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definitions

Let A ⊂ Rp be a compact d-dimensional set, and s > 0.

N-th Polarization (Chebyshev) constant:

Define Ps(A;N) := supPs(A;ωN) := sup inf
y∈A

∑
xj∈ωN

1
|y− xj|s

,

where the supremum is taken over all N-point sets ωN ⊂ A.

Compare to the minimal discrete energy:

Es(A;N) := min Es(ωN) = min
∑
i ̸=j

1
|xi − xj|s

Three cases should be considered separately:

∙ s < d: the “continuous” problem supµ infy∈A
∫
A

dµ(x)
|y−x|s is

non-trivial;
∙ s = d: the transitional case;
∙ s > d, when the kernel 1

|x−y|s is very singular.
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what was known

s<d

∙ The “dicrete” problem tends to the “continuous” problem; i.e.,
Ps(A;N)/N → Ts(A);

∙ If A = S1, then ωN consists of N equally spaced points;
∙ If A = S2 and N = 4, then any maximizing configuration ωN forms
a regular simplex inscribed in S2;

∙ If A = Sd and µN := 1
N
∑

xj∈ωN
δxj , then measures µN weakly tend

to the equillibrium (that is, surface) measure on Sd. But if
A = Bd and s < d− 2, then ωN = {0, 0, . . . , 0}.

s>d

∙ There exists a constant σs,d > 0, such that

lim
N

Ps([0, 1]d;N)
Ns/d = σs,d.
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what is new for s > d

As a (non-immediate) corollary of the cube case, if A ⊂ Rp has
positive Lebesgue measure, and ∂A has zero Lebesgue measure, then

lim
N

Ps(A;N)
Ns/p =

σs,p

mp(A)s/p
, s > p.

Moreover,
1
N

∑
xj∈ωN

δxj →
∗ mp(· ∩ A)/mp(A).

The idea is to approximate A from the inside by cubes and use a
tricky semi-additivity. The difficulty one has to overcome is that the
quantity Ps(A;N) is not monotone in A.
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how michael christ helps and inspires?

Now assume A is a d-dimensional closed smooth manifold,
embedded in Rp; for example, A = Sd. We can not approximate A by
cubes from the inside.

However, if A is regular enough, we can use the famous construction
of “dyadic cubes” in a doubling metric space. And if A is smooth
enough, we can map these “cubes” to Rd and approximate by regular
cubes there; and then map back. Since after each mapping we are
making very small mistakes (and the smaller the “cubes” are, the
smaller mistake we make), we can eventually get the same result:

lim
N

Ps(A;N)
Ns/d =

σs,d

Hd(A)s/d
.

Moreover,
1
N

∑
xj∈ωN

δxj →
∗ Hd(· ∩ A)/Hd(A).
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THANK YOU!
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