γ)dt .

Now integrate (34) on the interval t ∈ [1/2, 1]. The previous
simple observations allow us now to rewrite this as a pointwise
inequality for function H on domain G1 introduced in Definition on
slide 26:

ξ2[ψH(P)] + ξη(αHα(P)) + η2(−[(
1

2
+ γ2)1/2Bγ ]γ(P)) ≥ 0 .

(35)
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28. Why H and not B?

The reader wonders why we are so keen to replace (34) by a
virtually the same (35)? The answer is because we can give a very
good pointwise estimate on ψH(P),P ∈ G1. Unfortunately we
cannot give any pointwise estimate on ψ(P),P ∈ G .

R := sup
B(P)

α
P = (α, β, γ) ∈ G . (36)

Our goal formulated in (16) is to prove R ≥ cQ(log Q)ε. We are
still not too close, but notice that automatically
B(P) ≤ Rα, P = (α, β, γ) ∈ G ,.

Lemma (Main)

If P = (α, β, γ) is such that |γ| ≤ 1
8α and β > 100 then

ψH(P) = 2

∫ 1

1/2
ψ(tα, tβ, γ)dt ≤ CR(|γ|+ α

β
) ,

where C is an absolute constant.
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29. The proof of the Main Lemma

Consider function
ϕ(t) := B(tα, tβ, γ) (37)

for a. e. (α, β, γ) ∈ G1. It is concave.
Let us first prove that∫ 1

1/2
−ϕ′′(t)dt ≤ CR(|γ|+ α

β
) . (38)

This would imply∫ 1

1/2
ψ(tα, tβ, γ)dt ≤ CR(|γ|+ α

β
) ,

because we have

ψ(tα, tβ, γ) = −t2ϕ′′(t) .
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To prove (38) let us consider an auxiliary function

r(t) := ϕ(1)t − ϕ(t). It is defined for t ∈ [max( |γ|α ,
1
β ), 1]. At 1 it

vanishes, it is convex, and it attains its maximum on its left
end-point t0 = max( |γ|α ,

1
β ). The last statement follows from the

fact that ϕ(t)/t is increasing: property of B from slide 13.
So on [t0, 1]

r(t) ≤ r(t0) ≤ ϕ(1)t0 ≤ Rαt0 ≤ Rα(
|γ|
α

+
1

β
) . (39)

As ϕ(t)/t is increasing, we have tϕ′(t)− ϕ(t) ≥ 0, and thus
r ′(1) ≤ 0. Let us write down the Taylor formula for convex
function r(t) in the integral form, keeping in mind that r(1) = 0,

r ′(1) ≤ 0: r(t0) = (t0 − 1)r ′(1) +
∫ 1
t0

dt
∫ 1
t r ′′(s)ds . Fubini’s

theorem, (39), and r ′(1) ≤ 0 imply∫ 1

t0

(s − t0)r ′′(s)ds ≤ Rα(
|γ|
α

+
1

β
) .

But t0 ≤ 1
8 by the assumptions of the lemma. So∫ 1

1/2 r ′′(s)ds ≤ 8
3 Rα( |γ|α + 1

β ) . Hence, as r ′′ = −ϕ′′, we get proof.
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31. The obstacle condition

Let us temporarily take for granted the following inequality, where
c1, c2 are absolute positive constants:

α ≤ c2
β

R
⇒ Hα(α, β, γ) ≥ c1β , β ∈ (1,Q/2] . (40)
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32. Ending the proof

Put

G3 = {P ∈ G : |γ| ≤ 1

1000
α, β > 100} .

By positivity of quadratic form on slide 27, we conclude that for
any P = (α, β, γ) ∈ G3

[ψH ] · [−(
1

2
+ γ2)1/2Bγ ]γ ≥

1

4
α2H2

α . (41)

Using the Main Lemma we obtain

ψH ≤ CR(γ +
α

β
) .

Now we combine this inequality with the ones on slides 39 and 27
obtain

− [(
1

2
+ γ2)1/2Bγ ]γ ≥ c3

α2β2

R(αβ + γ)
. (42)

Integrate (and use γ << 1)

−Hγ ≥ c6
α2β2

R
log

(
1 +

β

α
γ

)
.
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33. Ending the proof

Integrate again:

H(α, β, 0)− H(α, β, γ) ≥ c6
α3β

R

[(
1 +

β

α
γ

)
log

(
1 +

β

α
γ

)
− β

α
γ

]
≥ c7

α2β2

R
γ log

(
β

α
γ

)
,

(43)
the last inequality holds true because β

α = cR, and because from
now on we will fix α, γ and β:

α = c0
β

R
, β =

Q

4
, γ = c1

β

R
, c1 << c0. (44)

We just obtained the following inequality

α2β2

R
γ log

(
β

α
γ

)
≤ C (H(α, β, 0)− H(α, β, γ)) . (45)
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34. Ending the proof

Being even in γ on γ ∈ [−α, α] and concave, H automatically
decreases for γ ∈ [0, α], concavity and non-negativity of H give
H(α, β, γ) ≥ (1− γ

α)H(α, β, 0). This allows us to estimate the
right hand side of (45), and we have

α2β2

R
γ log

(
β

α
γ

)
≤ C (H(α, β, 0)− H(α, β, γ)) ≤ C

γ

α
H(α, β, 0) .

Taking into consideration one more time that H(α, β, γ) ≤ Rα by
the definition of R in (36) and by the construction of H, we get

α2β2

R
γ log

(
β

α
γ

)
≤ C (H(α, β, 0)− H(α, β, γ)) ≤ CRγ .

Or, as by our choice of α, β, γ, β
αγ � cQ, we get

Q4

R4
log

(
β

α
γ

)
≤ C ⇒ R ≥ cQ(log Q)

1
4 (46)
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35. Improving exponent 1/4 to 1/3

Let us consider the largest α̃ ∈ [α, 1], where α = Q
24R such that the

following holds

H(α̃,
Q

4
, 0) =

Q

24
, then H(α̃,

Q

4
, γ) ≤ Q

24
, γ ∈ [0, α̃] . (47)

Two cases may occur.

Case 1: α̃ ≥ Q1/2

24R1/2 . Then with these new data, but without any
other changes,

c
Q3

R3
log

(
cQ

α̃
γ

)
= c

Q3

R3
log

(
cQR1/2

Q1/2
· cQ1/2

R1/2

)
≤ C . (48)

This implies
R ≥ cQ log1/3 Q . (49)
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Case 2: α̃ ≤ Q1/2

24R1/2 . At α1 := min( Q
48R ,

2
3 α̃) we have

H(α1,
Q

4
, γ) ≤ Q

48
.

But we saw that α̃ ≥ Q
24R by its definition. Hence, α1 = Q

48α .
Comparing with (47) we conclude that

α̃Hα(α1,
Q

4
, γ) ≥ (α̃− α1)Hα(α1,

Q

4
, γ) ≥

H(α̃,
Q

4
, γ)− H(α1,

Q

4
, γ) ≥ (1− γ

α̃
)H(α̃,

Q

4
, 0)− Q

48
≥

(1− γ

α̃
)H(α̃,

Q

4
, 0)− Q

48
≥ (1− γ

α̃
)

Q

24
− Q

48
=

Q

144
,

if γ ∈ [0, 2
3α1].

Using α̃ ≤ Q1/2

24R1/2 , we get the improved estimate on the derivative:

∀γ ∈ [0,
2

3
α1] Hα(α1,

Q

4
, γ) ≥ cQ1/2R1/2 (50)

⇒ c
Q2

R2

QR

R
log

(
cQ

α1
γ

)
≤ CR,⇒ R ≥ cQ log1/3 Q .
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36. Isoperimetric inequalities and Monge–Ampère with
drift

What follows is a joint work with Paata Ivanisvili.

Theorem

If a real valued function M(x , y) is such that
M(x ,

√
y) ∈ C 2(Ω×R+) and it satisfies the differential inequalities[

Mxx +
My

y Mxy

Mxy Myy

]
≤ 0 and My ≤ 0, (51)

then for any f ∈ C∞0 (Rn; Ω) we have∫
Rn

M(f , ‖∇f ‖)dγ ≤ M

(∫
Rn

fdγ, 0

)
. (52)
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37. Log-Sobolev inequality

M(x , y) = x ln x − y 2

2x
, x > 0 and y ≥ 0. (53)

Notice that M(x , y) satisfies (51). Indeed, My = − y
x ≤ 0 and

[
Mxx +

My

y Mxy

Mxy Myy

]
=

[
− y2

x3
y
x2

y
x2 − 1

x

]
≤ 0. (54)

Log-Sobolev inequality of Gross states that∫
Rn

|f |2 ln |f |2dγ −
(∫

Rn

|f |2dγ

)
ln

(∫
Rn

|f |2dγ

)
≤ 2

∫
Rn

‖∇f ‖2dγ

(55)

whenever the right hand side of (55) is well-defined and finite for
complex-valued f .
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38. Beckner–Sobolev and spectral gap inequality

Beckner:
For f ∈ L2(dγ) and 1 ≤ p ≤ 2 we have∫

|f |2dγ −
(∫
|f |pdγ

)2/p

≤ (2− p)

∫
Rn

‖∇f ‖2dγ (56)

For p = 1 this is
∫
|f |2dγ −

(∫
|f |dγ

)2 ≤
∫
Rn ‖∇f ‖2dγ. This

shows that the spectral gap i.e. the first nontrivial eigenvalue of
the self-adjoint positive operator L = −∆ + x · ∇ in L2(Rn, dγ) is
bounded from below by 1.

M(x , y) = x
2
p − 2−p

p2 x
2
p
−2y 2 where x , y ≥ 0 1 ≤ p ≤ 2. Notice

that My = −2(2−p)
p2 x

2
p
−2y ≤ 0 and[

Mxx +
My

y Mxy

Mxy Myy

]
=

−2(2−p)(1−p)(2−3p)x
2
p−4

y2

p4 −4(2−p)(1−p)x
2
p−3

y
p3

−4(2−p)(1−p)x
2
p−3

y
p3 −4(2−p)x

2
p−2

p2

 ≤ 0.

(57)
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39. Bobkov’s inequality: Gaussian isoperimetry

Bobkov:
For a Lipschitz function f : Rn → [0, 1], we have

I

(∫
Rn

fdγ

)
≤
∫
Rn

√
I 2(f ) + ‖∇f ‖2dγ , (58)

where Φ(x) = 1√
2π

∫ x
−∞ e−x

2/2dx , and I (x) := Φ′(Φ−1(x)).

Testing (58) for f (x) = 1A where A is a Borel subset of Rn one
obtains Gaussian isoperimetry: for any Borel measurable set
A ⊂ Rn

γ+(A) ≥ Φ′(Φ−1(γ(A))) , (59)

where γ+(A) := lim infε→0
γ(Aε)−γ(A)

ε denotes Gaussian perimeter
of A, here Aε = {x ∈ Rn : distRn(A, x) < ε}.
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40. Bobkov’s inequality: Gaussian isoperimetry

M(x , y) = −
√

I 2(x) + y 2 where x ∈ [0, 1], y ≥ 0. (60)

Then My = −y√
I 2(x)+y2

≤ 0 and

[
Mxx +

My

y Mxy

Mxy Myy

]
=

− (I ′(x))2y2

(I 2(x)+y2)3/2 + I (x)I ′′(x)+1√
I 2(x)+y2

y I (x)I ′(x)

(I 2(x)+y2)3/2

y I (x)I ′(x)

(I 2(x)+y2)3/2 − I 2(x)

(I 2(x)+y2)3/2 .


(61)

Notice that I ′′(x)I (x) = −1, therefore (61) is negative semidefinite.
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41. Monge–Ampère eq. with drift: how to find M

In general finding M(x , y) will be based purely on solving PDEs.
First notice that in log-Sobolev (55) and in Bobkov’s
inequality (58) determinant of the matrices (54) and (61) are zero.
In Beckner–Sobolev inequality (56) determinant of (57) is zero if
and only if p = 1, 2. We will seek M(x , y) among those functions
which in addition with (51) also satisfy Monge–Ampére equation
with a drift:

det

[
Mxx +

My

y Mxy

Mxy Myy

]
= MxxMyy −M2

xy +
MyMyy

y
= 0 (62)

for (x , y) ∈ Ω× R+.
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42. Reduction to the exterior differential systems and
backwards heat equation

Let us make the following observation: consider

(x , y , p, q) = (x , y ,Mx(x , y),My (x , y))

in xypq-space. This is a surface Σ in 4-space on which
Υ = dx ∧ dy is nonvanishing but to which the two 2-forms

Υ1 = dp ∧ dx + dq ∧ dy and Υ2 = (ydp + qdx) ∧ dq

pull back to be zero. Consider a simply connected surface Σ in
xypq-space (with y > 0) on which Υ is nonvanishing but to which
Υ1 and Υ2 pullback to be zero. The 1-form pdx + qdy pull back
to Σ to be closed (since Υ1 vanishes on Σ) and hence exact, and
therefore there exists a function m : Σ→ R such that
dm = pdx + qdy on Σ. We then have (at least locally),
m = M(x , y) on Σ and, by its definition, we have p = Mx(x , y)
and q = My (x , y) on the surface. Υ2 vanishes when pulled back to
Σ implies that M(x , y) satisfies the desired equation (62).
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43. Exterior differential systems of Bryant–Griffiths

Thus, we have encoded the given PDE as an exterior differential
system on R4. Note, that we can make a change of variables on
the open set where q < 0: Set y = qr and let t = 1

2 q2. then, using
these new coordinates on this domain, we have

Υ1 = dp ∧ dx + dt ∧ dr and Υ2 = (rdp + dx) ∧ dt.

Now, when we take an integral surface Σ on these 2-forms on
which dp ∧ dt is not vanishing, it can be written locally as a graph
of the form

(p, t, x , r) = (p, t, up(p, t), ut(p, t))

(since Σ is an integral of Υ1), where u(p, t) satisfies ut + upp = 0
(since on Σ 0 = Υ2 = utdp ∧ dt + dup ∧ dt = (ut + upp)dp ∧ dt).
Thus, “generically” our PDE is equivalent to the backwards heat
equation, up to a change of variables.
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44. Parametrization of Bellman function M

Thus the function M(x , y) can be parametrized as follows:

x = up

(
p,

1

2
q2

)
; y = qut

(
p,

1

2
q2

)
;

M(x , y) = pup

(
p,

1

2
q2

)
+ q2ut

(
p,

1

2
q2

)
− u

(
p,

1

2
q2

)
, (63)

where
ut + upp = 0 .

M(x ,
√

y) ∈ C 2(Ω× R+) therefore My (x , 0) = 0. By choosing
y = 0 in (63), we have q = 0, and we obtain the boundary
condition:

M(x , 0) = Mx(x , 0) · x −My (x , 0) · y |=0 − u(Mx(x , 0), 0) .

Or, if to denote boundary function M(x , 0) by f (x), then u has
initial conditions (t = 0, that is q2 = (My (x , 0))2 = 0):

u(f ′(x), 0) = xf ′(x)− f (x) , f (x) = M(x , 0) .

Non-negativity of matrix also implies one more condition

u2
t − 2t(Hessu) ≥ 0 . (64)
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45. Applications: how to find Bellman log-Sobolev function

In this case inequality (55) shows us sharp lower bounds of the
expression

(∫
gdγ

)
ln
(∫

gdγ
)
. Therefore, we should take

M(x , 0) = x ln x . Boundary condition then can be rewritten as
u(ln x + 1, 0) = x or u(p, 0) = ep−1 for all p ∈ R. If we set

D = ∂2

∂p2 then

u(p, t) = e−tDep−1 =
∞∑
k=0

(−t)k

k!
ep−1 = ep−t−1 for all t ≥ 0.

Clearly u(p, t) satisfies (64) because det(Hess u) = 0. Notice that
we have ut < 0,x = ep−

q2

2
−1;

y = −qep−
q2

2
−1;

then

{
q = − y

x ;

p = ln x + y2

2x2 + 1.

Therefore we obtain

M(x , y)=xp + qy − u

(
p,

1

2
q2

)
=x ln x +

y 2

2x
+ x − y 2

x
− x =x ln x − y 2

2x
.
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46. Applications: how to find Bobkov’s Bellman function

In this case we are interested for the sharp lower bounds of the
expression −I (

∫
fdγ) in terms of

∫
M(f , ‖∇f ‖)dγ. We have

M(x , 0) = −I (x). Boundary condition takes the form

u(p, 0) = pΦ(p) + Φ′(p) for all p ∈ R. (65)

In fact, Mx(x , 0) = −I ′(x) and −I ′(x) = Φ−1(x):

I ′(x) =

[
e−

[Φ−1]2

2

]′
and (Φ−1)′ = e

[Φ−1]2

2 . Now we will try to find

the usual heat extension of u(p, 0) (call it ũ(p, t)) which satisfies
ũpp = ũt , and then we try to consider the formal candidate

u(p, t) := ũ(p,−t). The heat extension of Φ′(p) = 1√
2π

e−p
2/2 is

1√
2π
√

1+2t
e
− p2

2(1+2t) . Heat extension of Φ(p) is Φ
(

p√
1+2t

)
. Indeed,

the heat extension of the function 1(−∞,0](p) at time t = 1/2 is
Φ(p). By the semigroup property the heat extension of Φ(p) at
time t will be the heat extension of 1(−∞,0](p) at time 1/2 + t

which equals to Φ
(

p√
1+2t

)
.
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47. Applications: how to find Bobkov’s Bellman function

Therefore, the heat extension of pΦ(p) can be found as follows:

2t√
2π
√

1 + 2t
e
− p2

2(1+2t) + pΦ

(
p√

1 + 2t

)
.

Thus we obtain that

ũ(p, t) =
√

1 + 2t Φ′
(

p√
1 + 2t

)
+ pΦ

(
p√

1 + 2t

)
.

This expression is well defined even for t ∈ (0,−1/2). Therefore if
we set

u(p, t) = ũ(p,−t) =
√

1− 2t Φ′
(

p√
1− 2t

)
+ pΦ

(
p√

1− 2t

)
for p ∈ R, t ∈

[
0,

1

2

)
,
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48. Applications: how to find Bobkov’s Bellman function

Direct computations show that u(p, t) satisfies ut + upp = 0 , the
boundary condition (65) and (64) because

det(Hess u) = −
(

Φ′( p√
1−2t

)

1−2t

)2

< 0. We have ut = −
Φ′( p√

1−2t
)

√
1−2t

< 0

and up = Φ
(

p√
1−2t

)
. Therefore,

x = Φ

(
p√

1−q2

)
;

y = qr = qut = −q√
1−q2

Φ′( p√
1−q2

);
then

Φ−1(x) = p√
1−q2

;

y = −q√
1−q2

Φ′(Φ−1(x)).

From the last equalities we obtain My = q = − y√
I 2(x)+y2

and

Mx = p = I (x)Φ−1(x)√
I 2(x)+y2

where we remind that I (x) = Φ′(Φ−1(x)).

Then it is clear that

M(x , y) = −
√

I 2(x) + y 2.
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