Domination of multilinear singular integrals by positive sparse forms

Yumeng Ou

Brown University

Conference in harmonic analysis in honor of Michael Christ University of Wisconsin-Madison May 17 2016

4 6 1 1 4

Joint work with Amalia Culiuc and Francesco Di Plinio.

- A. Culiuc, F. Di Plinio and Y. Ou, *Domination of multilinear singular integrals by positive sparse forms*, submitted (2016).
- F. Di Plinio and Y. Ou, *A modulation invariant Carleson embedding theorem outside local L*², to appear in J. Anal. Math. (2015).

We consider multiplier forms (studied in [Muscalu-Tao-Thiele'02])

$$\Lambda_m(f_1, f_2, f_3) := \int_{\xi_1 + \xi_2 + \xi_3 = 0} m(\xi) \widehat{f_1}(\xi_1) \widehat{f_2}(\xi_2) \widehat{f_3}(\xi_3) \, d\xi,$$

with

$$\sup_{|\alpha|\leq N} \sup_{\xi_1+\xi_2+\xi_3=0} \operatorname{dist}(\xi,\beta^{\perp})^{|\alpha|} |\partial^{\alpha} m(\xi)| \leq C_N,$$

 β : non-degenerate unit vector s.t. $\beta_1 + \beta_2 + \beta_3 = 0$.

We consider multiplier forms (studied in [Muscalu-Tao-Thiele'02])

$$\Lambda_m(f_1, f_2, f_3) := \int_{\xi_1 + \xi_2 + \xi_3 = 0} m(\xi) \widehat{f_1}(\xi_1) \widehat{f_2}(\xi_2) \widehat{f_3}(\xi_3) \, d\xi,$$

with

$$\sup_{|\alpha|\leq N} \sup_{\xi_1+\xi_2+\xi_3=0} \frac{\operatorname{dist}(\xi,\beta^{\perp})^{|\alpha|}}{|\partial^{\alpha}m(\xi)|} \leq C_{N_2}$$

 β : non-degenerate unit vector s.t. $\beta_1 + \beta_2 + \beta_3 = 0$.

Example ($m(\xi) = \text{sign}(\xi \cdot \beta)$: bilinear Hilbert transform)

• • • • • • • • • • •

We consider multiplier forms (studied in [Muscalu-Tao-Thiele'02])

$$\Lambda_m(f_1, f_2, f_3) := \int_{\xi_1 + \xi_2 + \xi_3 = 0} m(\xi) \widehat{f_1}(\xi_1) \widehat{f_2}(\xi_2) \widehat{f_3}(\xi_3) \, d\xi,$$

with

$$\sup_{|\alpha| \le N} \sup_{\xi_1 + \xi_2 + \xi_3 = 0} \frac{\mathsf{dist}(\xi, \beta^{\perp})^{|\alpha|}}{|\partial^{\alpha} m(\xi)|} \le C_{N_2}$$

 β : non-degenerate unit vector s.t. $\beta_1 + \beta_2 + \beta_3 = 0$.

Example ($m(\xi) = \text{sign}(\xi \cdot \beta)$: bilinear Hilbert transform)

$$BHT(f_1, f_2)(x) = \rho.v. \int_{\mathbb{R}} f_1(x-t)f_2(x+t) \frac{dt}{t}$$

• • • • • • • • • • • •

We consider multiplier forms (studied in [Muscalu-Tao-Thiele'02])

$$\Lambda_m(f_1, f_2, f_3) := \int_{\xi_1 + \xi_2 + \xi_3 = 0} m(\xi) \widehat{f_1}(\xi_1) \widehat{f_2}(\xi_2) \widehat{f_3}(\xi_3) \, d\xi,$$

with

$$\sup_{|\alpha| \le N} \sup_{\xi_1 + \xi_2 + \xi_3 = 0} \frac{\mathsf{dist}(\xi, \beta^{\perp})^{|\alpha|} |\partial^{\alpha} m(\xi)| \le C_N;$$

 β : non-degenerate unit vector s.t. $\beta_1 + \beta_2 + \beta_3 = 0$.

Example ($m(\xi) = \text{sign}(\xi \cdot \beta)$: bilinear Hilbert transform)

$$BHT(f_1,f_2)(x) = p.v. \int_{\mathbb{R}} f_1(x-t)f_2(x+t) \frac{dt}{t}$$

Replacing dist(ξ , β^{\perp}) by $|\xi|$ gives the Coifman-Meyer multipliers.

Domination by positive sparse forms

Theorem (Culiuc-Di Plinio-O'16)

Let $\vec{p} = (p_1, p_2, p_3)$ s.t. $1 < p_j < \infty, \sum_{j=1}^3 \frac{1}{\min(p_j, 2)} < 2$. For any $(f_1, f_2, f_3) \in C_0^{\infty}(\mathbb{R})^3$ there exists a $\frac{1}{6}$ -sparse collection S s.t.

$$\sup_{m} |\Lambda_m(f_1, f_2, f_3)| \lesssim_{\vec{p}} \mathrm{PSF}_{\mathcal{S}}^{\vec{p}}(f_1, f_2, f_3) =: \sum_{I \in \mathcal{S}} |I| \prod_{j=1}^3 \langle f_j \rangle_{I, p_j}$$

where

$$\langle f \rangle_{I,p} := \left(\frac{1}{|I|} \int_{I} |f|^{p} \right)^{1/p}$$

.

4 6 1 1 4

Yumeng Ou (Brown U)

Domination of multilinear singular integrals

May 17 2016 4 / 12

Domination by positive sparse forms

Theorem (Culiuc-Di Plinio-O'16)

Let $\vec{p} = (p_1, p_2, p_3)$ s.t. $1 < p_j < \infty, \sum_{j=1}^3 \frac{1}{\min(p_j, 2)} < 2$. For any $(f_1, f_2, f_3) \in C_0^{\infty}(\mathbb{R})^3$ there exists a $\frac{1}{6}$ -sparse collection S s.t.

$$\sup_{m} |\Lambda_m(f_1, f_2, f_3)| \lesssim_{\vec{p}} \mathrm{PSF}_{\mathcal{S}}^{\vec{p}}(f_1, f_2, f_3) =: \sum_{I \in \mathcal{S}} |I| \prod_{j=1}^3 \langle f_j \rangle_{I, p_j}$$

where

$$\langle f \rangle_{I,p} := \left(\frac{1}{|I|} \int_{I} |f|^{p} \right)^{1/p}$$

• S is a η -sparse collection of intervals if $\forall I \in S, \exists E_I \subset I$ with $|E_I| \ge \eta |I|$ s.t. $\{E_I : I \in S\}$ are pairwise disjoint.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Domination by positive sparse forms

Theorem (Culiuc-Di Plinio-O'16)

Let $\vec{p} = (p_1, p_2, p_3)$ s.t. $1 < p_j < \infty, \sum_{j=1}^3 \frac{1}{\min(p_j, 2)} < 2$. For any $(f_1, f_2, f_3) \in C_0^{\infty}(\mathbb{R})^3$ there exists a $\frac{1}{6}$ -sparse collection S s.t.

$$\sup_{m} |\Lambda_m(f_1, f_2, f_3)| \lesssim_{\vec{p}} \mathrm{PSF}_{\mathcal{S}}^{\vec{p}}(f_1, f_2, f_3) =: \sum_{I \in \mathcal{S}} |I| \prod_{j=1}^3 \langle f_j \rangle_{I, p_j}$$

where

$$\langle f \rangle_{I,p} := \left(\frac{1}{|I|} \int_{I} |f|^{p} \right)^{1/p}$$

- S is a η -sparse collection of intervals if $\forall I \in S, \exists E_I \subset I$ with $|E_I| \ge \eta |I|$ s.t. $\{E_I : I \in S\}$ are pairwise disjoint.
- Examples of \vec{p} : (1⁺, 2⁻, 2⁻), ($\frac{4}{3}^+$, $\frac{4}{3}^-$, 2⁻),...

A very brief history of positive sparse domination

Theorem (Lerner'12,..., Lacey'15, Lerner'15)

Yumena Ou (Brown U)

Let T be a Calderón-Zygmund (CZ) operator and $f \in C_0^{\infty}(\mathbb{R})$. Then there is a $\frac{1}{2}$ -sparse collection S s.t.

$$|Tf(x)| \lesssim \mathrm{PSO}^1_{\mathcal{S}}f(x) =: \sum_{l \in \mathcal{S}} \langle f \rangle_{l,1} \chi_l(x), \quad \forall x \in \mathbb{R}.$$

4 6 1 1 4

A very brief history of positive sparse domination

Theorem (Lerner'12,..., Lacey'15, Lerner'15)

Let T be a Calderón-Zygmund (CZ) operator and $f \in C_0^{\infty}(\mathbb{R})$. Then there is a $\frac{1}{2}$ -sparse collection S s.t.

$$|Tf(x)| \lesssim \mathrm{PSO}^1_{\mathcal{S}}f(x) =: \sum_{l \in \mathcal{S}} \langle f \rangle_{l,1} \chi_l(x), \quad \forall x \in \mathbb{R}.$$

Theorem (Lerner-Nazarov'15, Conde-Rey'15)

Let T be a bilinear CZ operator and $f_1, f_2 \in C_0^{\infty}(\mathbb{R})$. Then there is a $\frac{1}{2}$ -sparse collection S s.t.

$$|T(f_1,f_2)(x)| \lesssim \mathrm{PSO}_{\mathcal{S}}^{1,1}(f_1,f_2)(x) =: \sum_{l \in \mathcal{S}} \langle f_1 \rangle_{l,1} \langle f_2 \rangle_{l,1} \chi_l(x), \quad \forall x \in \mathbb{R}.$$

• • • • • • • • • • • •

Pointwise domination implies the domination by forms (PSF¹ is the dual form of PSO^{1,1}).

A (1) > A (2) > A

- Pointwise domination implies the domination by forms (PSF¹ is the dual form of PSO^{1,1}).
- Suppose $|T_m(f_1, f_2)(x)| \lesssim \sum_{l \in S} \langle f_1 \rangle_{l,p_1} \langle f_2 \rangle_{l,p_2} \chi_l(x)$, then T_m will inherit certain L^1 -boundedness.

- Pointwise domination implies the domination by forms (PSF¹ is the dual form of PSO^{1,1}).
- Suppose $|T_m(f_1, f_2)(x)| \lesssim \sum_{l \in S} \langle f_1 \rangle_{l,p_1} \langle f_2 \rangle_{l,p_2} \chi_l(x)$, then T_m will inherit certain L^1 -boundedness.
- But this is false when inf(p₁, p₂) < 2 and not expected otherwise. (No L¹-boundedness properties are expected to hold even for the bilinear Hilbert transform.)

- Pointwise domination implies the domination by forms (PSF¹ is the dual form of PSO^{1,1}).
- Suppose $|T_m(f_1, f_2)(x)| \lesssim \sum_{l \in S} \langle f_1 \rangle_{l,p_1} \langle f_2 \rangle_{l,p_2} \chi_l(x)$, then T_m will inherit certain L^1 -boundedness.
- But this is false when inf(p₁, p₂) < 2 and not expected otherwise. (No L¹-boundedness properties are expected to hold even for the bilinear Hilbert transform.)
- The difference in strength between dominating by PSO and by PSF is only formal.

< ロ > < 同 > < 回 > < 回 >

Corollary (Culiuc-Di Plinio-O'16; originally in Muscalu-Tao-Thiele'02) The adjoint bilinear operators T_m to the forms Λ_m have the mapping properties

$$T_m: L^{q_1}(\mathbb{R}) imes L^{q_2}(\mathbb{R}) o L^{rac{q_1q_2}{q_1+q_2}}(\mathbb{R})$$

for all (q_1, q_2) s.t. $1 < \inf(q_1, q_2) < \infty$ and

$$\frac{1}{q_1} + \frac{1}{q_2} < \frac{3}{2}.$$

• • • • • • • • • • •

Why is domination useful? Sharp weighted estimates

Corollary (Culiuc-Di Plinio-O'16)

Let $\vec{q} = (q_1, q_2, q_3)$ with $1 < q_j < \infty$, $\sum_{j=1}^{3} \frac{1}{q_j} = 1$ and a weight vector $\vec{v} = (v_1, v_2, v_3)$ s.t. $\prod_{j=1}^{3} v_j^{1/q_j} = 1$. Then,

$$\sup_{m} |\Lambda_{m}(f_{1}, f_{2}, f_{3})| \leq \inf_{\vec{p}} \left(C(\vec{p}, \vec{q}) [\vec{v}]_{\mathcal{A}_{\vec{q}}^{\vec{p}}}^{\max\{\frac{q_{j}}{q_{j} - \rho_{j}}\}} \right) \prod_{i=1}^{3} \|f_{i}\|_{L^{q_{j}}(v_{j})}$$

where inf is taken over open admissible tuples \vec{p} with $p_j < q_j$ and

$$[\vec{v}]_{\mathcal{A}_{\vec{q}}^{\vec{p}}} := \sup_{I \subset \mathbb{R}} \prod_{j=1}^{3} \langle v_j^{\frac{p_j}{p_j - q_j}} \rangle_I^{1/p_j - 1/q_j}.$$

May 17 2016 8 / 12

< ロ > < 同 > < 回 > < 回 >

An example of such weights

Corollary (Culiuc-Di Plinio-O'16)

Let \vec{q} be as above and weights v_1, v_2, u be such that $u = \prod_{j=1}^2 v_j^{q'_3/q_j}$. Assume that $v_1^2 \in A_{q_1}, v_2^2 \in A_{q_2}$. Then it holds uniformly over m that

 $T_m: L^{q_1}(v_1) \times L^{q_2}(v_2) \to L^{q'_3}(u).$

• • • • • • • • • • •

An example of such weights

Corollary (Culiuc-Di Plinio-O'16)

Let \vec{q} be as above and weights v_1, v_2, u be such that $u = \prod_{j=1}^2 v_j^{q'_3/q_j}$. Assume that $v_1^2 \in A_{q_1}, v_2^2 \in A_{q_2}$. Then it holds uniformly over m that

$$T_m: L^{q_1}(v_1) \times L^{q_2}(v_2) \to L^{q'_3}(u).$$

In particular, $v^2 \in A_p \iff v \in A_{\frac{p+1}{2}} \cap RH_2$, where

$$[v]_{A_{p}} := \sup_{I} \left(\frac{1}{|I|} \int_{I} v \right) \left(\frac{1}{|I|} \int_{I} v^{1/(1-p)} \right)^{p-1}, \ [v]_{RH_{p}} := \sup_{I} \frac{\left(\frac{1}{|I|} \int_{I} v^{p} \right)^{1/p}}{\frac{1}{|I|} \int_{I} v}$$

A I > A = A A

Why is domination useful? Vector-valued estimates

Corollary (Culiuc-Di Plinio-O'16; originally in Benea-Muscalu'15) Let $\mathbf{m} = \{m_k\}$ be a sequence of multipliers and

$$T_{\mathbf{m}}: (\{f_{1k}\}, \{f_{2k}\}) \mapsto \{T_{m_k}(f_{1k}, f_{2k})\}.$$

For the tuple \vec{r} with $1 < r_j \le \infty, \sum_{j=1}^{3} \frac{1}{r_j} = 1$ there holds

$$T_{\mathbf{m}}: L^{q_1}(\mathbb{R}; \ell^{r_1}) \times L^{q_2}(\mathbb{R}; \ell^{r_2}) \to L^{\frac{q_1q_2}{q_1+q_2}}(\mathbb{R}; \ell^{r'_3})$$

for all (q_1, q_2) s.t. $1 < inf(q_1, q_2) < \infty$ and

$$\sum_{j=1}^{3} \frac{1}{\min(q_j, r_j, 2)} < 2, \quad \frac{1}{q_3} := \max(1 - \frac{1}{q_1} - \frac{1}{q_2}, 0).$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 Unlike previous sparse domination results, our argument doesn't rely on a priori (e.g. weak L¹) boundedness properties of the operators.

EN 4 EN

- Unlike previous sparse domination results, our argument doesn't rely on a priori (e.g. weak L¹) boundedness properties of the operators.
- Our domination holds uniformly for the class of multipliers (the sparse collection doesn't depend on the operator).

E N 4 E N

- Unlike previous sparse domination results, our argument doesn't rely on a priori (e.g. weak L¹) boundedness properties of the operators.
- Our domination holds uniformly for the class of multipliers (the sparse collection doesn't depend on the operator).
- The main ingredient of our proof is a stopping time argument that relies on intrinsic model sums involving wave packets and certain localized embedding theorems in the framework of outer measure L^p theory developed in [Do-Thiele'15].

A B A A B A

- Unlike previous sparse domination results, our argument doesn't rely on a priori (e.g. weak L¹) boundedness properties of the operators.
- Our domination holds uniformly for the class of multipliers (the sparse collection doesn't depend on the operator).
- The main ingredient of our proof is a stopping time argument that relies on intrinsic model sums involving wave packets and certain localized embedding theorems in the framework of outer measure L^p theory developed in [Do-Thiele'15].
- The localized embedding theorem is derived in [Di Plinio-O'15].

< ロ > < 同 > < 回 > < 回 >

- Unlike previous sparse domination results, our argument doesn't rely on a priori (e.g. weak L¹) boundedness properties of the operators.
- Our domination holds uniformly for the class of multipliers (the sparse collection doesn't depend on the operator).
- The main ingredient of our proof is a stopping time argument that relies on intrinsic model sums involving wave packets and certain localized embedding theorems in the framework of outer measure L^p theory developed in [Do-Thiele'15].
- The localized embedding theorem is derived in [Di Plinio-O'15].
- It seems that our approach can be applied to obtain similar sparse domination of other operators such as the variational Carleson operator and maximal truncations of bilinear singular integrals.

Thank you for your attention!

Yumeng Ou (Brown U)

Domination of multilinear singular integrals

May 17 2016 12 / 12

3 > 4 3