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The goal: In C", to study the LP properties
of Cauchy integrals and the Cauchy-Szego
projection under optimal regularity
assumptions on the boundary (and related
geometric restrictions).
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Outline:

I: n=1, a quick review
[lI: n> 1, recent results

[1l: some counter-examples



| — Two theorems for Cauchy integrals in C!
- the “gold standard”

Theorem A
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d¢, zeQ

C(f)(z)= lim C(f)(2), z €09
z'—z,2/€Q
Then
C(O)lIeron) <p Iflle(@),  1<p<oo

when 0Q is Lipschitz.

» Calderén 1977, Coifman, Mclntosh, and
Meyer 1982.

» David 1989 when Ahlfors-regular.

» T(1), T(b) theorems, David, Journé,
and Semmes 1984, 1985.



Let S = Cauchy-Szego projection: orthogonal
projection of L2(99) to H?(0Q).

Theorem B S is bounded on LP

» If 0 is Lipschitz, then for py < p < pj,
with p{ = p,(M) and p} > 4.
» If O is of class C1, then for 1 < p < oo

Calderén 1977, Kenig 1980, Pommerenke
1992, ..., Lanzani and S. 2004.

Two approaches to results of this kind.
First, by conformal mappings: Let
d:D—>Q

T(F)(e") = (¢/(¢))3(f o )(e").



Then
S=7"157r

where Sg is the Cauchy-Szego projection for
D.
Hence the question reduces to: for which p is

()75 € Ap?

Second approach:
(H C=S5(-A)

with
A=C*-_C.

Then if Ais “small” we can “invert” | — A to
estimate S in terms of C.

For example, if 02 is a class of Cl, then A'is
compact, and / — A can be inverted by the
Fredholm alternative.



Il — The case of C", n > 1.

Some challenges that present themselvse:

1. Infinitely many different “Cauchy
integrals”

2. Pseudo-convexity of €2 must play a role
so minimal smoothness of 92 should be
“near” C2, not C!, as when n = 1.

3. Conformal equivalance of domains
breaks down.

4. No choice of the Cauchy integral seems
to work with the identity (l), unless 0Q
is smooth.

5. Fefferman’s asymptotic formula for the
Cauchy-Szegdo kernel holds only if 02 is
sufficiently smooth.



The Cauchy-Leray intergral (1956)

There is a class of domains Q, which have a
natural (i.e. unique, cannonical) Cauchy integral
attached to them. Suppose 2 is convex, and 0f2
is of class C2.

Let p(z) be a defining function of Q,
Q = {p(z) < 0}, while p € C® and
Vp#0,z € 0.

Conside the denominator:

A(w,z) = (Op(w),w — z) Z Op(w)

awj _ZJ)

Then
f(w)
C(f)(z :/ ———d\(w),z€Q
D= ] @z )
where dA(W) = 0P A (00p)"—1 =
“Leray-Levi” measure.

> Note that A(w,z) # 0 if w € 9Q and
z € €, since Q is convex.

» The Cauchy-Fanttapié formalism shows that
Ci(f)(z) = f(z) if f is holomorphic in Q
and coninuous in €.



Notions of “convexity” of 2 relevant to
complex analysis. (Here n > 1.)

Three versions, in increasing order of
generality:

1. Strong convexity
2. Strong C— linear convexity

3. Strong pseudo-convexity

Note that (2) is equivalent (when 0 is of
class C?) with:

2" Distance (TS, w) > Clz — w?, if

z,w € 0Q

Theorem 1

Suppose 0 is of class C>! and Q is strongly
C— linearly convex, as in 2/. Then C; extends
to a bounded linear operator on

LP(0Q),1 < p < o0.

Counter example, (D. Barrett, L. Lanzani,
2009): cannot replace C! by C27¢.



Theorem 2

Suppose 0 is of class C2 and Q is strongly
pseudo-convex. Then the Cauchy-Szego
projection S extends to a bounded operator
on LP(022),1 < p < 0.

Note:

S is the orthogonal projection of L2(bD) to
H?(bD), and L% = [?(09, do), where do is
the induced Lebesgue measure. A similar
result holds for the orthogonal projection S,
of L2(09,wda), whenever w is a continuous
strictly positive density on 0f2.

The special case wdo = d\ = Leray-Levi
measure is key in proving the general result.



Two issues in the proof of Theorem 1

» The “definition of C; (and the resulting
proofs) raise the following “restriction”
problem:

Suppose F is a C1! function on R”, and M is
a submanifold of R".

0*F

Question: Does the restriction Bx5.0%% | 1

make sense?

Answer: It can be defined as an L>(M)
function if the derivatives are “tangential.”

One version: For x, and x 4+ h in M, and for
ae,xeM

F(x+h) = Zaxj

+> " ap(x)hjhi + o(|h[?),
as h — 0, where aj € L*(M).



Another version:

Suppose F € CH! on C", M = 0. Then
there exists a two-form on M (called 0OF),
with L%°(M) coefficients so that

/¢A88F /quA@F

for all test 2n — 3 forms ¢ on M.

Second issue for C; : the “cancellation
conditions” needed to apply T(1)—type
theorems.

Here there is an identity, holding for n > 1,
(but not for n = 1):

1

1
@) = =@ /ag (A(w, 2))"

+ negligible terms in f.

df AN(00p)" !



We turn to the Cauchy-Szegé projection.

To exploit the idea of the identity (I) and
follow what worked when 02 was smooth and
strongly psuedo-convex, we begin by
constructing an appropriate Cauchy integral
in this setting.

Replace the denominator
A(w,z) = (Op(w), w — z) by

A(w,z) = Z 8w16wk —2)(wWi—2¢)

= (the “Levi polynomial”): in particular,

|A'(w, z)| > Clw—2z|?, for z near w; z, w € 9.

This allows one to construct a Cauchy
integral C like C; —using the
Cauchy-Fantappié formalism, (A’ replacing
A), (Henkin, Ramirez 1969).

This has the additional property that C* — C
is small (Kerzman and S. (1978)).

All this when 92 is smooth.



Now we turn to our situation, when 0 (i.e.
p), is merely of class C2. Then we have the
essential difficulty that the denominator
A'(w, z) is only continuous in w, and not
smoother. Hence all known methods for
proving L2 (or LP) estimates, such as by T(1)
techniques, fail.

A first try in overcoming this difficulty is to
replace A’'(w, z) by A.(w, z) with
Ae(Wa Z) = <ap(W)’ w— Z>+

3 2k Tik(W) (W) = Z) (Wi — zi),

_ 9%p(w)
8W18W;<

where |7j(w) | < € and Tj(w) of

class C1L.

With this we can construct a Cauchy integral
C. that has LP estimates.

Unfortunately, in general, ||Ce||1p—1r — 00,
as e — 0.



How do we get around this quandry?

For each € > 0 we truncate the kernel of C,
to an appropriately narrow neighborhood of
the origin, obtaining

C.=C +R.

While €, is no longer a Cauchy integral, we
have

~ ~ 1
> [[(C)" = Cellep—ir Sp €2

> R. maps L1(09) to L=(0Q)
(while [|Re|| = o0, as € — 0.)

Now we use (1) to get
C=S5(-C+¢C),

and thus



C.4+ SR —SR.=S(1 — (C)* + C.)
Take p < 2. The left side is bounded on LP

For the right-side use a Neumann series to

invert | — (C.)* + C, for e sufficiently small,
since

= 1
I1(C)™ — Cellp—tr Sp €2.



I1l Some counter-examples
For the Cauchy-Leray integral.
Assertion:

There exists a (simple!) bounded domain Q
so that

» JQ € C* (in fact is real-analytic)

» Q is convex (in fact, strictly convex)

» Q is strongly pseudo-convex
However, CLq is not bounded on LP for any
p.

In C2, with z; = x; + iyj;, j=1,2, take
Q={znf+x +y <1}
or more generally

{122 + x? + y?X < 1}, k > 1, k an integer.



Model results:

Consider the domains in C2 :
Q) = {Im z > %\21\2}
Q) = {Im z > $x3}

These two are biholomorphically equivalent
(z1 = 21,20 — zp £ iZ?)

But the Cauchy-Leray denominators behave
differently:
1800, 2)]” ~ 53 + |z |*

|AB)(0, 2)|? ~ x3 + x{.

So A(3)(0, z) vanishes only when
(x1,y1,%) = 0.

But A(®)(0, z) vanishes when x; = x, = 0, all
i

Can construct a skewed “bump” xg, so that

lxslle < 6%/, while ||(CLy(xs)||1r > 67.



Next let,
U ={lza—iP+x{ +y7 <1}

and T,\(Zl,ZQ) = ()\Zl,)\222), A>0
Q= (), ()21, 2) = F(%, 32)

Now Qy = {|% l\z—i- <1}
:{2Im22>xl+y72+p}

Let)\—>oo then
Q,\—>Q *{211’1’122>X}.

However, (and this is a little trickier) one can
show that

[1CLa, (A)llp < Allfllp = |ICLa, (Allee < Allf[[e =

[|CLu(F)||r < Allf]|Lr



Second example.

For each p # 2, there exists a bounded C*°
psuedo-convex domain W so that the

Cauchy-Szegd projection is not bounded on
LP(OW).

W is a “worm domain”

W = {|z — ie"@) 2 + k(|z]) < 1}
where k(t) > 0, k(t) = 0 in a non-empty
interval.

h(z1) = is a suitable function of |z|.

Brief history of worm domains:

K. Diederich and J. Fornaess, 1977
D. Barrett, 1992
M. Christ, 1996
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E. Straube, 1993
S. Krantz, M. Peloso, 2008
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