Nonlinear Fourier Series via Blaschke products

Stefan Steinerberger (joint with Raphy Coifman)

Fourier series. Let $f : \mathbb{C} \to \mathbb{C}$ be holomorphic and

$$f(z) = a_0 + a_1 z + a_2 z^2 + \dots$$

On the boundary of the unit disk: Fourier Series in L^2_+

$$f(e^{it}) = a_0 + a_1 e^{it} + a_2 e^{2it} + \dots$$

Recursively.

$$f(z) = f(0) + (f(z) - f(0))$$

We can factor and get $f(z) - f(0) = z \cdot g(z)$.

$$f(z) = f(0) + zg(z)$$

= f(0) + z(g(0) + g(z) - g(0))
= f(0) + zg(0) + z²h(z)
= f(0) + zg(0) + z²h(0) + ...

Recursively.

$$f(z) = f(0) + (f(z) - f(0))$$

We can factor out and get $f(z) - f(0) = z \cdot g(z)$.

Idea (Coifman, mid 90s). Factor *all* the roots inside the unit disk. There is a canonical way of doing this.

Blaschke products

$$z^m \prod_{i=1}^k \frac{z-a_i}{1-\overline{a_i}z}$$

where $a_i \in \mathbb{D}$

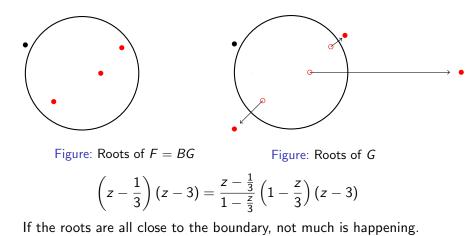
Theorem

Any holomorphic $F : \mathbb{C} \to \mathbb{C}$ can be written as

$$F = B \cdot G$$
,

where B is a Blaschke product and G has no roots inside \mathbb{D} .

Blaschke products - moving roots around



Unwinding series (Coifman, mid 1990s)

On the boundary of the unit disk |B| = 1.

F = BG

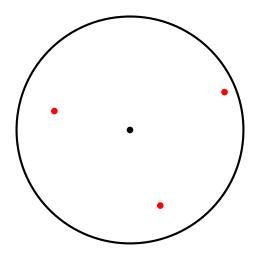
$$= B(G(0) + (G(z) - G(0)))$$

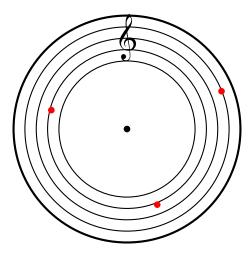
$$= G(0)B + B(G(z) - G(0)))$$

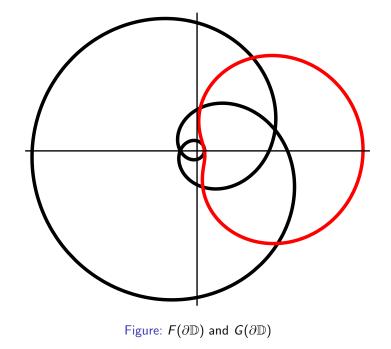
$$= G(0)B + B(B_1G_1)$$

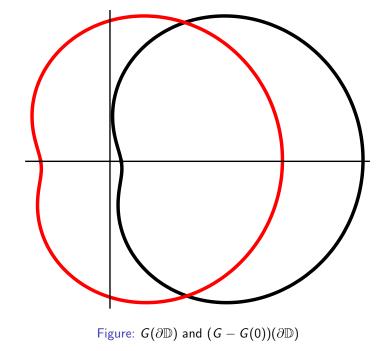
 $= G(0)B + G_1(0)BB_1 + G_2(0)BB_1B_2 + G_3(0)BB_1B_2B_3 + \dots$

- Some sort of nonlinear Fourier series? Fun math popping up?
- ► Finding roots is difficult... ⇒ (G & M Weiss algorithm)
- Convergence?









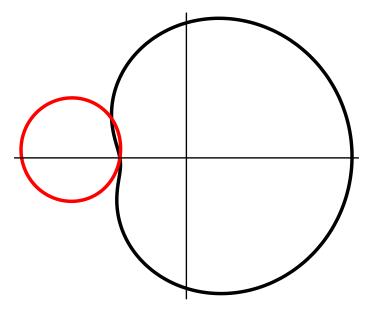


Figure: $(G - G(0))(\partial \mathbb{D})$ and its outer function

Existing work: Michel Nahon, PhD Yale 2000

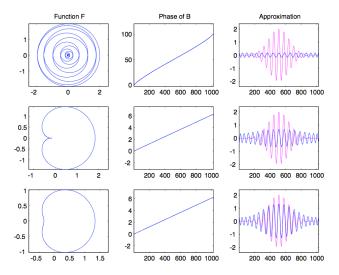
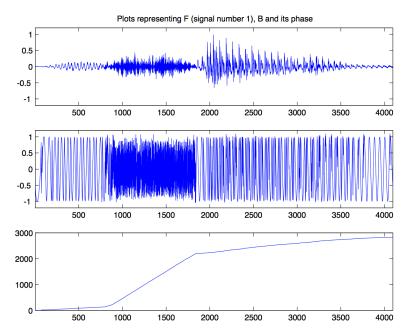
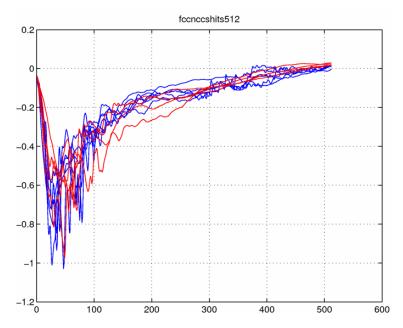


Figure 1.20: Orthogonal decomposition of the modulated Gaussian signal $F: \theta \mapsto e^{-(\theta - \theta_0)^2} \cdot e^{in\theta}$ in three steps. The right column shows the evolution of the approximation.

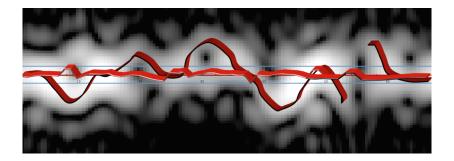
"Michel" Nahon (PhD Thesis 2000)

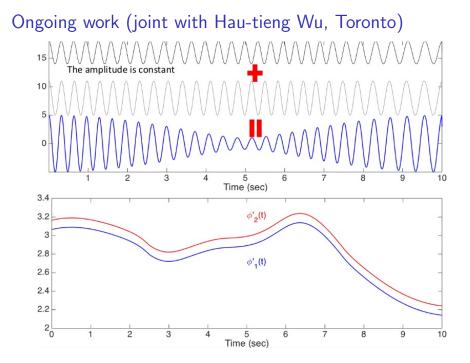


Acoustic Underwater Scattering (Letelier & Saito, 2009)



Doppler Effect (Healy, 2009)





Existing results

(Guido & Mary Weiss, 1963)

One can find $F = B \cdot G$ without computing the roots of F.

Theorem (Tao Qian, 2012)

The sequence converges in \mathcal{H}^2 for initial data in \mathcal{H}^2 . The convergence is at least as fast as that of Fourier series.

Proof. Write $F(z) - F(0) = z \cdot B \cdot G$. $F = a_0 + a_1 z B_1 + a_2 z^2 B_1 B_2 + \dots + a_n z^n B_1 \cdot \dots B_n G$.

Observation: All these terms are mutually orthogonal in $L^2(\partial \mathbb{D})$. The last term is additionally orthogonal to

$$1, z, z^2, \ldots, z^{n-1}.$$

Main result

Let $0 = \gamma_0 \leq \gamma_1 \leq \ldots$ be an arbitrary monotonically increasing sequence of real numbers and let X be the subspace of $L^2(\mathbb{T})$ for which

$$\left\|\sum_{n\geq 0}a_nz^n\right\|_X^2:=\sum_{n\geq 0}\gamma_n|a_n|^2<\infty.$$

We define a norm Y

$$\left\|\sum_{n\geq 0}a_nz^n\right\|_{Y}^2:=\sum_{n\geq 0}(\gamma_{n+1}-\gamma_n)|a_n|^2.$$

Examples.

$$\begin{array}{l} \gamma_n = n^{2s} \implies X = H^s, Y = H^{s-\frac{1}{2}} \\ \gamma_n = n \implies X = \mathcal{D} \text{irichlet space}, Y = L^2 \\ \gamma_n = \chi_{n \geq A} \implies X = P_{\geq A}, Y = P_{=A} \end{array}$$

(Coifman and S., 2015)

If holomorphic F has a Blaschke factorization $F = B \cdot G$, then

$$\|G(e^{i\cdot})\|_X \leq \|F(e^{i\cdot})\|_X$$

Moreover, if $F(\alpha) = 0$ for some $\alpha \in \mathbb{D}$, we even have

$$\|G(e^{i \cdot})\|_X^2 \le \|F(e^{i \cdot})\|_X^2 - (1 - |\alpha|^2) \left\|\frac{G(e^{i \cdot})}{1 - \overline{\alpha}z}\right\|_Y^2$$

٠

Corollary. Initial data in $X \implies$ convergence in Y

(Coifman and S., 2015)

$$\|G(e^{i\cdot})\|_X^2 \leq \|F(e^{i\cdot})\|_X^2 - (1-|\alpha|^2) \left\|\frac{G(e^{i\cdot})}{1-\overline{\alpha}z}\right\|_Y^2.$$

linteresting special case: X = D and $Y = L^2$. We recover

(Carleson's formula for Blaschke product, 1960)

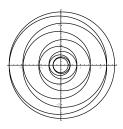
Assume *F* is holomorphic with roots $\{\alpha_i : i \in I\}$ in \mathbb{D} and $F = B \cdot G$, then

$$\int_{\mathbb{D}} |F'(z)|^2 dz = \int_{\mathbb{D}} |G'(z)|^2 dz + \frac{1}{2} \int_{\partial \mathbb{D}} |G|^2 \sum_{i \in I} \frac{1 - |a_i|^2}{|z - \alpha_i|^2}.$$

The big open question

In reality, convergence seems to happen much, much faster.

$$\int_{\mathbb{D}} |F'(z)|^2 dz = \int_{\mathbb{D}} |G'(z)|^2 dz + \frac{1}{2} \int_{\partial \mathbb{D}} |G|^2 \sum_{i \in I} \frac{1 - |a_i|^2}{|z - \alpha_i|^2}$$

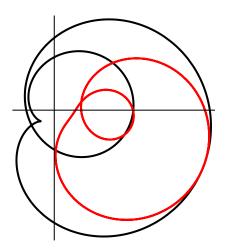


If the roots are nicely spread

$$\sum_{i \in I} \frac{1 - |a_i|^2}{|z - \alpha_i|^2} \sim \text{winding number.}$$

(winding number) $\int_{\partial \mathbb{D}} |G|^2 \sim \int_{\mathbb{D}} |F'(z)|^2 dz$

 \implies exponential convergence



THANK YOU!