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Maximal Radon transform

The maximal Radon transform is defined for x ∈ Rd by setting

MP∗ f (x) = sup
t>0

∣∣MPt f (x)
∣∣,

where
MPt f (x) =

1
|Bt|

∫
Bt

f (x− P(y))dy,

Bt = {y ∈ Rk : |y| < t} and

P(y) = (P1(y), . . . ,Pd(y))

is a polynomial mapping, i.e. Pj(y) is a real-valued polynomial on Rk.

I It is very well known that for every p > 1 there is a Cp > 0 such that

‖MP∗ f‖Lp(Rd) ≤ Cp‖f‖Lp(Rd)

for any f ∈ Lp(Rd).
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The Hardy–Littlewood maximal function

If k = d = 1 and P(y) = y thenMP∗ coincides with the Hardy–Littlewood
maximal functionM∗f (x) = supt>0 |Mtf (x)|, where

Mtf (x) =
1
2t

∫ t

−t
f (x− y)dy.

Their Lp(R) with p > 1 and weak type (1, 1) bounds are useful in proving
the Lebesgue differentiation theorem, i.e. for every f ∈ Lp(R) with p ≥ 1 we
have

lim
t→0
Mtf (x) = f (x)

almost everywhere on R.

The discrete counterpart ofM∗ can be defined as supN∈N |MN f (x)|, where

MN f (x) =
1
N

N−1∑
n=0

f (x− n).
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Birkhoff’s ergodic theorem

Let (X,B, µ) be a σ-finite measure space. Let T : X → X be an invertible
measure preserving transformation. Classical Birkhoff’s Theorem states that
for any f ∈ Lp(X, µ) with p ≥ 1, the averages

AN f (x) =
1
N

N−1∑
n=0

f (Tnx)

converge µ-almost everywhere on X.
For the proof one shows

I Lp boundedness (p>1) of a maximal function

‖sup
N∈N
|AN f |‖Lp . ‖f‖Lp ,

or weak type (1, 1) estimates at the endpoint. By the Calderón
transference principle it follows from the corresponding estimates for
the discrete Hardy–Littlewood maximal function.

I the convergence for a dense class.
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Convergence for a dense class

AN f (x) =
1
N

N−1∑
n=0

f (Tnx)

I I =
{

f ∈ L2 : f (Tx) = f (x)
}

. If f ∈ I then

AN f = f ,

µ-almost everywhere.
I B =

{
g(Tx)− g(x) : g ∈ L2 ∩ L∞

}
. If f ∈ B then

|AN f (x)| = 1
N

∣∣∣ N−1∑
n=0

g(Tn+1x)− g(Tnx)
∣∣∣ =

1
N
|g(TNx)− g(x)|.

I I ⊕ B is dense in L2.
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Variational seminorm

For any complex-valued functions (at : t > 0) and r ≥ 1 the variational
seminorm is

Vr(at : t > 0) = sup
t0<t1<...<tJ

tj>0

( J−1∑
j=0

|atj+1 − atj |r
)1/r

.

Observe that
I Vr(at : t > 0) <∞ implies (at : t > 0) is a Cauchy sequence.
I Moreover, we have

sup
t>0
|at| ≤ Vr(at : t > 0) + |at0 |

where t0 is an arbitrary element of (0,∞).
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Variational estimates in the continuous setup
Let Bt = {y ∈ Rk : |y| < t} and recall that

MPt f (x) =
1
|Bt|

∫
Bt

f (x− P(y))dy,

where P : Rk → Rd is a polynomial mapping.

Vr(MPt f (x) : t > 0) = sup
t0<t1<...<tJ

tj>0

( J−1∑
j=0

|MPtj+1
f (x)−MPtj f (x)|r

)1/r

.

Theorem (Jones, Seeger and Wright)
For every p ∈ (1,∞) and r ∈ (2,∞) there is Cp > 0 such that for all
f ∈ Lp

(
Rd
) ∥∥Vr

(
MPt f : t > 0

)∥∥
Lp ≤ Cp

r
r − 2

‖f‖Lp .

Moreover, the constant Cp is independent of coefficients of the polynomial
mapping P .



Variational estimates in the continuous setup
Let Bt = {y ∈ Rk : |y| < t} and recall that

MPt f (x) =
1
|Bt|

∫
Bt

f (x− P(y))dy,

where P : Rk → Rd is a polynomial mapping.

Vr(MPt f (x) : t > 0) = sup
t0<t1<...<tJ

tj>0

( J−1∑
j=0

|MPtj+1
f (x)−MPtj f (x)|r

)1/r

.

Theorem (Jones, Seeger and Wright)
For every p ∈ (1,∞) and r ∈ (2,∞) there is Cp > 0 such that for all
f ∈ Lp

(
Rd
) ∥∥Vr

(
MPt f : t > 0

)∥∥
Lp ≤ Cp

r
r − 2

‖f‖Lp .

Moreover, the constant Cp is independent of coefficients of the polynomial
mapping P .



Variational estimates in the continuous setup
Let Bt = {y ∈ Rk : |y| < t} and recall that

MPt f (x) =
1
|Bt|

∫
Bt

f (x− P(y))dy,

where P : Rk → Rd is a polynomial mapping.

Vr(MPt f (x) : t > 0) = sup
t0<t1<...<tJ

tj>0

( J−1∑
j=0

|MPtj+1
f (x)−MPtj f (x)|r

)1/r

.

Theorem (Jones, Seeger and Wright)
For every p ∈ (1,∞) and r ∈ (2,∞) there is Cp > 0 such that for all
f ∈ Lp

(
Rd
) ∥∥Vr

(
MPt f : t > 0

)∥∥
Lp ≤ Cp

r
r − 2

‖f‖Lp .

Moreover, the constant Cp is independent of coefficients of the polynomial
mapping P .



Bourgain’s ergodic theorem

In the mid 1980’s Bourgain extended Birkhoff’s ergodic theorem and
showed that for every f ∈ Lp(X, µ) with p > 1 there is a function
f ∗ ∈ Lp(X, µ) such that

lim
N→∞

AN f (x) = f ∗(x)

µ-almost everywhere on X for the averages

AP
N f (x) =

1
N

N∑
n=1

f (TP(n)x)

defined along any integer-valued polynomial P.



Pointwise convergence
Although, for Birkhoff’s averaging operator, it was not very difficult to find a
dense class of functions (say on L2(X, µ)) for which pointwise convergence
holds, for Bourgain’s averaging operator

AP
N f (x) =

1
N

N∑
n=1

f (TP(n)x)

along the polynomials P of degree > 1, it is a hard problem. Even for
P(n) = n2, since (n + 1)2 − n2 = 2n + 1.

For overcoming the lack of dense class, Bourgain showed
I Lp boundedness of the maximal function,
I Given a lacunary sequence (Nj : j ∈ N), for each J > 0 there is C > 0

such that ( J∑
j=0

∥∥ sup
N∈[Nj,Nj+1)

∣∣AP
N f − AP

Nj
f
∣∣∥∥2

L2

)1/2
≤ CJc‖f‖L2

for some c < 1/2.
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Oscillation seminorm vs variation seminorm
Given a lacunary sequence (Nj : j ∈ N), the oscillation seminorm for a
sequence

(
an(x) : n ∈ N

)
of complex-valued functions is defined by

OJ
(
an(x) : n ∈ N

)
=
( J∑

j=1

sup
Nj≤n<Nj+1

∣∣an(x)− aNj(x)
∣∣2)1/2

.

Bourgain’s oscillation inequality
There are constants C > 0 and c < 1/2 such that for all J ∈ N∥∥OJ

(
AP

N f : N ∈ N
)∥∥

L2 ≤ CJc‖f‖L2 .

For any r > 2 by Hölder’s inequality we have

OJ
(
an(x) : n ∈ N

)
≤ J1/2−1/rVr

(
an(x) : n ∈ N

)
.

where

Vr(an(x) : n ∈ N) = sup
k0<k1<...<kJ

kj∈N

( J−1∑
j=0

|akj+1(x)− akj(x)|r
)1/r

.



Oscillation seminorm vs variation seminorm
Given a lacunary sequence (Nj : j ∈ N), the oscillation seminorm for a
sequence

(
an(x) : n ∈ N

)
of complex-valued functions is defined by

OJ
(
an(x) : n ∈ N

)
=
( J∑

j=1

sup
Nj≤n<Nj+1

∣∣an(x)− aNj(x)
∣∣2)1/2

.

Bourgain’s oscillation inequality
There are constants C > 0 and c < 1/2 such that for all J ∈ N∥∥OJ

(
AP

N f : N ∈ N
)∥∥

L2 ≤ CJc‖f‖L2 .

For any r > 2 by Hölder’s inequality we have

OJ
(
an(x) : n ∈ N

)
≤ J1/2−1/rVr

(
an(x) : n ∈ N

)
.

where

Vr(an(x) : n ∈ N) = sup
k0<k1<...<kJ

kj∈N

( J−1∑
j=0

|akj+1(x)− akj(x)|r
)1/r

.



Oscillation seminorm vs variation seminorm
Given a lacunary sequence (Nj : j ∈ N), the oscillation seminorm for a
sequence

(
an(x) : n ∈ N

)
of complex-valued functions is defined by

OJ
(
an(x) : n ∈ N

)
=
( J∑

j=1

sup
Nj≤n<Nj+1

∣∣an(x)− aNj(x)
∣∣2)1/2

.

Bourgain’s oscillation inequality
There are constants C > 0 and c < 1/2 such that for all J ∈ N∥∥OJ

(
AP

N f : N ∈ N
)∥∥

L2 ≤ CJc‖f‖L2 .

For any r > 2 by Hölder’s inequality we have

OJ
(
an(x) : n ∈ N

)
≤ J1/2−1/rVr

(
an(x) : n ∈ N

)
.

where

Vr(an(x) : n ∈ N) = sup
k0<k1<...<kJ

kj∈N

( J−1∑
j=0

|akj+1(x)− akj(x)|r
)1/r

.



Oscillation seminorm vs variation seminorm
Given a lacunary sequence (Nj : j ∈ N), the oscillation seminorm for a
sequence

(
an(x) : n ∈ N

)
of complex-valued functions is defined by

OJ
(
an(x) : n ∈ N

)
=
( J∑

j=1

sup
Nj≤n<Nj+1

∣∣an(x)− aNj(x)
∣∣2)1/2

.

Bourgain’s oscillation inequality
There are constants C > 0 and c < 1/2 such that for all J ∈ N∥∥OJ

(
AP

N f : N ∈ N
)∥∥

L2 ≤ CJc‖f‖L2 .

For any r > 2 by Hölder’s inequality we have

OJ
(
an(x) : n ∈ N

)
≤ J1/2−1/rVr

(
an(x) : n ∈ N

)
.

where

Vr(an(x) : n ∈ N) = sup
k0<k1<...<kJ

kj∈N

( J−1∑
j=0

|akj+1(x)− akj(x)|r
)1/r

.



Bourgain’s strategy

I In the discrete settings Bourgain used the circle method of Hardy and
Littlewood to provide `p(Z) estimates. The method arising from
analytic number theory which allows us to obtain the asymptotic
formula for the number of solutions in the Waring problem

nk
1 + . . .+ nk

d = N.

I Bourgain’s method was a breakthrough shedding new light on various
discrete analogues in harmonic analysis, but his `p(Z) theory does not
fall into the Littlewood–Paley paradigm.

I Is it possible to build up an appropriate Littlewood–Paley theory in the
discrete setup which would allow us to deal with `p(Z) boundedness of
discrete operators of Radon type?
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Variational estimates in the discrete setup

Let P = (P1, . . . ,Pd) : Zk → Zd be a polynomial mapping. Define Radon
averages

MPN f (x) = N−k
∑

y∈[1,N]k∩Nk

f
(
x− P(y)

)
.

Theorem (M., E.M. Stein and B. Trojan)
For every p ∈ (1,∞) and r ∈ (2,∞) there is Cp > 0 such that for all
f ∈ `p

(
Zd
) ∥∥Vr

(
MPN f : N ∈ N

)∥∥
`p ≤ Cp

r
r − 2

‖f‖`p .

Moreover, the constant Cp is independent of coefficients of the polynomial
mapping P .
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Variational estimates for truncated Radon transform
Suppose that K ∈ C1

(
Rk \ {0}

)
is a Calderón–Zygmund kernel obeying

|y|k|K(y)|+ |y|k+1|∇K(y)| ≤ 1

for all y ∈ Rk \ {0} and a cancellation condition∫
λ1≤|y|≤λ2

K(y)dy = 0

for all λ1 < λ2. Define truncated Radon transform

TPN f (x) =
∑

y∈BN\{0}

f
(
x− P(y)

)
K(y)

where BN = {x ∈ Rk : |x| ≤ N} ∩ Zk.

Theorem (M., E.M. Stein and B. Trojan)
For every 1 < p <∞ and r > 2 there is Cp > 0 such that for all f ∈ `p

(
Zd
)

∥∥Vr
(
TPN f : N ∈ N

)∥∥
`p ≤ Cp

r
r − 2

‖f‖`p .

Moreover, the constant Cp is independent of coefficients of the polynomial
mapping P .
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Moreover, the constant Cp is independent of coefficients of the polynomial
mapping P .
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Ionescu and Wainger result

Our result immediately implies the following.

Theorem (Ionescu and Wainger)
Let p ∈ (1,∞), then for every f ∈ `p

(
Zd
)
, the discrete Radon transform

TP f (x) =
∑

y∈Zk\{0}

f
(
x− P(y)

)
K(y),

is bounded on `p
(
Zd
)
.

Some of the ideas of Ionescu and Wainger turned out to be very useful in our
construction of the square function.
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Known partial results for discrete variational estimates

I The estimates of r-variations for the one dimensional Bourgain’s
averaging operator were provided by Krause for all p ∈ (1,∞) and
r > max{p, p′}.

I Not long afterwards Zorin-Kranich obtained r-variational estimates for
all r > 2 and p > 1 satisfying∣∣∣∣1p − 1

2

∣∣∣∣ ≤ 1
2(D + 1)

where D denotes the degree of the polynomial P .

I Their proofs were based on variational estimates of famous Bourgain’s
logarithmic lemma provided by Nazarov, Oberlin and Thiele. That was
the critical building block in their arguments.

I Although, logarithmic lemma gives very nice `2(Z) theory in
Bourgain’s maximal theorem, it is very inefficient in `p(Z) theory. The
reason, loosely speaking, is that it produces a polynomial growth of
norm for p 6= 2.
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Discrete Littlewood–Paley theory
We propose completely different approach to attack r-variations. Instead of
Bourgain’s logarithmic lemma we established a discrete counterpart of the
Littlewood–Paley theory by introducing the following family of projections

∆n,s(ξ) =
∑

a/q∈Us

(
η
(
2nd(ξ − a/q)

)
− η
(
2nd+1(ξ − a/q)

))
η
(
2s(d−χ)(ξ − a/q)

)
,

where η a smooth cut-off function and

Us = {a/q ∈ T : (a, q) = 1 and q ∈ Ps},

where the denominators q ∈ Ps have appropriate limitation in terms of their
prime power factorization.

I We were able to show that for each p > 1 there is a constant C > 0
such that ∥∥∥(∑

n∈Z

∣∣F−1(∆n,s f̂
)∣∣2)1/2∥∥∥

`p
≤ C log(s + 2)‖f‖`p .
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Do we need number theory?
Assume that P(x) = xd and d ≥ 2 and observe that MPN f (x) = KN ∗ f (x),
where

KN(x) =
1
N

N∑
k=1

δP(k)(x).

Then

mN(ξ) = K̂N(ξ) =
1
N

N∑
k=1

e2πiξkd
(ξ ∈ T).

If ξ = a/q and (a, q) = 1 then we see that mN(a/q) behaves like a complete
Gaussian sum

G(a/q) =
1
q

q∑
r=1

e2πi a
q rd

.

This suggests that the asymptotics for mN should be concentrated in some
neighbourhoods of Diophantine approximations of ξ with small
denominators. Indeed, if |ξ − a/q| ≤ ‘small in terms of N’ with small q in
terms of N then

mN(ξ) '
(

1
q

q∑
r=1

e2πi a
q rd
)
·
(∫ 1

0
e2πi(ξ− a

q )(Nx)d

dx
)
.
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Thank You!
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