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Calderón-Zygmund kernels

A Calderón-Zygmund kernel on Rn associated with the dilations

λa(x) = λa(x1, . . . , xn) = (λa1x1, . . . , λ
anxn)

is a tempered distribution K on Rn with the following properties.

1. K is given away from the origin by integration against a smooth
function.

2. For every multi-index α = (α1, . . . , αn) ∈ Nn and all x 6= 0∣∣∂αK(x)
∣∣ ≤ Cα

(
|x1|

1
a1 + · · ·+ |xn|

1
an

)−Qa−
∑n
j=1 ajαj

where Qa = a1 + · · ·+ an is the homogeneous dimension.

3. K satisfies appropriate cancellation conditions so that in particular
the Fourier transform K̂ = m is a bounded function.

K will often have compact support or
have rapid decay outside the unit ball.



Homogeneous nilpotent Lie groups

G denotes a homogeneous nilpotent Lie group with underlying
manifold Rn and automorphic dilations

λd(x1, . . . , xn) =
(
λd1x1, . . . , λ

dnxn
)

with d1 ≤ d2 ≤ · · · ≤ dn. For x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ G

x · y =
(
x1 + y1, x2 + y2 +M2(x,y), . . . , xn + yn +Mn(x,y)

)
where Mj(x,y) is a polynomial vanishing if x = 0 or y = 0 and

Mj

(
λd(x), λd(y)

)
= λdjMj(x,y).

Convolution on G is given by

f ∗ g(x) =

∫
Rn
f(x · y−1)g(y) dy =

∫
Rn
f(y)g(y−1 · x) dy.



Example: The Heisenberg group

The m-dimensional Heisenberg group Hm has underlying space
Rm × Rm × R with automorphic dilations

λ1,1,2(x,y, t) =
(
λx, λy, λ2t

)
and group multiplication

(x1,y1, t1) · (x2,y2, t2)

=
(
x1 + x2,y1 + y2, t1 + t2 − 2〈x1,y2〉+ 2〈x2,y1〉

)
where 〈x,y〉 is the Euclidean inner product. If

Xj = ∂xj + 2yj∂t, Yj = ∂yj − 2xj∂t, T = ∂t,

then
{X1, . . . , Xn, Y1, . . . , Yn, T}

is a basis for the left-invariant vector fields on Hn.



The problem

Consider two different dilation structures on G given by

λa(x1, . . . , xn) = (λa1d1x1, . . . , λ
andnxn) with a1 ≥ a2 ≥ · · · ≥ an,

λb(x1, . . . , xn) = (λb1d1x1, . . . , λ
bndnxn) with b1 ≥ b2 ≥ · · · ≥ bn.

Let Ka and Kb be Calderón-Zygmund kernels on Rn with compact
support associated with these dilations. For ϕ ∈ S(Rn) set

Ta[ϕ] = ϕ ∗Ka and Tb[ϕ] = ϕ ∗Kb.

I What are the mapping properties of the operator Ta ◦ Tb
on various function spaces?

I What can be said about size and cancellation properties
of the Schwartz kernel of Ta ◦ Tb?

I Are there reasonably small algebras of convolution
operators containing Calderón-Zygmund kernels
associated to both dilations?



Background and Motivation

• Let Ω ⊂ Cn+1 be a strictly pseudoconvex domain and let

� = ∂̄∂̄∗ + ∂̄∗∂̄ : L2
(0,1)(Ω)→ L2

(0,1)(Ω).

Given f ∈ C∞(0,1)(Ω), the ∂̄-Neumann problem is to solve

�u = f on Ω

u ∂̄ρ = 0 on ∂Ω

∂̄u ∂̄ρ = 0 on ∂Ω.

Greiner and Stein (1977) constructed a parametrix for this
boundary value problem which involves the composition of two
kinds of operators:

I operators of elliptic type coming from Poisson integrals and the
Green’s function for � (which is essentially the Laplacian);

I operators of non-isotropic type coming from inverting the
sub-Laplacian L = −

∑n
j=1(X2

j + Y 2
j ) on the Heisenberg group Hn.



• Phong and Stein (1982) studied compositions of convolution
operators on Rd × R

TE [ϕ] = ϕ ∗KE and TH [ϕ] = ϕ ∗KH

where ∗ is either Euclidean or Heisenberg convolution, and KE and
KH are Calderón-Zygmund kernels on Rd × R associated with the
two different dilations:

λE(x, t) = (λx, λt) and λH(x, t) = (λx, λ2t).

The local (near 0) and the global (near infinity) behavior of
compositions TE ◦ TH or TH ◦ TE are different. Phong and Stein
established:

I necessary and sufficient conditions for the compositions of such
operators to be of weak-type (1,1);

I boundedness of the composition on non-isotropic Lipschitz spaces.



• On the Heisenberg group Hn, T = ∂t and the sub-Laplacian is

L = −
n∑
j=1

(X2
j + Y 2

j ).

Müller, Ricci, and Stein (1995) studied general functions of L and
T , and in particular established Marcinkiewicz-type theorems for
multiplier operators m(L, T ) where∣∣∂αξ ∂βτm(ξ, τ)

∣∣ . |ξ|−α|τ |−β .
I Such multiplier operators are bounded on Lp(Hn) for 1 < p <∞.

I The corresponding kernels satisfied differential inequalities∣∣∂α
z ∂βt K(z, t)

∣∣ . |z|−2n−|α|(|z|2 + |t|)−1−β .

This last estimate reflects the multi-parameter structure
but is stronger than a product estimate.



• A flag kernel associated with the dilations

λa(x) = (λa1x1, . . . , λ
anxn)

is a tempered distribution K with appropriate cancellation and
singularities on an increasing sequence of subspaces:∣∣∂αK(x)

∣∣ . (|x1|
1
a1

)−a1(1+α1)(|x1|
1
a1 + |x2|

1
a2

)−a2(1+α2) · · ·

=

n∏
j=1

(
|x1|

1
a1 + |x2|

1
a2 + · · ·+ |xj−1|

1
aj−1 + |xj |

1
aj

)−aj(1+αj)

.

I N., Ricci, Stein (2001) studied such operators when they arise in the
study of the Bergman projection in tube domains over polyhedral
cones and in solving �b on certain quadratic submanifolds having
the structure of step-2 nilpotent Lie groups.

I N., Ricci, Stein, Wainger (2012) and G lowacki (2010), (2013)
extended this theory to homogeneous nilpotent Lie groups G of
higher step, established boundedness in Lp(G) for 1 < p <∞, and
showed that such operators form an algebra under convolution.



A Step 3 Example

Let K1 and K2 be Calderón-Zygmund kernels with compact support
associated with the dilations

λ1(ξ, η, τ) = (λξ, λη, λτ) and λ2(ξ, η, τ) = (λξ, λ2η, λ3τ).

Thus ∣∣∂αx ∂βy ∂γzK1(x, y, z)
∣∣ . (|x|+ |y|+ |z|)−α−β−γ ,

∣∣∂αx ∂βy ∂γzK2(x, y, z)
∣∣ . (|x|+ |y| 12 + |z| 13

)−α−2β−3γ
.

The Fourier transforms m1 = K̂1 and m2 = K̂2 are smooth bounded
functions satisfying the differential inequalities∣∣∂αξ∂βη ∂γτm1(ξ, η, τ)

∣∣ . (1 + |ξ|+ |η|+ |τ |
)−α−β−γ

,

∣∣∂αξ∂βη ∂γτm2(ξ, η, τ)
∣∣ . (1 + |ξ|+ |η| 12 + |τ | 13

)−α−2β−3γ
.



Using Euclidean convolution, let Tj [ϕ] = ϕ ∗Kj so T1 ◦ T2 is
convolution with a distribution K and

K̂(ξ, η, τ) = m(ξ, η, τ) = m1(ξ, η, τ)m2(ξ, η, τ).

To estimate derivatives of m note that

∂ξ gains (1 + |ξ|+ |η|+ |τ |)−1 or (1 + |ξ|+ |η| 12 + |τ | 13 )−1,

∂η gains (1 + |ξ|+ |η|+ |τ |)−1 or (1 + |ξ|2 + |η|+ |τ | 23 )−1,

∂τ gains (1 + |ξ|+ |η|+ |τ |)−1 or (1 + |ξ|3 + |η| 32 + |τ |)−1.

Using just the product formula, the best estimates for m are∣∣∂αξ ∂βη ∂γτm(ξ, η, τ)
∣∣ . (1 + |ξ|+ |η| 12 + |τ | 13

)−α(
1 + |ξ|+ |η|+ |τ | 23

)−β(
1 + |ξ|+ |η|+ |τ |

)−γ
.

How should one think about such estimates?



One possibility is to use the theory of flag kernels and multipliers. If∣∣∂αξ ∂βη ∂γτm(ξ, η, τ)
∣∣ . (1 + |ξ|+ |η| 12 + |τ | 13

)−α(
1 + |ξ|+ |η|+ |τ | 23

)−β(
1 + |ξ|+ |η|+ |τ |

)−γ
then

∣∣∂αξ ∂βη ∂γτm(ξ, η, τ)
∣∣ .


|ξ|−α(|ξ|+ |η|)−β(|ξ|+ |η|+ |τ |)−γ ,

(|ξ|+ |η| 12 + |τ | 13 )−α(|η|+ |τ | 23 )−β |τ |−γ .

Thus m is a flag multiplier for two opposite flags

(0) ⊂ {(ξ, 0, 0)} ⊂ {(ξ, η, 0)} ⊂ {(ξ, η, τ)} = R3,

(0) ⊂ {(0, 0, τ)} ⊂ {(0, η, τ)} ⊂ {(ξ, η, τ)} = R3.



The distribution K = K1 ∗K2 is thus a flag kernel satisfying

∣∣∂αx ∂βy ∂γzK(x, y, z)
∣∣ .


|x|−1−α(|x|+ |y|)−1−β(|x|+ |y|+ |z|)−1−γ ,

(|x|+ |y| 12 + |z| 13 )−1−α(|y|+ |z| 23 )−1−β |z|−1−γ .

for the two opposite flags

(0) ⊂ {(x, 0, 0)} ⊂ {(x, y, 0)} ⊂ {(x, y, z)} = R3,

(0) ⊂ {(0, 0, z)} ⊂ {(0, y, z)} ⊂ {(x, y, z)} = R3.



In the 2-step case on Rn × R, the differential inequalities∣∣∂αx ∂βt K(x, t)
∣∣ . (|x|+ |t|)−n−|α|(|x|2 + |t|

)−1−β

are equivalent to the pair of flag inequalities

∣∣∂αx ∂βt K(x, t)
∣∣ .


|x|−n−|α|(|x|2 + |t|)−1−β and

(|x|+ |t|)−n−|α||t|−1−β

However in step 3, the two-flag kernel inequalities from the last slide,

∣∣∂αx ∂βy ∂γzK(x, y, z)
∣∣ .


|x|−1−α(|x|+ |y|)−1−β(|x|+ |y|+ |z|)−1−γ

(|x|+ |y| 12 + |z| 13 )−1−α(|y|+ |z| 23 )−1−β |z|−1−γ
,

seem to give no information when x = z = 0.

These flag estimates, together with the flag cancellation
conditions, do imply that K is singular only at the origin.



A second possible way of thinking about the inequalities∣∣∂αξ ∂βη ∂γτm(ξ, η, τ)
∣∣ . (1 + |ξ|+ |η| 12 + |τ | 13

)−α(
1 + |ξ|+ |η|+ |τ | 23

)−β(
1 + |ξ|+ |η|+ |τ |

)−γ
is to observe that the ξ, η, and τ derivatives are controlled by
different norms and hence different families of dilations:

∂ξ ←→ N̂1(ξ, η, τ) = |ξ|+ |η| 12 + |τ | 13

∂η ←→ N̂2(ξ, η, τ) = |ξ|+ |η|+ |τ | 23

∂η ←→ N̂3(ξ, η, τ) = |ξ|+ |η|+ |τ |



The class P(E)

We introduce a class P(E) of distributions on Rn singular only at the
origin and depending on an n× n matrix E. We study:

A. Properties of distributions K ∈ P(E)

a. Significance of the rank of E
b. Characterization using the Fourier transform
c. Marked partitions
d. Characterizations via dyadic decompositions
e. Two-flag kernels

B. Convolution operators TKϕ = ϕ ∗K on a homogeneous nilpotent
groups

a. Continuity on Lp(G)
b. P(E) is an algebra
c. Composition of Calderón-Zygmund kernels with different

homogeneities



Let

E =


1 e(1, 2) e(1, 3) · · · e(1, n)

e(2, 1) 1 e(2, 3) · · · e(2, n)
e(3, 1) e(3, 2) 1 · · · e(2, n)

...
...

...
. . .

...
e(n, 1) e(n, 2) e(n, 3) · · · 1


be an n× n matrix satisfying the basic hypotheses:

e(j, k) > 0 for all 1 ≤ j, k ≤ n,
e(j, j) = 1 for all 1 ≤ j ≤ n,
e(j, l) ≤ e(j, k)e(k, l) for all 1 ≤ j, k, l ≤ n.

Recall that the automorphic dilations on the group G are given by

λd(x1, . . . , xn) = (λd1x1, . . . , λ
dnxn).



For 1 ≤ j ≤ n let

Nj(x1, . . . , xn) = |x1|e(j,1)/d1 + · · ·+ |xn|e(j,n)/dn ,

Each Nj is a homogeneous norm for a family of dilations on Rn:

Nj
(
λ

d1
e(j,1)x1, . . . , λ

dn
e(j,n)xn

)
= λN(x1, . . . , xn).

P(E) is a class of tempered distributions, depending on the matrix E
and smooth away from the origin on Rn, defined in terms of
differential inequalities and cancellation conditions.



Differential inequalities:

If K ∈ P(E) then away from the origin K is given by a smooth
function and for each multi-index α = (α1, . . . , αn)

∣∣∂αK(x1, . . . , xn)
∣∣ ≤ Cα

n∏
j=1

Nj(x1, . . . , xn)−dj(1+αj)

where

Nj(x1, . . . , xn) = |x1|e(j,1)/d1 + · · ·+ |xn|e(j,n)/dn .

Note that

Nj
(
λ

d1
e(j,1)x1, . . . , λ

dn
e(j,n)xn

)
= λN(x1, . . . , xn)

so Nj is a homogeneous norm for the family of dilations on Rn given
by

λ ·j (x1, . . . , xn) =
(
λ

d1
e(j,1)x1, . . . , λ

dn
e(j,n)xn

)
.

Derivatives of K with respect to the variable xj are controlled by the
norm Nj .



Cancellation Conditions:

These are defined in terms of the action of the distribution K on
dilates of normalized bump functions. Let 0 ≤ m ≤ n− 1 and let ψ be
any normalized bump function of n−m variables. There are two
requirements:

• If R = (Rm+1, . . . , Rn) and each Rj > 0 set

ψR(xm+1, . . . , xn) = ψ(Rm+1xm+1, . . . , Rnxn).

Define a tempered distribution K#
R on Rm by setting〈

K#
R , ϕ

〉
=
〈
K,ϕ⊗ ψR

〉
for all ϕ ∈ S(Rm).

Away from the origin K#
R is given by a smooth function and∣∣∂α1

x1
· · · ∂αmxmK

#
R (x1, . . . , xm)

∣∣
≤ Cα

m∏
j=1

Nj(x1, . . . , xm, 0, . . . , 0)−aj(1+αj)

with Cα independent of ψ and R.

• The same holds for any permutation of the variables x1, . . . , xn.



The rank of E

Let E be an n× n satisfying the basic hypotheses.

Lemma

(a) Rank (E) = 1 if and only if there is a dilation structure on Rn for
which P(E) is the space of Calderón-Zygmund kernels.

(b) If rank (E) > 1 and K ∈ P(E) then K is integrable at infinity.

(c) Suppose the rank of E is m. If K ∈ P(E) then for λ ≥ 1∣∣∣{x ∈ Rn : |K(x)| > λ
}∣∣∣ . λ−1 log(λ)m−1.

Moreover there exists K ∈ P(E) so that∣∣∣{x ∈ Rn : |K(x)| > λ
}∣∣∣ & λ−1 log(λ)m−1.



Characterization via the Fourier transform
For rank(E) > 1 only the local behavior is important. Set

P0(E) =
{
K ∈ P(E) : K is rapidly decreasing outside the unit ball

}
.

Such distributions can be characterized by the behavior of their
Fourier transform K̂. Recall that

Nj(x) = |x1|e(j,1)/d1 + · · ·+ |xn|e(j,n)/dn , 1 ≤ j ≤ n.

The dual norms are then given by

N̂j(ξ) = |ξ1|1/e(1,j)d1 + · · ·+ |ξn|1/e(n,j)dn , 1 ≤ j ≤ n.

Put

M∞(E) =
{
m ∈ C∞(Rn) :

∣∣∂αm(ξ)
∣∣ ≤ Cα

n∏
j=1

(
1 + N̂j(ξ)

)−αjdj}
.

Theorem
K ∈ P0(E) if and only if K̂ = m ∈M∞(E).



Marked Partitions
The analysis of distributions K ∈ P0(E) relies on a partition of the
unit ball B(1) ⊂ Rn into regions where one summand is dominant in
each norm Nj(x). Similarly the analysis of m ∈M∞(E) depends on a
partition of Rn \ B(1) into regions where one term in each dual norm

N̂j(ξ) is dominant.

For example, on the unit ball, the principal region S0 is the set where
for 1 ≤ j ≤ n the term |xj |e(j,j)/dj = |xj |1/dj is dominant in
Nj(x) =

∑n
k=1 |xk|e(j,k)/dk :

S0 =
{

x ∈ B(1) : |xk|e(j,k)/dk ≤ |xj |1/dj for all j, k
}
.

Note that if x ∈ S0 then Nj(x) ≈ |xj |1/dj . On this region, the
differential inequalities for K ∈ P0(E) simplify:

∣∣∂αK(x1, . . . , xn)
∣∣ . n∏

j=1

Nj(x1, . . . , xn)−dj(1+αj) ≈
n∏
j=1

|xj |−(1+αj).

On the subset S0 the differential inequalities for K are exactly
the same as the differential inequalities for a product kernel.



The following simple observation is a key to the study of other regions.

Lemma
Suppose x ∈ B(1) and suppose the term |xk|e(j,k)/dk is dominant in
the norm Nj(x). Then |xk|e(k,k)/dk = |xk|1/dk is dominant in Nk(x).

Proof.
Since |xk|e(j,k)/dk is dominant in the norm Nj(x),

|xk|e(j,k)/dk ≥ |xl|e(l,k)/dl , 1 ≤ l ≤ n.

According to the basic hypothesis,

e(l, k) ≤ e(l, j)e(j, k)

for any 1 ≤ j, k, l ≤ n. Then since |xl| ≤ 1,

|xk|1/dk ≥ |xl|e(l,k)/e(j,k)dl

≥ |xl|e(l,j)e(j,k)/e(j,k)dl

= |xl|e(l,j)/dl .



A marked partition S of {1, . . . , n} is a collection of disjoint subsets
I1, . . . , Is ⊂ {1, . . . , n} whose union is all of {1, . . . , n}, together with a
‘marked’ element kr ∈ Ir, 1 ≤ r ≤ s. Write

S =
(
(I1, k1), . . . , (Is, ks)

)
.

The decomposition of B(1) is parameterized by marked partitions.
For x ∈ B(1) outside a set of measure zero, there is exactly one
dominant term in each norm Nj(x). Let k1, . . . , ks be the distinct
integers which arise as subscripts of these dominant terms. Let

Ir =
{
j ∈ {1, . . . , n} : |xkr |e(j,kr)/dkr is dominant in Nj(x)

}
, 1 ≤ r ≤ s.

The subsets I1, . . . , Is are disjoint, I1 ∪ · · · ∪ Is = {1, . . . , n}, and by
the Lemma, kr ∈ Ir. Thus S =

(
(I1, k1), . . . , (Is, ks)

)
is a marked

partition.



Characterization of P(E) via dyadic decompositions

Let ϕ ∈ C∞0 (Rn).

I ϕ has strong cancellation if

∫
R
ϕ(x1, . . . , xk, . . . , xn) dxk = 0 for

1 ≤ k ≤ n.

I [ϕ]I(x) = 2−
∑n
k=1 ikϕ(2−i1x1, . . . , 2

−inxn) if I = (i1, . . . , in) ∈ Zn.

Set

ΓZ(E) =
{

(i1, . . . , in) ∈ Zn : e(j, k)ik ≤ ij < 0 for all 1 ≤ j, k ≤ n
}
.

Lemma
Let

{
ϕI : I ∈ Γ(E)

}
⊂ C∞0 (Rn) be a family of normalized bump

functions. Assume that each ϕI has strong cancellation. Then

K(x) =
∑

I∈Γ(E)

[ϕI ]I(x)

converges in the sense of distributions to an element of P0(E).



The formulation of the converse assertion uses the decomposition of
Rn based on marked partitions. Let S =

(
(I1, k1), . . . , (Is, ks)

)
be a

marked partition. Write

Rn = RC1 ⊕ · · · ⊕ RCs and (x1, . . . , xn) = (x̄1, . . . , x̄s)

where RCr is the set of variables xj ∈ Rn with j ∈ Ir. Then

I There is an s× s matrix ES satisfying the basic hypotheses.

I There is a space of distributions P(ES) ⊂ P(E).

I There is a cone

ΓZ(ES) =
{

(i1, . . . , in) ∈ Zn : eS(j, k)ik ≤ ij < 0
}
.

If K ∈ P(E) then

K = ψ0 +
∑
S

KS

where ψ0 ∈ S(Rn) and KS ∈ P(ES). Moreover

KS(x) =
∑

I∈Γ(ES)

[ϕI ]I(x).



The Basic Hypotheses

If the principal region is not empty, then there exists (x1, . . . , xn)
with each |xj | < 1 so that

|xj |
1
dj ≥ |xk|

e(j,k)
dk ≥

(
|x`|

e(k,`)
d`

)e(j,k)
= |x`|

d(j,k)e(k,`)
d` . (1)

But since x ∈ S0,
|xj | ≥ |x`|e(j,`). (2)

Unless the inequalities defining S0 are ‘self-improving’, inequality (2)
should imply (1), and so

|x`|e(j,`) ≥ |x`|e(j,k)e(k,`).

Since |x`| ≤ 1 it follows that

e(j, `) ≤ e(j, k)e(k, `).



The basic hypotheses also arise as follows. Let F =
{
f(j, k)

}
be any

n× n matrix with positive entries, and let

Γ(F) =
{

(t1, . . . , tn) ∈ Rn : f(j, k)tk ≤ tj < 0 for all 1 ≤ j, k ≤ n
}
.

Lemma
If Γ(F) 6= ∅ there exists a unique n× n matrix E =

{
e(j, k)} with

positive entries such that

Γ(E) = Γ(F)

and such that the entries of E satisfy

e(j, j) = 1 1 ≤ j ≤ n,
e(j, l) ≤ e(j, k)e(k, l) 1 ≤ j, k, l ≤ n.

Moreover, e(j, k) ≤ f(j, k).



Two-flag kernels

Consider a distribution K which is a flag kernel relative to two
opposite flags with dilations

λa(x) = (λa1x1, . . . , λ
anxn),

λb(x) = (λb1x1, . . . , λ
bnxn).

Then K satisfies appropriate cancellation conditions and the following
differential inequalities:∣∣∂αK(x)

∣∣
.


∏n
j=1

(
|x1|aj/a1 + |x2|aj/a2 + · · ·+ |xj−1|aj/aj−1 + |xj |

)−1−αj

∏n
j=1

(
|xj |+ |xj+1|bj/bj+1 + · · ·+ |xn−1|bj/bn−1 + |xn|bj/bn

)−1−αj

Note that the differential inequalities
give no information if x1 = xn = 0 and n ≥ 3.



Theorem
Suppose that a1

b1
≤ a2

b2
≤ · · · ≤ an

bn
with at least one strict inequality.

(a) The function K is integrable at infinity, and we can write
K = K0 +K∞ where K∞ ∈ L1(RN ) ∩ C∞(RN ), and K0 is a
two-flag kernel supported in B(1).

(b) The kernel K0 belongs to the class P0(E) associated to the matrix

E =



1 b1/b2 b1/b3 · · · b1/bn−1 b1/bn
a2/a1 1 b2/b3 · · · b2/bn−1 b2/bn
a3/a1 a3/a2 1 · · · b3/bn−1 b3/bn

...
...

...
. . .

...
...

an−1/a1 an−1/a2 an−1/a3 · · · 1 bn−1/bn
an/a1 an/a2 an/a3 · · · an/an−1 1


.



Convolution on groups

When studying convolution on general homogeneous nilpotent Lie
groups, we need to impose an additional condition on the matrix
E =

{
e(j, k)

}
called double monotonicity: each row is weakly

increasing from left to right and each column is weakly decreasing
from top to bottom. Explicitly

e(j, k) ≤ e(j, k + 1) and e(j, k) ≥ e(j + 1, k).

Lemma
Suppose E is doubly monotone, and let I = (i1, . . . , in) ∈ ΓZ(E),
J = (j1, . . . , jn) ∈ ΓZ(E). If ϕ,ψ are normalized bump functions, then

[ϕ]I ∗ [ψ]J = [θ]K

where

(a) θ is a normalized bump function;

(b) K = (k1, . . . , kn) ∈ Γ(E) and km = max{im, jm}.



Convolution operators are bounded on Lp

Theorem
Let G ∼= Rn be a homogeneous nilpotent Lie group and let E be a
doubly monotone matrix. If K ∈ P0(E) then the operator
TKϕ = ϕ ∗K, defined initially on the Schwartz space S(Rn), extends
uniquely to a bounded operator on Lp(G) for 1 < p <∞.

In fact, every kernel K ∈ P(E) is a flag kernel on an appropriate flag.



P(E) is an algebra under convolution

Theorem
Let G ∼= Rn be a homogeneous nilpotent Lie group and let E be a
doubly monotone matrix. If K,L ∈ P0(E) then there exists
M∈ P0(E) such that TK ◦ TL = TM.

The proof is quite technical and uses the dyadic decomposition of
kernels. If S and T are marked partitions, one studies∑

I∈Γ(ES)

[ϕI ]I ∗
∑

J∈Γ(ET

[ψJ ]J .



Composition of Calderón-Zygmund kernels
Let Ka,Kb be Calderón-Zygmund kernels associated with the
dilations

λa(x) =
(
λa1x1, . . . , λ

anxn
)

λb(x) =
(
λb1x1, . . . , λ

bnxn
)
.

Assume that ak ≥ ak+1 and bk ≥ bk+1.

Theorem
Let E = {e(j, k)} where

e(j, k) = max
{aj
ak
,
bj
bk

}
.

The operator TK1 ◦ TK2 is given by convolution with a tempered
distribution L with L ∈ P(E).

Final Remarks:

1. For appropriate a and b the rank of E can be as large as n.

2. However L =
∑n−1
j=1 Lj where Lj ∈ P(Ej) and Ej has rank 2.


