Cauchy Integrals and Cauchy-Szegö Projections

Elias M. Stein

Conference in honor of Michael Christ

Madison, May 2016

The goal: In \mathbb{C}^n , to study the L^p properties of Cauchy integrals and the Cauchy-Szegö projection under optimal regularity assumptions on the boundary (and related geometric restrictions).

Joint work with Loredona Lanzani

- Advances in Math. 264 (2014)
- Duke Math. J. (to appear)
- in preparation

Outline:

- I: n = 1, a quick review
- II: n > 1, recent results
- III: some counter-examples

I — Two theorems for Cauchy integrals in \mathbb{C}^1 - the "gold standard"

Theorem A

$$\mathbf{C}(f)(z) = rac{1}{2\pi i} \int_{\partial\Omega} rac{f(\zeta)}{\zeta - z} d\zeta, \qquad z \in \Omega$$

$$\mathcal{C}(f)(z) = \lim_{z' o z, z' \in \Omega} \mathbf{C}(f)(z), \qquad z \in \partial \Omega$$

Then

$$||\mathcal{C}(f)||_{L^p(\partial\Omega)} \leq_p ||f||_{L^p(\Omega)}, \qquad 1$$

when $\partial \Omega$ is Lipschitz.

- Calderón 1977, Coifman, McIntosh, and Meyer 1982.
- David 1989 when Ahlfors-regular.
- T(1), T(b) theorems, David, Journé, and Semmes 1984, 1985.

Let S = Cauchy-Szegö projection: orthogonalprojection of $L^2(\partial \Omega)$ to $H^2(\partial \Omega)$.

Theorem B S is bounded on L^p

• If $\partial \Omega$ is Lipschitz, then for $p_0 ,$ $with <math>p'_0 = p'_o(M)$ and $p'_0 > 4$.

If ∂Ω is of class C¹, then for 1 Calderón 1977, Kenig 1980, Pommerenke 1992, ..., Lanzani and S. 2004.

Two approaches to results of this kind.

First, by conformal mappings: Let

$$egin{aligned} \Phi:\mathbb{D} o\Omega\ & au(f)(e'^ heta)=(\Phi'(e'^ heta))^{rac{1}{2}}(f\circ\Phi)(e'^ heta). \end{aligned}$$

Then

$$S = \tau^{-1} S_0 \tau$$

where S_0 is the Cauchy-Szegö projection for \mathbb{D} .

Hence the question reduces to: for which p is

$$|\Phi'(e'^{ heta})|^{1-rac{p}{2}}\in A_{p}?$$

Second approach:

(I)
$$C = S(I - A)$$

with $A = C^* - C$.

Then if A is "small" we can "invert" I - A to estimate S in terms of C.

For example, if $\partial\Omega$ is a class of C^1 , then A is compact, and I - A can be inverted by the Fredholm alternative.

II – The case of \mathbb{C}^n , n > 1.

Some challenges that present themselvse:

- 1. Infinitely many different "Cauchy integrals"
- 2. Pseudo-convexity of Ω must play a role so minimal smoothness of $\partial \Omega$ should be "near" C^2 , not C^1 , as when n = 1.
- 3. Conformal equivalance of domains breaks down.
- 4. No choice of the Cauchy integral seems to work with the identity (I), unless $\partial \Omega$ is smooth.
- 5. Fefferman's asymptotic formula for the Cauchy-Szegö kernel holds only if $\partial \Omega$ is sufficiently smooth.

The Cauchy-Leray intergral (1956)

There is a class of domains Ω , which have a natural (i.e. unique, cannonical) Cauchy integral attached to them. Suppose Ω is convex, and $\partial \Omega$ is of class C^2 .

Let $\rho(z)$ be a defining function of Ω , $\Omega = \{\rho(z) < 0\}$, while $\rho \in C^{(2)}$, and $\nabla \rho \neq 0, z \in \partial \Omega$.

Conside the denominator:

$$\Delta(w,z) = \langle \partial \rho(w), w - z \rangle = \sum_{j=1}^{n} \frac{\partial \rho(w)}{\partial w_j} (w_j - z_j).$$

Then

$$C_L(f)(z) = \int_{\partial\Omega} rac{f(w)}{(\Delta(w,z))^n} d\lambda(w), z \in \Omega$$

where $d\lambda(w) = \frac{1}{(2\pi i)^n} \partial \rho \wedge (\bar{\partial} \partial \rho)^{n-1} =$ "Leray-Levi" measure.

- Note that $\Delta(w, z) \neq 0$ if $w \in \partial \Omega$ and $z \in \Omega$, since Ω is convex.
- The Cauchy-Fanttapié formalism shows that $C_L(f)(z) = f(z)$ if f is holomorphic in Ω and coninuous in $\overline{\Omega}$.

Notions of "convexity" of Ω relevant to complex analysis. (Here n > 1.)

Three versions, in increasing order of generality:

- 1. Strong convexity
- 2. Strong \mathbb{C} linear convexity
- 3. Strong pseudo-convexity

Note that (2) is equivalent (when $\partial \Omega$ is of class C^2) with: 2' Distance $(T_z^{\mathbb{C}}, w) \ge C|z - w|^2$, if $z, w \in \partial \Omega$

Theorem 1

Suppose $\partial\Omega$ is of class $C^{1,1}$ and Ω is strongly \mathbb{C} - linearly convex, as in 2'. Then C_L extends to a bounded linear operator on $L^p(\partial\Omega), 1 .$

Counter example, (D. Barrett, L. Lanzani, 2009): cannot replace $C^{1,1}$ by $C^{2-\epsilon}$.

Theorem 2

Suppose $\partial\Omega$ is of class C^2 and Ω is strongly pseudo-convex. Then the Cauchy-Szegö projection *S* extends to a bounded operator on $L^p(\partial\Omega), 1 .$

Note:

S is the orthogonal projection of $L^2(bD)$ to $H^2(bD)$, and $L^2 = L^2(\partial\Omega, d\sigma)$, where $d\sigma$ is the induced Lebesgue measure. A similar result holds for the orthogonal projection S_ω of $L^2(\partial\Omega, \omega d\sigma)$, whenever ω is a continuous strictly positive density on $\partial\Omega$.

The special case $\omega d\sigma = d\lambda = \text{Leray-Levi}$ measure is key in proving the general result. Two issues in the proof of Theorem 1

The "definition of C_L (and the resulting proofs) raise the following "restriction" problem:

Suppose F is a $C^{1,1}$ function on \mathbb{R}^n , and M is a submanifold of \mathbb{R}^n .

Question: Does the restriction $\frac{\partial^2 F}{\partial x_j, \partial x_k}\Big|_M$ make sense?

Answer: It can be defined as an $L^{\infty}(M)$ function if the derivatives are "tangential."

One version: For x, and x + h in M, and for a.e., $x \in M$

$$F(x+h) = F(x) + \sum_{j=1}^{n} \frac{\partial F}{\partial x_j}(x)h_j$$

$$+\sum a_{jk}(x)h_jh_k+\circ(|h|^2),$$

as $h \to 0$, where $a_{jk} \in L^{\infty}(M)$.

Another version:

Suppose $F \in C^{1,1}$ on \mathbb{C}^n , $M = \partial \Omega$. Then there exists a two-form on M (called $\overline{\partial}\partial F$), with $L^{\infty}(M)$ coefficients so that

$$\int_{\mathcal{M}} \phi \wedge \bar{\partial} \partial F = \int_{\mathcal{M}} d\phi \wedge \bar{\partial} F$$

for all test 2n - 3 forms ϕ on M.

Second issue for C_L : the "cancellation conditions" needed to apply T(1)-type theorems.

Here there is an identity, holding for n > 1, (but not for n = 1):

$$\mathcal{C}_L(f)(z) = rac{1}{(n-1)(2\pi i)^n} \int_{\partial\Omega} rac{1}{(\Delta(w,z))^{n-1}} df \wedge (\partial \bar{\partial}
ho)^{n-1}$$

+ negligible terms in f.

We turn to the Cauchy-Szegö projection.

To exploit the idea of the identity (I) and follow what worked when $\partial \Omega$ was smooth and strongly psuedo-convex, we begin by constructing an appropriate Cauchy integral in this setting.

Replace the denominator

$$\Delta(w, z) = \langle \partial \rho(w), w - z \rangle \text{ by}$$

$$\Delta'(w, z) = \Delta(w, z) + \frac{1}{2} \sum \frac{\partial^2 \rho(w)}{\partial w_j \partial w_k} (w_j - z_j) (w_k - z_k)$$

$$= (\text{the "Levi polynomial"}): \text{ in particular,}$$

$$|\Delta'(w, z)| \ge C|w - z|^2, \text{ for } z \text{ near } w; z, w \in \partial\Omega.$$

This allows one to construct a Cauchy integral C like C_L —using the Cauchy-Fantappié formalism, (Δ' replacing Δ), (Henkin, Ramirez 1969). This has the additional property that $C^* - C$ is small (Kerzman and S. (1978)).

All this when $\partial \Omega$ is smooth.

Now we turn to our situation, when $\partial\Omega$ (i.e. ρ), is merely of class C^2 . Then we have the essential difficulty that the denominator $\Delta'(w, z)$ is only continuous in w, and not smoother. Hence all known methods for proving L^2 (or L^p) estimates, such as by T(1) techniques, fail.

A first try in overcoming this difficulty is to replace $\Delta'(w, z)$ by $\Delta_{\epsilon}(w, z)$ with $\Delta_{\epsilon}(w, z) = \langle \partial \rho(w), w - z \rangle +$

$$rac{1}{2}\sum_{j,k} au_{jk}(w)(w_j-z_j)(w_k-z_k),$$

where $| au_{jk}(w)-rac{\partial^2
ho(w)}{\partial w_j\partial w_k}|<\epsilon$ and $au_{jk}(w)$ of class C^1 .

With this we can construct a Cauchy integral C_{ϵ} that has L^{p} estimates.

Unfortunately, in general, $||C_{\epsilon}||_{L^{p}\to L^{p}}\to \infty$, as $\epsilon\to 0$.

How do we get around this quandry?

For each $\epsilon > 0$ we **truncate** the kernel of C_{ϵ} to an appropriately narrow neighborhood of the origin, obtaining

$$C_{\epsilon} = \tilde{C}_{\epsilon} + R_{\epsilon}.$$

While \tilde{C}_{ϵ} is no longer a Cauchy integral, we have

$$\blacktriangleright ||(\tilde{C}_{\epsilon})^* - \tilde{C}_{\epsilon}||_{L^p \to L^p} \lesssim_p \epsilon^{\frac{1}{2}}$$

► R_{ϵ} maps $L^{1}(\partial\Omega)$ to $L^{\infty}(\partial\Omega)$ (while $||R_{\epsilon}|| \to \infty$, as $\epsilon \to 0$.)

Now we use (I) to get

$$C_{\epsilon} = S(I - C_{\epsilon}^* + C_{\epsilon}),$$

and thus

$$C_{\epsilon} + SR_{\epsilon}^* - SR_{\epsilon} = S(I - (ilde{C}_{\epsilon})^* + ilde{C}_{\epsilon})$$

Take $p \leq 2$. The left side is bounded on L^p

For the right-side use a Neumann series to invert $I - (\tilde{C}_{\epsilon})^* + \tilde{C}_{\epsilon}$ for ϵ sufficiently small, since

$$||(\tilde{C}_{\epsilon})^* - \tilde{C}_{\epsilon}||_{L^p \to L^p} \lesssim_p \epsilon^{\frac{1}{2}}.$$

III Some counter-examples

For the Cauchy-Leray integral.

Assertion:

There exists a (simple!) bounded domain Ω so that

- $\partial \Omega \in C^{\infty}$ (in fact is real-analytic)
- Ω is convex (in fact, strictly convex)
- Ω is strongly pseudo-convex

However, CL_{Ω} is not bounded on L^p for any p.

In
$$\mathbb{C}^2$$
, with $z_j = x_j + iy_j$, $j = 1, 2$, take

$$\Omega = \{|z_2|^2 + x_1^2 + y_1^4 < 1\}$$

or more generally

$$\{|z_2|^2 + x_1^2 + y_1^{2k} < 1\}, k > 1, k \text{ an integer}.$$

Model results:

Consider the domains in \mathbb{C}^2 : $\Omega^{(a)} = \{ \operatorname{Im} z_2 > \frac{1}{4} |z_1|^2 \}$ $\Omega^{(b)} = \{ \operatorname{Im} z_2 > \frac{1}{2} x_1^2 \}$

These two are biholomorphically equivalent $(z_1 o z_1, z_2 o z_2 \pm i z_1^2)$

But the Cauchy-Leray denominators behave differently:

$$|\Delta^{(a)}(0,z)|^2 \approx x_2^2 + |z_1|^4$$

$$|\Delta^{(b)}(0,z)|^2 \approx x_2^2 + x_1^4.$$

So $\Delta^{(a)}(0, z)$ vanishes only when $(x_1, y_1, x_2) = 0.$

But $\Delta^{(b)}(0, z)$ vanishes when $x_1 = x_2 = 0$, all y_1 .

Can construct a skewed "bump" χ_{δ} , so that

 $||\chi_{\delta}||_{L^p} \leq \delta^{4/p}$, while $||(CL_b(\chi_{\delta}))||_{L^p} \geq \delta^{\frac{3}{p}}$.

Next let,

$$\Omega_{1} = \{|z_{2} - i|^{2} + x_{1}^{2} + y_{1}^{4} < 1\}$$
and $\tau_{\lambda}(z_{1}, z_{2}) = (\lambda z_{1}, \lambda^{2} z_{2}), \lambda > 0$

$$\Omega_{\lambda} = \tau_{\lambda}(\Omega_{1}), \tau_{\lambda}(f)(z_{1}, z_{2}) = f(\frac{z_{1}}{\lambda}, \frac{z_{2}}{\lambda^{2}})$$
Now $\Omega_{\lambda} = \{|\frac{z_{2}}{\lambda^{2}} - i|^{2} + \frac{x_{1}^{2}}{\lambda^{2}} + \frac{y_{1}^{4}}{\lambda^{4}} < 1\}$

$$= \{2 \text{ Im } z_{2} > x_{1}^{2} + \frac{y_{2}^{2}}{\lambda} + \frac{y_{1}^{4}}{\lambda^{2}}\}$$

Let
$$\lambda \to \infty$$
, then
 $\Omega_{\lambda} \to \Omega^{(b)} = \{2 \text{ Im } z_2 > x_1^2\}.$

However, (and this is a little trickier) one can show that

$$\begin{split} ||CL_{\Omega_1}(f)||_p &\leq A ||f||_p \Rightarrow ||CL^*_{\Omega_\lambda}(f)||_{L^p} \leq A ||f||_{L^p} \Rightarrow \\ ||CL_b(f)||_{L^p} &\leq A ||f||_{L^p} \end{split}$$

Second example.

For each $p \neq 2$, there exists a bounded C^{∞} psuedo-convex domain W so that the Cauchy-Szegö projection is not bounded on $L^{p}(\partial W)$.

W is a "worm domain"

 $W = \{|z_2 - ie^{ih(z_1)}|^2 + k(|z_1|) < 1\}$ where $k(t) \ge 0, k(t) = 0$ in a non-empty interval. $h(z_1) =$ is a suitable function of $|z_1|$.

Brief history of worm domains:

- K. Diederich and J. Fornaess, 1977
- D. Barrett, 1992
- M. Christ, 1996
- E. Straube, 1993
- S. Krantz, M. Peloso, 2008