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The goal: In Cn, to study the Lp properties
of Cauchy integrals and the Cauchy-Szegö
projection under optimal regularity
assumptions on the boundary (and related
geometric restrictions).
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I in preparation

Outline:

I: n = 1, a quick review

II: n > 1, recent results

III: some counter-examples
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I — Two theorems for Cauchy integrals in C1

- the “gold standard”

Theorem A

C(f )(z) =
1

2πi

∫
∂Ω

f (ζ)

ζ − z
dζ, z ∈ Ω

C(f )(z) = lim
z ′→z,z ′∈Ω

C(f )(z), z ∈ ∂Ω

Then

||C(f )||Lp(∂Ω) ≤p ||f ||Lp(Ω), 1 < p <∞

when ∂Ω is Lipschitz.

I Calderón 1977, Coifman, McIntosh, and
Meyer 1982.

I David 1989 when Ahlfors-regular.

I T (1),T (b) theorems, David, Journé,
and Semmes 1984, 1985.
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Let S = Cauchy-Szegö projection: orthogonal
projection of L2(∂Ω) to H2(∂Ω).

Theorem B S is bounded on Lp

I If ∂Ω is Lipschitz, then for p0 < p < p′0,
with p′0 = p′o(M) and p′0 > 4.

I If ∂Ω is of class C 1, then for 1 < p <∞
Calderón 1977, Kenig 1980, Pommerenke
1992, ..., Lanzani and S. 2004.

Two approaches to results of this kind.

First, by conformal mappings: Let

Φ : D→ Ω

τ(f )(e ′θ) = (Φ′(e ′θ))
1
2 (f ◦ Φ)(e ′θ).
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Then
S = τ−1S0τ

where S0 is the Cauchy-Szegö projection for
D.
Hence the question reduces to: for which p is

|Φ′(e ′θ)|1−
p
2 ∈ Ap?

Second approach:

(I) C = S(I − A)

with
A = C∗ − C.

Then if A is “small” we can “invert” I − A to
estimate S in terms of C.

For example, if ∂Ω is a class of C 1, then A is
compact, and I − A can be inverted by the
Fredholm alternative.
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II – The case of Cn, n > 1.

Some challenges that present themselvse:

1. Infinitely many different “Cauchy
integrals”

2. Pseudo-convexity of Ω must play a role
so minimal smoothness of ∂Ω should be
“near” C 2, not C 1, as when n = 1.

3. Conformal equivalance of domains
breaks down.

4. No choice of the Cauchy integral seems
to work with the identity (I), unless ∂Ω
is smooth.

5. Fefferman’s asymptotic formula for the
Cauchy-Szegö kernel holds only if ∂Ω is
sufficiently smooth.
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The Cauchy-Leray intergral (1956)

There is a class of domains Ω, which have a
natural (i.e. unique, cannonical) Cauchy integral
attached to them. Suppose Ω is convex, and ∂Ω
is of class C 2.

Let ρ(z) be a defining function of Ω,
Ω = {ρ(z) < 0}, while ρ ∈ C (2), and
Oρ 6= 0, z ∈ ∂Ω.

Conside the denominator:

∆(w , z) = 〈∂ρ(w),w − z〉 =
n∑

j=1

∂ρ(w)

∂wj
(wj − zj).

Then

CL(f )(z) =

∫
∂Ω

f (w)

(∆(w , z))n
dλ(w), z ∈ Ω

where dλ(w) = 1
(2πi)n ∂ρ ∧ (∂̄∂ρ)n−1 =

“Leray-Levi” measure.

I Note that ∆(w , z) 6= 0 if w ∈ ∂Ω and
z ∈ Ω, since Ω is convex.

I The Cauchy-Fanttapié formalism shows that
CL(f )(z) = f (z) if f is holomorphic in Ω
and coninuous in Ω̄.
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Notions of “convexity” of Ω relevant to
complex analysis. (Here n > 1.)

Three versions, in increasing order of
generality:

1. Strong convexity

2. Strong C− linear convexity

3. Strong pseudo-convexity

Note that (2) is equivalent (when ∂Ω is of
class C 2) with:
2′ Distance (TC

z ,w) ≥ C |z − w |2, if
z ,w ∈ ∂Ω

Theorem 1
Suppose ∂Ω is of class C 1,1 and Ω is strongly
C− linearly convex, as in 2′. Then CL extends
to a bounded linear operator on
Lp(∂Ω), 1 < p <∞.

Counter example, (D. Barrett, L. Lanzani,
2009): cannot replace C 1,1 by C 2−ε.
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Theorem 2
Suppose ∂Ω is of class C 2 and Ω is strongly
pseudo-convex. Then the Cauchy-Szegö
projection S extends to a bounded operator
on Lp(∂Ω), 1 < p <∞.

Note:
S is the orthogonal projection of L2(bD) to
H2(bD), and L2 = L2(∂Ω, dσ), where dσ is
the induced Lebesgue measure. A similar
result holds for the orthogonal projection Sω
of L2(∂Ω, ωdσ), whenever ω is a continuous
strictly positive density on ∂Ω.

The special case ωdσ = dλ = Leray-Levi
measure is key in proving the general result.
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Two issues in the proof of Theorem 1

I The “definition of CL (and the resulting
proofs) raise the following “restriction”
problem:

Suppose F is a C 1,1 function on Rn, and M is
a submanifold of Rn.

Question: Does the restriction ∂2F
∂xj ,∂xk

∣∣∣
M

make sense?

Answer: It can be defined as an L∞(M)
function if the derivatives are “tangential.”

One version: For x , and x + h in M, and for
a.e., x ∈ M

F (x + h) = F (x) +
n∑

j=1

∂F

∂xj
(x)hj

+
∑

ajk(x)hjhk + ◦(|h|2),

as h→ 0, where ajk ∈ L∞(M).
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Another version:

Suppose F ∈ C 1,1 on Cn,M = ∂Ω. Then
there exists a two-form on M (called ∂̄∂F ),
with L∞(M) coefficients so that∫

M
φ ∧ ∂̄∂F =

∫
M
dφ ∧ ∂̄F

for all test 2n − 3 forms φ on M.

Second issue for CL : the “cancellation
conditions” needed to apply T (1)−type
theorems.

Here there is an identity, holding for n > 1,
(but not for n = 1):

CL(f )(z) =
1

(n − 1)(2πi)n

∫
∂Ω

1

(∆(w , z))n−1
df ∧(∂∂̄ρ)n−1

+ negligible terms in f .
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We turn to the Cauchy-Szegö projection.

To exploit the idea of the identity (I) and
follow what worked when ∂Ω was smooth and
strongly psuedo-convex, we begin by
constructing an appropriate Cauchy integral
in this setting.

Replace the denominator
∆(w , z) = 〈∂ρ(w),w − z〉 by

∆′(w , z) = ∆(w , z)+
1

2

∑ ∂2ρ(w)

∂wj∂wk
(wj−zj)(wk−zk)

= (the “Levi polynomial”): in particular,

|∆′(w , z)| ≥ C |w−z |2, for z near w ; z ,w ∈ ∂Ω.

This allows one to construct a Cauchy
integral C like CL —using the
Cauchy-Fantappié formalism, (∆′ replacing
∆), (Henkin, Ramirez 1969).
This has the additional property that C ∗ − C
is small (Kerzman and S. (1978)).

All this when ∂Ω is smooth.
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Now we turn to our situation, when ∂Ω (i.e.
ρ), is merely of class C 2. Then we have the
essential difficulty that the denominator
∆′(w , z) is only continuous in w , and not
smoother. Hence all known methods for
proving L2 (or Lp) estimates, such as by T (1)
techniques, fail.

A first try in overcoming this difficulty is to
replace ∆′(w , z) by ∆ε(w , z) with
∆ε(w , z) = 〈∂ρ(w),w − z〉+

1
2

∑
j ,k τjk(w)(wj − zj)(wk − zk),

where |τjk(w)− ∂2ρ(w)
∂wj∂wk

| < ε and τjk(w) of

class C 1.

With this we can construct a Cauchy integral
Cε that has Lp estimates.

Unfortunately, in general, ||Cε||Lp→Lp →∞,
as ε→ 0.
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How do we get around this quandry?

For each ε > 0 we truncate the kernel of Cε
to an appropriately narrow neighborhood of
the origin, obtaining

Cε = C̃ε + Rε.

While C̃ε is no longer a Cauchy integral, we
have

I ||(C̃ε)∗ − C̃ε||Lp→Lp .p ε
1
2

I Rε maps L1(∂Ω) to L∞(∂Ω)
(while ||Rε|| → ∞, as ε→ 0.)

Now we use (I) to get

Cε = S(I − C ∗ε + Cε),

and thus
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Cε + SR∗ε − SRε = S(I − (C̃ε)
∗ + C̃ε)

Take p ≤ 2. The left side is bounded on Lp

For the right-side use a Neumann series to
invert I − (C̃ε)

∗ + C̃ε for ε sufficiently small,
since

||(C̃ε)∗ − C̃ε||Lp→Lp .p ε
1
2 .
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III Some counter-examples

For the Cauchy-Leray integral.

Assertion:

There exists a (simple!) bounded domain Ω
so that

I ∂Ω ∈ C∞ (in fact is real-analytic)

I Ω is convex (in fact, strictly convex)

I Ω is strongly pseudo-convex

However, CLΩ is not bounded on Lp for any
p.

In C2, with zj = xj + iyj , j = 1, 2, take

Ω = {|z2|2 + x2
1 + y4

1 < 1}

or more generally

{|z2|2 + x2
1 + y2k

1 < 1}, k > 1, k an integer.
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Model results:

Consider the domains in C2 :
Ω(a) = {Im z2 >

1
4 |z1|2}

Ω(b) = {Im z2 >
1
2x

2
1}

These two are biholomorphically equivalent
(z1 → z1, z2 → z2 ± iz2

1 )

But the Cauchy-Leray denominators behave
differently:
|∆(a)(0, z)|2 ≈ x2

2 + |z1|4

|∆(b)(0, z)|2 ≈ x2
2 + x4

1 .

So ∆(a)(0, z) vanishes only when
(x1, y1, x2) = 0.

But ∆(b)(0, z) vanishes when x1 = x2 = 0, all
y1.

Can construct a skewed “bump” χδ, so that

||χδ||Lp ≤ δ4/p, while ||(CLb(χδ)||Lp ≥ δ
3
p .
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Next let,
Ω1 = {|z2 − i |2 + x2

1 + y4
1 < 1}

and τλ(z1, z2) = (λz1, λ
2z2), λ > 0

Ωλ = τλ(Ω1), τλ(f )(z1, z2) = f ( z1
λ ,

z2
λ2 )

Now Ωλ = {| z2
λ2 − i |2 +

x2
1
λ2 +

y4
1
λ4 < 1}

= {2 Im z2 > x2
1 +

y2
2
λ +

y4
1
λ2 }

Let λ→∞, then
Ωλ → Ω(b) = {2 Im z2 > x2

1}.

However, (and this is a little trickier) one can
show that

||CLΩ1(f )||p ≤ A||f ||p ⇒ ||CL∗Ωλ
(f )||Lp ≤ A||f ||Lp ⇒

||CLb(f )||Lp ≤ A||f ||Lp
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Second example.

For each p 6= 2, there exists a bounded C∞

psuedo-convex domain W so that the
Cauchy-Szegö projection is not bounded on
Lp(∂W ).

W is a “worm domain”

W = {|z2 − ie ih(z1)|2 + k(|z1|) < 1}
where k(t) ≥ 0, k(t) = 0 in a non-empty
interval.
h(z1) = is a suitable function of |z1|.

Brief history of worm domains:

I K. Diederich and J. Fornaess, 1977

I D. Barrett, 1992

I M. Christ, 1996

I E. Straube, 1993

I S. Krantz, M. Peloso, 2008


