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Calderon-Zygmund kernels
A Calderén-Zygmund kernel on R™ associated with the dilations
Aa(x) = Aa(z1, ..y 2n) = (A2, .., A% xy,)

is a tempered distribution K on R™ with the following properties.

1. K is given away from the origin by integration against a smooth
function.

2. For every multi-index &« = («,...,,) € N® and all x £ 0
|3O‘K(X)| < Ca(|$1‘i + -+ |xn|ﬁ)—Qa—2j:1 a; Qg
where Qa = a1 + - - - + a, is the homogeneous dimension.

3. K satisfies appropriate cancellation conditions so that in particular
the Fourier transform K = m is a bounded function.

K will often have compact support or
have rapid decay outside the unit ball.



Homogeneous nilpotent Lie groups

G denotes a homogeneous nilpotent Lie group with underlying
manifold R™ and automorphic dilations
(T, .., xy) = ()\dlxl, . /\d"xn)
with d; < dy <---<d,. For x = (z1,...,2,),y = (y1,.--,yn) € G
X y= (a:l +y1, 22 + Y2 + Ma(x,¥), ..., Zn + Yn +Mn(x,y))
where M;(x,y) is a polynomial vanishing if x =0 or y = 0 and
M;(Ma(x); Aa(y)) = A% M; (%, ).

Convolution on G is given by

frgx)= | flx-y gy)dy= [ [fly)gly ' x)dy.

R R



Example: The Heisenberg group
The m-dimensional Heisenberg group H" has underlying space
R™ x R™ x R with automorphic dilations
)\1,1,2(X7 Yy, t) = ()‘Xa )‘Y7 >\2t)
and group multiplication

(x1,¥1,t1) - (X2,¥2,t2)
= (x1 + X2, y1 + y2, t1 + 2 — 2(x1,y2) + 2(x2,y1))

where (x,y) is the Euclidean inner product. If
X; :8xj +2yj8t, Y; :3yj —2xj8t, T = 0,

then
{X1,..., X, Y,... .Y, T}

is a basis for the left-invariant vector fields on H".



The problem
Consider two different dilation structures on G given by

a1, zn) = A9z, A with ap > ay > - > ayp,

Mo(Z1, .oy xp) = (WD o Nendng ) with by > by > -2 > by,

Let K, and K}, be Calderén-Zygmund kernels on R™ with compact
support associated with these dilations. For ¢ € S(R") set

Talpl = px Ko and Tplp] = ¢ * Kp.

» What are the mapping properties of the operator T, o T},
on various function spaces?

» What can be said about size and cancellation properties
of the Schwartz kernel of T, o T},7

» Are there reasonably small algebras of convolution
operators containing Calderon-Zygmund kernels
associated to both dilations?



Background and Motivation

e Let Q C C**! be a strictly pseudoconvex domain and let
O=00"+ "0 : L 1)(2) = L 1y(2).
Given f € Cf§ 1)( ), the O-Neumann problem is to solve

Ou=f on®
ulddp=0 ondQ
Ou_10p=0 on 0.

Greiner and Stein (1977) constructed a parametrix for this
boundary value problem which involves the composition of two
kinds of operators:

» operators of elliptic type coming from Poisson integrals and the
Green’s function for O (which is essentially the Laplacian);

» operators of non-isotropic type coming from inverting the
sub-Laplacian £ = — ", (X7 + Y}?) on the Heisenberg group H".



e Phong and Stein (1982) studied compositions of convolution
operators on R? x R

TE[(p] ZQO*KE and TH[<p] :<p*KH

where * is either Euclidean or Heisenberg convolution, and Kr and
Ky are Calderén-Zygmund kernels on R? x R associated with the
two different dilations:

Ae(x,t) = (Ax,M\t) and  Ag(x,t) = (\x, \%t).

The local (near 0) and the global (near infinity) behavior of
compositions Tg o Ty or Ty o Ty are different. Phong and Stein
established:

» necessary and sufficient conditions for the compositions of such
operators to be of weak-type (1,1);

» boundedness of the composition on non-isotropic Lipschitz spaces.



e On the Heisenberg group H"™, T' = 9, and the sub-Laplacian is
oY)
j=1

Miiller, Ricci, and Stein (1995) studied general functions of £ and
T, and in particular established Marcinkiewicz-type theorems for
multiplier operators m(L,T) where

|02 07 m(&,7)] S €77
» Such multiplier operators are bounded on LP(H") for 1 < p < oo.
» The corresponding kernels satisfied differential inequalities
0207 K (2,0)] < |2 72"~V (|2)* + [¢)) 71

This last estimate reflects the multi-parameter structure
but is stronger than a product estimate.



e A flag kernel associated with the dilations
Aa(x) = A2y, ..., A xy)

is a tempered distribution K with appropriate cancellation and
singularities on an increasing sequence of subspaces:

0K ()| 5 (Ja25) ™ (| 4 g 77) "

n 1 1 _1 2\ —aj(1+ay)
= LT (k¥ ol - a7 byt )
j=1

» N., Ricci, Stein (2001) studied such operators when they arise in the
study of the Bergman projection in tube domains over polyhedral
cones and in solving [J, on certain quadratic submanifolds having
the structure of step-2 nilpotent Lie groups.

» N., Ricci, Stein, Wainger (2012) and Glowacki (2010), (2013)
extended this theory to homogeneous nilpotent Lie groups G of
higher step, established boundedness in LP(G) for 1 < p < oo, and
showed that such operators form an algebra under convolution.



A Step 3 Example

Let K; and K5 be Calderén-Zygmund kernels with compact support
associated with the dilations

M(En,T) = (MM AT)  and Xa(&,m,7) = (A, NP, AP7).
Thus

1020707 K1 (2, 2)| S (=] + y| + |2) 7777,

‘8?356%1(2(95,%2)’ 5 (|$| + |y|% + |Z|%)_a_26_37.

The Fourier transforms m; = I/{\l and my = I/{\g are smooth bounded
functions satisfying the differential inequalities

‘8%85827711(5,17,7” < (1 + €]+ Il + |T|)—a—,8—»y’

|8“58582m2(§,n,7)| < (1 + )¢+ |77|% n ‘Tﬁ)fafwfsy.



Using Euclidean convolution, let Tj[¢] = ¢ * K; so Ty o T3 is
convolution with a distribution K and

K(ga n, T) = m(ga n, T) = ml(év , T)m2(£a m, T)'
To estimate derivatives of m note that
. _ 1 1.
e gains (14 (€[ + 9]+ [7)~" or (L+[¢[+[nlz + |7]3) 7,

. - 2. _

Oy gains (1+ €]+ [n] + |7[) 7" or (L+ € +[n| + |7]5) 7",

Oy gains (14 (€] + [n] + [7) ™" or (14 (€ + [n]* + 7).
Using just the product formula, the best estimates for m are

1 1\ -«
0gogorm(&n,m)| S (1+ 1€+ [nl7 + |7]5)
2\ —p
(L+ 1l + [nl +|7]%)

(L+ 1€+l + 7))

How should one think about such estimates?



One possibility is to use the theory of flag kernels and multipliers.

|0gaform(e,n.m)| < (L + 1€+ n|% + |7]5) "
(L4 1] + [n| + |713) 7
(L+ 1€+l + 7))

then

e | 1= (el + D =P (€] + Il + 1),
0g 0,07m(§,m,7)| <

~

1 1\ _q 2\_g_|—
(el +[nl7 +[7|3)=*(nl + |715)F|7]77.
Thus m is a flag multiplier for two opposite flags

(0) € {(£0,00} < {(&m.0)} € {(&m.7)} =R?,
(0) € {(0,0,7)} € {(0,n,7)} € {(&m,7)} =R

If



The distribution K = K7 % K> is thus a flag kernel satisfying

2|7l + ) T P ]+ Jyl + 12D,
|8°‘8567K (x y,z)‘ <

~

(l] + [y +1215) 7 =2 (y| + 2]5) 17|71
for the two opposite flags

(0) c {(LL',0,0)} C {(;v,y,O)} - {(1’7y,2)} = R37
(0) € {(0,0,2)} € {(0,,2)}  {(z,y,2)} = R°.



In the 2-step case on R™ x R, the differential inequalities
0207 K (e, )] 5 (] + 1) " (I 4+ Je])
are equivalent to the pair of flag inequalities
=1 (2 4 1) 17 and

020) K (x,t)| <
(|| + [¢]) e g =18

However in step 3, the two-flag kernel inequalities from the last slide,

2= (2 + )™ P (] + fyl + =)~
<

| ~

02001 K (x,, 2)
(] + [yl= + |215) 7 == (ly| + [213) 710|217
seem to give no information when z = z = 0.

These flag estimates, together with the flag cancellation
conditions, do imply that K is singular only at the origin.



A second possible way of thinking about the inequalities

|02a2arm(e,n,m)| S (L + 1€+ [n|% + |7]5) ™"
(14 1]+ [n] + |713) 7
(L+ 1€+ [+ 7))

is to observe that the &, i, and 7 derivatives are controlled by
different norms and hence different families of dilations:
-~ 1 1
e +—  Ni&n,7) =[]+ |z + 7[5
Oy <+ No(&mm) =[]+l +]7]3
Oy < N3(&n7) =&+ In|+|7|



The class P(E)

We introduce a class P(E) of distributions on R™ singular only at the
origin and depending on an n x n matrix E. We study:

A. Properties of distributions K € P(E)

Significance of the rank of E
Characterization using the Fourier transform
Marked partitions

Characterizations via dyadic decompositions
Two-flag kernels

R0 Te

B. Convolution operators Tk = ¢ * K on a homogeneous nilpotent
groups
a. Continuity on LP(G)
b. P(E) is an algebra
c. Composition of Calderén-Zygmund kernels with different
homogeneities



Let
1 e(1,2) e(1,3) -+ e(l
2,1) 1 e(2,3) --- e(2,
3,1) e(3,2) 1 (2

e(
E= |
e(n,1) e(n,2) e(n,3) --- 1
be an n X n matrix satisfying the basic hypotheses:
(j.k) >0 for all 1 < j,k < n,

(J,7) =1 forall 1 <j <nmn,
e(4,1) < e(j, k)e(k,1) forall 1< j k,1<n.

o

o

Recall that the automorphic dilations on the group G are given by

M1, .. xp) = (ADzy, .. Ny,).



For 1 <j<nlet
Nj(fﬂl, - 7I’n) = |x1|8(j,1)/d1 4+ |xn|€(j,n)/dn,

Each N; is a homogeneous norm for a family of dilations on R™:

d dp
Ny(ATGD @y, .. AT 2,) = AN(z1, ..., ).

P(E) is a class of tempered distributions, depending on the matrix E
and smooth away from the origin on R", defined in terms of
differential inequalities and cancellation conditions.



Differential inequalities:

If K € P(E) then away from the origin K is given by a smooth

function and for each multi-index & = (avq, ..., )
|6°‘K(x1, . 73:n)| < Cq H Ni(zq,... ,xn)fdj(HO‘j)
j=1
where

Nj(.Tl, . ,J}n) = |$1|e(j’1)/d1 + o4+ |xn|€(j7n)/dn.
Note that
dy dn
Nj ()\E(j’1> Tlyeen, )\E(j”‘>$n) = )\N(%h A ,LL’n)

so N; is a homogeneous norm for the family of dilations on R™ given
by
_d1 _dn__
A (@1, @) = (A0 @y, .., ATGD 1, ).
Derivatives of K with respect to the variable x; are controlled by the
norm Nj.



Cancellation Conditions:

These are defined in terms of the action of the distribution K on
dilates of normalized bump functions. Let 0 < m < n —1 and let ¥ be
any normalized bump function of n — m variables. There are two
requirements:

o If R=(Rm41,...,Ry) and each R; > 0 set
YR(Tmt1s- oy Tn) = V(Rmt1Tmatls - - - RnZn).
Define a tempered distribution Kﬁ on R™ by setting
<K§,<p> = (K,o®v¢R) for all ¢ € S(R™).
Away from the origin K g is given by a smooth function and

|01 9% K (21, ..., )|

é Ca HNj(iL’l,...,xm,o,...,O)iaj(lJraj)
j=1

with Cy independent of ¢ and R.

e The same holds for any permutation of the variables z1,...,z,.



The rank of E

Let E be an n X n satisfying the basic hypotheses.
Lemma

(a) Rank(E) =1 if and only if there is a dilation structure on R™ for
which P(E) is the space of Calderdn-Zygmund kernels.

(b) If rank(E) > 1 and K € P(E) then K is integrable at infinity.
(c) Suppose the rank of E is m. If K € P(E) then for A > 1

Hx eR": |K(x)| > AH < A" log(\)™ 1,
Moreover there exists K € P(E) so that

Hx eR": |K(x)| > /\H > A~Llog(A)™L.



Characterization via the Fourier transform
For rank(E) > 1 only the local behavior is important. Set

Po(E) = {K € P(E) : K is rapidly decreasing outside the unit ball}.

Such distributions can be characterized by the behavior of their
Fourier transform K. Recall that

Nj(x) = |1 [¢0D/ D o g, |0/ A ) < <,
The dual norms are then given by
N;(&) = |ea /e g [/ 1< <.

Put

Mo (B) = {me @) s |orm(©)] < Ca J] (14 F(6) "},

Theorem ~
K € Py(E) if and only if K = m € My (E).



Marked Partitions

The analysis of distributions K € Py(E) relies on a partition of the
unit ball B(1) C R™ into regions where one summand is dominant in
each norm N, (x). Similarly the analysis of m € Mo (E) depends on a
partition of R™ \ B(1) into regions where one term in each dual norm

N (&) is dominant.

For example, on the unit ball, the principal region S; is the set where
for 1 < j < n the term |z;|°U)/4 = |z;|*/% is dominant in
Nj(x) = Yy |zx*0®) Vi

So=49x€BQ) : |zx e(d:k)/d < x; Vs for all j,k}.
J

Note that if x € Sy then N;(x) = |x;|'/%. On this region, the
differential inequalities for K € Py(E) simplify:

%K (x1,....20)| S T Nj(a, ... 2p) B0 F) & |z |~ (Fa),
j
j=1

On the subset S, the differential inequalities for K are exactly
the same as the differential inequalities for a product kernel.



The following simple observation is a key to the study of other regions.

Lemma
Suppose x € B(1) and suppose the term |xy|°U*)/% is dominant in
the norm N;(x). Then |zy|*FR)/de = |z |V 4% s dominant in Ny (x).

Proof.

Since |z |*U#)/ is dominant in the norm N;(x),
P I (VS e
According to the basic hypothesis,
e(l,k) < e(l,j)e(s, k)
for any 1 < j, k,I <n. Then since |z;| < 1,

|xk|1/dk > |$l|€(l,k)/€(j,k)dl
> |y |eb)elR) /el k)du

= |y e/,



A marked partition S of {1,...,n} is a collection of disjoint subsets
I,...,Is C {1,...,n} whose union is all of {1,...,n}, together with a
‘marked’ element k,. € I, 1 <r < s. Write

S = ((Ilakl)a AR (Is,‘vks))'

The decomposition of B(1) is parameterized by marked partitions.
For x € B(1) outside a set of measure zero, there is exactly one
dominant term in each norm N;(x). Let k1,..., ks be the distinct
integers which arise as subscripts of these dominant terms. Let

I. = {] e {1,...,n} : |z, [UF)/ 4 s dominant in Nj(x)}7 1<r<s.
The subsets I1,..., I are disjoint, Iy U---U Iy = {1,...,n}, and by

the Lemma, k. € I,.. Thus S = ((Il,kl), cee (Is,ks)) is a marked
partition.



Characterization of P(E) via dyadic decompositions
Let ¢ € C°(R™).

» ¢ has strong cancellation if / O(X1y ooy Thy ooy Tp) day, = 0 for
R
1<k<n.
> [p]r(x) =27 Zk=a (270 L 27, ) i T = (i, ..., in) € 2
Set

I'4(E) = {(il,...,in) €7 e(j, k)ir <ij <0 forall 1 <j k< n}

Lemma
Let {p' : I e D(E)} C C°(R™) be a family of normalized bump
functions. Assume that each o' has strong cancellation. Then

IET(E)

converges in the sense of distributions to an element of Po(E).



The formulation of the converse assertion uses the decomposition of
R" based on marked partitions. Let S = ((I1,k1), ..., (s, ks)) be a
marked partition. Write

R*=R“@--- @R and (z1,...,2,) = (Z1,...,Ts)

where R is the set of variables z; € R™ with j € I,.. Then
» There is an s X s matrix Eg satisfying the basic hypotheses.
» There is a space of distributions P(Eg) C P(E).

» There is a cone
Fz(Es) = {(il,. .. ,in) ez Gs(j, k)lk < ij < O}

If K € P(E) then
K =40+ Ks
S

where ¢y € S(R") and Kg € P(Eg). Moreover



The Basic Hypotheses

If the principal region is not empty, then there exists (x1,...,x,)
with each |z;| < 1 so that

L e(4,k) e(k,0) ; d(j,k)e(k,0)
|5 > o] e > (e ) UY =T (1)
But since x € Sp, '
5] > Jazg| 0. (2)

Unless the inequalities defining Sy are ‘self-improving’, inequality (2)
should imply (1), and so

|2¢]¢00) > || @ RIRO)
Since |z <1 it follows that

e(4,0) <e(j,k)e(k,?).



The basic hypotheses also arise as follows. Let F = { £, k)} be any
n X n matrix with positive entries, and let

I'(F) = {(tl,...,tn) ER™: f(j, )ty <t; < 0forall 1 < jk < n}

Lemma
IfT(F) # 0 there exists a unique n x n matriz B = {e(j, k)} with
positive entries such that

and such that the entries of E satisfy

e(j,j) =1 1<j<mn,
e(j,l) < e(G,Re(k,l) 1 <jkl<n.

Moreover, e(j, k) < f(j,k).



Two-flag kernels

Consider a distribution K which is a flag kernel relative to two
opposite flags with dilations

Aa(x) = (Azq, ..., A%z,
(%) = (A2, .. A0,

Then K satisfies appropriate cancellation conditions and the following
differential inequalities:

|0%K (x)|
7170(]‘
N P R 1)
<

-1
I, (\mj| | [P0 e gy |/ |xn|bj/bn>

Note that the differential inequalities
give no information if 1 =z, =0 and n > 3.



Theorem
Suppose that &+ < 92 < ... < do ith at least one strict inequality.
by bo bn

(a) The function K is integrable at infinity, and we can write
K = Ko + Ko where Ko, € LY(RY)NC®(RY), and Ky is a
two-flag kernel supported in B(1).

(b) The kernel K¢ belongs to the class Po(E) associated to the matriz

1 b1/bs bi/bs -+ bi/bp_1 bi/b, ]
ag/al 1 bg/bg bg/bn_l bg/bn
a3/a1 a3/a2 1 bg/bn,1 b&/bn

E= . . . . . .
an-1/a1 an—1/az an—1/az --- 1 bp_1/bn
| an/a an/as an/as - Gp/ap_1 ]




Convolution on groups

When studying convolution on general homogeneous nilpotent Lie
groups, we need to impose an additional condition on the matrix
E= {e(j, k)} called double monotonicity: each row is weakly
increasing from left to right and each column is weakly decreasing
from top to bottom. Explicitly

e(j,k) <e(jk+1) and e(j,k) = e(j+ 1,k).

Lemma
Suppose E is doubly monotone, and let I = (iy,...,i,) € Tz(E),

J=01,--,Jn) €ETz(E). If p,¢ are normalized bump functions, then

[elr * [¥]s = [0]x

where

(a) 6 is a normalized bump function;

(b) K =(k1,...,k,) € T(E) and ky, = max{inm, jm}-



Convolution operators are bounded on L?

Theorem

Let G 2 R"™ be a homogeneous nilpotent Lie group and let E be a
doubly monotone matriz. If K € Py(E) then the operator

Trxe = ¢ K, defined initially on the Schwartz space S(R™), extends
uniquely to a bounded operator on LP(G) for 1 < p < oo.

In fact, every kernel K € P(E) is a flag kernel on an appropriate flag.



P(E) is an algebra under convolution

Theorem

Let G =2 R"™ be a homogeneous nilpotent Lie group and let E be a
doubly monotone matriz. If K, L € Po(E) then there exists

M € Py(E) such that T o T = Th.

The proof is quite technical and uses the dyadic decomposition of
kernels. If S and T' are marked partitions, one studies

oo Wlhix > Wl

IET(Es) JET(Er



Composition of Calderén-Zygmund kernels

Let K, Ky be Calderén-Zygmund kernels associated with the
dilations

Aa(x) = (/\‘“xl, A /\a"a:n) Ap(x) = (/\blxl, o )\b"a:n).

Assume that ap > agy1 and by > by1.

Theorem
Let E = {e(j, k)} where

e(j, k) = max{Z—i, l%}

The operator Tk, o Tk, is given by convolution with a tempered
distribution L with L € P(E).
Final Remarks:

1. For appropriate a and b the rank of E can be as large as n.

2. However L = Z?;ll L; where L; € P(E;) and E; has rank 2.



