$\ell^p(\mathbb{Z}^d)$ boundedness for discrete operators of Radon type: maximal and variational estimates

Mariusz Mirek joint work with Elias M. Stein and Bartosz Trojan

Universität Bonn

Conference in Harmonic Analysis in Honor of Michael Christ University of Wisconsin-Madison May 16, 2016

Maximal Radon transform

The maximal Radon transform is defined for $x \in \mathbb{R}^d$ by setting

$$\mathcal{M}_*^{\mathcal{P}}f(x) = \sup_{t>0} \left| \mathcal{M}_t^{\mathcal{P}}f(x) \right|,$$

where

$$\mathcal{M}_t^{\mathcal{P}} f(x) = \frac{1}{|B_t|} \int_{B_t} f(x - \mathcal{P}(y)) dy,$$

 $B_t = \{y \in \mathbb{R}^k : |y| < t\}$ and

$$\mathcal{P}(y) = (\mathcal{P}_1(y), \dots, \mathcal{P}_d(y))$$

is a polynomial mapping, i.e. $\mathcal{P}_j(y)$ is a real-valued polynomial on \mathbb{R}^k .

▶ It is very well known that for every p > 1 there is a $C_p > 0$ such that $\|\mathcal{M}^{\mathcal{P}}_* f\|_{L^p(\mathbb{R}^d)} \leq C_p \|f\|_{L^p(\mathbb{R}^d)}$

for any $f \in L^p(\mathbb{R}^d)$.

Maximal Radon transform

The maximal Radon transform is defined for $x \in \mathbb{R}^d$ by setting

$$\mathcal{M}_*^{\mathcal{P}}f(x) = \sup_{t>0} \big| \mathcal{M}_t^{\mathcal{P}}f(x) \big|,$$

where

$$\mathcal{M}_t^{\mathcal{P}} f(x) = \frac{1}{|B_t|} \int_{B_t} f(x - \mathcal{P}(y)) dy,$$

 $B_t = \{y \in \mathbb{R}^k : |y| < t\}$ and

$$\mathcal{P}(y) = (\mathcal{P}_1(y), \dots, \mathcal{P}_d(y))$$

is a polynomial mapping, i.e. $\mathcal{P}_j(y)$ is a real-valued polynomial on \mathbb{R}^k .

► It is very well known that for every p > 1 there is a $C_p > 0$ such that $\|\mathcal{M}^{\mathcal{P}}_* f\|_{L^p(\mathbb{R}^d)} \leq C_p \|f\|_{L^p(\mathbb{R}^d)}$

for any $f \in L^p(\mathbb{R}^d)$.

The Hardy-Littlewood maximal function

If k = d = 1 and $\mathcal{P}(y) = y$ then $\mathcal{M}_*^{\mathcal{P}}$ coincides with the Hardy–Littlewood maximal function $\mathcal{M}_*f(x) = \sup_{t>0} |\mathcal{M}_t f(x)|$, where

$$\mathcal{M}_t f(x) = \frac{1}{2t} \int_{-t}^t f(x-y) dy.$$

Their $L^p(\mathbb{R})$ with p > 1 and weak type (1, 1) bounds are useful in proving the Lebesgue differentiation theorem, i.e. for every $f \in L^p(\mathbb{R})$ with $p \ge 1$ we have

$$\lim_{t\to 0} \mathcal{M}_t f(x) = f(x)$$

almost everywhere on \mathbb{R} .

The discrete counterpart of \mathcal{M}_* can be defined as $\sup_{N \in \mathbb{N}} |M_N f(x)|$, where

$$M_N f(x) = \frac{1}{N} \sum_{n=0}^{N-1} f(x-n).$$

The Hardy-Littlewood maximal function

If k = d = 1 and $\mathcal{P}(y) = y$ then $\mathcal{M}_*^{\mathcal{P}}$ coincides with the Hardy–Littlewood maximal function $\mathcal{M}_*f(x) = \sup_{t>0} |\mathcal{M}_t f(x)|$, where

$$\mathcal{M}_t f(x) = \frac{1}{2t} \int_{-t}^t f(x - y) dy.$$

Their $L^p(\mathbb{R})$ with p > 1 and weak type (1, 1) bounds are useful in proving the Lebesgue differentiation theorem, i.e. for every $f \in L^p(\mathbb{R})$ with $p \ge 1$ we have

$$\lim_{t\to 0} \mathcal{M}_t f(x) = f(x)$$

almost everywhere on \mathbb{R} .

The discrete counterpart of \mathcal{M}_* can be defined as $\sup_{N \in \mathbb{N}} |M_N f(x)|$, where

$$M_N f(x) = \frac{1}{N} \sum_{n=0}^{N-1} f(x-n).$$

The Hardy-Littlewood maximal function

If k = d = 1 and $\mathcal{P}(y) = y$ then $\mathcal{M}_*^{\mathcal{P}}$ coincides with the Hardy–Littlewood maximal function $\mathcal{M}_*f(x) = \sup_{t>0} |\mathcal{M}_t f(x)|$, where

$$\mathcal{M}_t f(x) = \frac{1}{2t} \int_{-t}^t f(x - y) dy.$$

Their $L^p(\mathbb{R})$ with p > 1 and weak type (1, 1) bounds are useful in proving the Lebesgue differentiation theorem, i.e. for every $f \in L^p(\mathbb{R})$ with $p \ge 1$ we have

$$\lim_{t\to 0} \mathcal{M}_t f(x) = f(x)$$

almost everywhere on \mathbb{R} .

The discrete counterpart of \mathcal{M}_* can be defined as $\sup_{N \in \mathbb{N}} |M_N f(x)|$, where

$$M_N f(x) = \frac{1}{N} \sum_{n=0}^{N-1} f(x-n).$$

Let (X, \mathcal{B}, μ) be a σ -finite measure space. Let $T : X \to X$ be an invertible measure preserving transformation. Classical Birkhoff's Theorem states that for any $f \in L^p(X, \mu)$ with $p \ge 1$, the averages

$$A_N f(x) = \frac{1}{N} \sum_{n=0}^{N-1} f(T^n x)$$

converge μ -almost everywhere on *X*. For the proof one shows

▶ *L^p* boundedness (p>1) of a maximal function

 $\|\sup_{N\in\mathbb{N}}|A_Nf|\|_{L^p}\lesssim \|f\|_{L^p},$

or weak type (1, 1) estimates at the endpoint. By the Calderón transference principle it follows from the corresponding estimates for the discrete Hardy–Littlewood maximal function.

Let (X, \mathcal{B}, μ) be a σ -finite measure space. Let $T : X \to X$ be an invertible measure preserving transformation. Classical Birkhoff's Theorem states that for any $f \in L^p(X, \mu)$ with $p \ge 1$, the averages

$$A_N f(x) = \frac{1}{N} \sum_{n=0}^{N-1} f(T^n x)$$

converge μ -almost everywhere on X.

For the proof one shows

▶ *L*^{*p*} boundedness (p>1) of a maximal function

 $\|\sup_{N\in\mathbb{N}}|A_Nf|\|_{L^p}\lesssim \|f\|_{L^p},$

or weak type (1, 1) estimates at the endpoint. By the Calderón transference principle it follows from the corresponding estimates for the discrete Hardy–Littlewood maximal function.

Let (X, \mathcal{B}, μ) be a σ -finite measure space. Let $T : X \to X$ be an invertible measure preserving transformation. Classical Birkhoff's Theorem states that for any $f \in L^p(X, \mu)$ with $p \ge 1$, the averages

$$A_N f(x) = \frac{1}{N} \sum_{n=0}^{N-1} f(T^n x)$$

converge μ -almost everywhere on *X*. For the proof one shows

• L^p boundedness (p>1) of a maximal function

$$\|\sup_{N\in\mathbb{N}}|A_Nf|\|_{L^p}\lesssim \|f\|_{L^p},$$

or weak type (1, 1) estimates at the endpoint. By the Calderón transference principle it follows from the corresponding estimates for the discrete Hardy–Littlewood maximal function.

Let (X, \mathcal{B}, μ) be a σ -finite measure space. Let $T : X \to X$ be an invertible measure preserving transformation. Classical Birkhoff's Theorem states that for any $f \in L^p(X, \mu)$ with $p \ge 1$, the averages

$$A_N f(x) = \frac{1}{N} \sum_{n=0}^{N-1} f(T^n x)$$

converge μ -almost everywhere on *X*. For the proof one shows

• L^p boundedness (p>1) of a maximal function

$$\|\sup_{N\in\mathbb{N}}|A_Nf|\|_{L^p}\lesssim \|f\|_{L^p},$$

or weak type (1, 1) estimates at the endpoint. By the Calderón transference principle it follows from the corresponding estimates for the discrete Hardy–Littlewood maximal function.

Let (X, \mathcal{B}, μ) be a σ -finite measure space. Let $T : X \to X$ be an invertible measure preserving transformation. Classical Birkhoff's Theorem states that for any $f \in L^p(X, \mu)$ with $p \ge 1$, the averages

$$A_N f(x) = \frac{1}{N} \sum_{n=0}^{N-1} f(T^n x)$$

converge μ -almost everywhere on *X*. For the proof one shows

• L^p boundedness (p>1) of a maximal function

$$\|\sup_{N\in\mathbb{N}}|A_Nf|\|_{L^p}\lesssim \|f\|_{L^p},$$

or weak type (1, 1) estimates at the endpoint. By the Calderón transference principle it follows from the corresponding estimates for the discrete Hardy–Littlewood maximal function.

Convergence for a dense class

$$A_N f(x) = \frac{1}{N} \sum_{n=0}^{N-1} f(T^n x)$$

•
$$\mathcal{I} = \{ f \in L^2 : f(Tx) = f(x) \}$$
. If $f \in \mathcal{I}$ then
 $A_N f = f$,

μ -almost everywhere.

 $\triangleright \ \mathcal{B} = \left\{ g(Tx) - g(x) : g \in L^2 \cap L^\infty \right\}. \text{ If } f \in \mathcal{B} \text{ then}$

$$|A_N f(x)| = \frac{1}{N} \Big| \sum_{n=0}^{N-1} g(T^{n+1}x) - g(T^n x) \Big| = \frac{1}{N} |g(T^N x) - g(x)|.$$

▶ $\mathcal{I} \oplus \mathcal{B}$ is dense in L^2 .

Convergence for a dense class

$$A_N f(x) = \frac{1}{N} \sum_{n=0}^{N-1} f(T^n x)$$

►
$$\mathcal{I} = \{ f \in L^2 : f(Tx) = f(x) \}$$
. If $f \in \mathcal{I}$ then
 $A_N f = f$,

 μ -almost everywhere.

 $\blacktriangleright \mathcal{B} = \left\{ g(Tx) - g(x) : g \in L^2 \cap L^\infty \right\}. \text{ If } f \in \mathcal{B} \text{ then}$

$$|A_N f(x)| = \frac{1}{N} \Big| \sum_{n=0}^{N-1} g(T^{n+1}x) - g(T^n x) \Big| = \frac{1}{N} |g(T^N x) - g(x)|.$$

• $\mathcal{I} \oplus \mathcal{B}$ is dense in L^2 .

Variational seminorm

For any complex-valued functions $(a_t : t > 0)$ and $r \ge 1$ the variational seminorm is

$$V_r(a_t:t>0) = \sup_{\substack{t_0 < t_1 < \ldots < t_j \\ t_j > 0}} \left(\sum_{j=0}^{J-1} |a_{t_{j+1}} - a_{t_j}|^r\right)^{1/r}.$$

Observe that

- ▶ $V_r(a_t : t > 0) < \infty$ implies $(a_t : t > 0)$ is a Cauchy sequence.
- ► Moreover, we have

$$\sup_{t>0} |a_t| \le V_r(a_t: t>0) + |a_{t_0}|$$

where t_0 is an arbitrary element of $(0, \infty)$.

Variational seminorm

For any complex-valued functions $(a_t : t > 0)$ and $r \ge 1$ the variational seminorm is

$$V_r(a_t: t > 0) = \sup_{\substack{t_0 < t_1 < \ldots < t_J \\ t_j > 0}} \left(\sum_{j=0}^{J-1} |a_{t_{j+1}} - a_{t_j}|^r \right)^{1/r}$$

Observe that

- ▶ $V_r(a_t : t > 0) < \infty$ implies $(a_t : t > 0)$ is a Cauchy sequence.
- Moreover, we have

$$\sup_{t>0} |a_t| \le V_r(a_t: t>0) + |a_{t_0}|$$

where t_0 is an arbitrary element of $(0, \infty)$.

Variational seminorm

For any complex-valued functions $(a_t : t > 0)$ and $r \ge 1$ the variational seminorm is

$$V_r(a_t: t > 0) = \sup_{\substack{t_0 < t_1 < \ldots < t_J \\ t_j > 0}} \left(\sum_{j=0}^{J-1} |a_{t_{j+1}} - a_{t_j}|^r \right)^{1/r}$$

Observe that

- ▶ $V_r(a_t : t > 0) < \infty$ implies $(a_t : t > 0)$ is a Cauchy sequence.
- Moreover, we have

$$\sup_{t>0} |a_t| \le V_r(a_t: t>0) + |a_{t_0}|$$

where t_0 is an arbitrary element of $(0, \infty)$.

Variational estimates in the continuous setup Let $B_t = \{y \in \mathbb{R}^k : |y| < t\}$ and recall that

$$\mathcal{M}_t^{\mathcal{P}} f(x) = \frac{1}{|B_t|} \int_{B_t} f(x - \mathcal{P}(y)) dy,$$

where $\mathcal{P}: \mathbb{R}^k \to \mathbb{R}^d$ is a polynomial mapping.

$$V_r(\mathcal{M}_t^{\mathcal{P}} f(x): t > 0) = \sup_{\substack{t_0 < t_1 < \dots < t_j \\ t_j > 0}} \left(\sum_{j=0}^{J-1} |\mathcal{M}_{t_{j+1}}^{\mathcal{P}} f(x) - \mathcal{M}_{t_j}^{\mathcal{P}} f(x)|^r \right)^{1/r}.$$

Theorem (Jones, Seeger and Wright) For every $p \in (1, \infty)$ and $r \in (2, \infty)$ there is $C_p > 0$ such that for all $f \in L^p(\mathbb{R}^d)$

$$\|V_r(\mathcal{M}_t^{\mathcal{P}}f:t>0)\|_{L^p} \le C_p \frac{r}{r-2} \|f\|_{L^p}$$

Variational estimates in the continuous setup Let $B_t = \{y \in \mathbb{R}^k : |y| < t\}$ and recall that

$$\mathcal{M}_t^{\mathcal{P}} f(x) = \frac{1}{|B_t|} \int_{B_t} f(x - \mathcal{P}(y)) dy,$$

where $\mathcal{P}: \mathbb{R}^k \to \mathbb{R}^d$ is a polynomial mapping.

$$V_r(\mathcal{M}_t^{\mathcal{P}} f(x): t > 0) = \sup_{\substack{t_0 < t_1 < \dots < t_j \\ t_j > 0}} \left(\sum_{j=0}^{J-1} |\mathcal{M}_{t_{j+1}}^{\mathcal{P}} f(x) - \mathcal{M}_{t_j}^{\mathcal{P}} f(x)|^r \right)^{1/r}$$

Theorem (Jones, Seeger and Wright) For every $p \in (1, \infty)$ and $r \in (2, \infty)$ there is $C_p > 0$ such that for all $f \in L^p(\mathbb{R}^d)$

$$\left\|V_r\left(\mathcal{M}_t^{\mathcal{P}}f:t>0\right)\right\|_{L^p} \le C_p \frac{r}{r-2} \|f\|_{L^p}$$

Variational estimates in the continuous setup Let $B_t = \{y \in \mathbb{R}^k : |y| < t\}$ and recall that

$$\mathcal{M}_t^{\mathcal{P}} f(x) = \frac{1}{|B_t|} \int_{B_t} f(x - \mathcal{P}(y)) dy,$$

where $\mathcal{P} : \mathbb{R}^k \to \mathbb{R}^d$ is a polynomial mapping.

$$V_r(\mathcal{M}_t^{\mathcal{P}} f(x) : t > 0) = \sup_{\substack{t_0 < t_1 < \dots < t_J \\ t_j > 0}} \left(\sum_{j=0}^{J-1} |\mathcal{M}_{t_{j+1}}^{\mathcal{P}} f(x) - \mathcal{M}_{t_j}^{\mathcal{P}} f(x)|^r \right)^{1/r}$$

Theorem (Jones, Seeger and Wright) For every $p \in (1, \infty)$ and $r \in (2, \infty)$ there is $C_p > 0$ such that for all $f \in L^p(\mathbb{R}^d)$ $\|V_r(\mathcal{M}_t^{\mathcal{P}}f: t > 0)\|_{L^p} \leq C_p \frac{r}{r-2} \|f\|_{L^p}.$

Bourgain's ergodic theorem

In the mid 1980's Bourgain extended Birkhoff's ergodic theorem and showed that for every $f \in L^p(X, \mu)$ with p > 1 there is a function $f^* \in L^p(X, \mu)$ such that

$$\lim_{N\to\infty}A_Nf(x)=f^*(x)$$

 μ -almost everywhere on X for the averages

$$A_{N}^{P}f(x) = \frac{1}{N}\sum_{n=1}^{N}f(T^{P(n)}x)$$

defined along any integer-valued polynomial P.

Pointwise convergence

Although, for Birkhoff's averaging operator, it was not very difficult to find a dense class of functions (say on $L^2(X, \mu)$) for which pointwise convergence holds, for Bourgain's averaging operator

$$A_{N}^{P}f(x) = \frac{1}{N}\sum_{n=1}^{N}f(T^{P(n)}x)$$

along the polynomials *P* of degree > 1, it is a hard problem. Even for $P(n) = n^2$, since $(n + 1)^2 - n^2 = 2n + 1$.

For overcoming the lack of dense class, Bourgain showed

- ▶ *L^p* boundedness of the maximal function,
- ▶ Given a lacunary sequence (N_j : j ∈ N), for each J > 0 there is C > 0 such that

$$\left(\sum_{j=0}^{J} \left\|\sup_{N \in [N_{j}, N_{j+1})} \left|A_{N}^{P} f - A_{N_{j}}^{P} f\right|\right\|_{L^{2}}^{2}\right)^{1/2} \le C J^{c} \|f\|_{L^{2}}$$

for some c < 1/2.

Pointwise convergence

Although, for Birkhoff's averaging operator, it was not very difficult to find a dense class of functions (say on $L^2(X, \mu)$) for which pointwise convergence holds, for Bourgain's averaging operator

$$A_{N}^{P}f(x) = \frac{1}{N}\sum_{n=1}^{N}f(T^{P(n)}x)$$

along the polynomials *P* of degree > 1, it is a hard problem. Even for $P(n) = n^2$, since $(n + 1)^2 - n^2 = 2n + 1$.

For overcoming the lack of dense class, Bourgain showed

- ► *L^p* boundedness of the maximal function,
- ► Given a lacunary sequence (N_j : j ∈ N), for each J > 0 there is C > 0 such that

$$\Big(\sum_{j=0}^{J} \big\| \sup_{N \in [N_{j}, N_{j+1})} \big| A_{N}^{P} f - A_{N_{j}}^{P} f \big| \big\|_{L^{2}}^{2} \Big)^{1/2} \le C J^{c} \|f\|_{L^{2}}$$

for some c < 1/2.

Given a lacunary sequence $(N_j : j \in \mathbb{N})$, the oscillation seminorm for a sequence $(a_n(x) : n \in \mathbb{N})$ of complex-valued functions is defined by

$$O_J(a_n(x): n \in \mathbb{N}) = \left(\sum_{j=1}^J \sup_{N_j \le n < N_{j+1}} |a_n(x) - a_{N_j}(x)|^2\right)^{1/2}$$

Bourgain's oscillation inequality

There are constants C > 0 and c < 1/2 such that for all $J \in \mathbb{N}$

$$\left\|O_J\left(A_N^P f: N \in \mathbb{N}\right)\right\|_{L^2} \le C J^c \|f\|_{L^2}$$

For any r > 2 by Hölder's inequality we have

$$O_J(a_n(x):n\in\mathbb{N})\leq J^{1/2-1/r}V_r(a_n(x):n\in\mathbb{N}).$$

$$V_r(a_n(x):n\in\mathbb{N}) = \sup_{\substack{k_0 < k_1 < \dots < k_J \\ k_j \in \mathbb{N}}} \left(\sum_{j=0}^{J-1} |a_{k_{j+1}}(x) - a_{k_j}(x)|^r\right)^{1/r}.$$

Given a lacunary sequence $(N_j : j \in \mathbb{N})$, the oscillation seminorm for a sequence $(a_n(x) : n \in \mathbb{N})$ of complex-valued functions is defined by

$$O_J(a_n(x): n \in \mathbb{N}) = \Big(\sum_{j=1}^J \sup_{N_j \le n < N_{j+1}} |a_n(x) - a_{N_j}(x)|^2\Big)^{1/2}$$

Bourgain's oscillation inequality

There are constants C > 0 and c < 1/2 such that for all $J \in \mathbb{N}$

$$\left\|O_J\left(A_N^P f: N \in \mathbb{N}\right)\right\|_{L^2} \le C J^c \|f\|_{L^2}.$$

For any r > 2 by Hölder's inequality we have

$$O_J(a_n(x):n\in\mathbb{N})\leq J^{1/2-1/r}V_r(a_n(x):n\in\mathbb{N}).$$

$$V_r(a_n(x):n\in\mathbb{N}) = \sup_{\substack{k_0 < k_1 < \dots < k_J \\ k_j \in \mathbb{N}}} \left(\sum_{j=0}^{J-1} |a_{k_{j+1}}(x) - a_{k_j}(x)|^r\right)^{1/r}.$$

Given a lacunary sequence $(N_j : j \in \mathbb{N})$, the oscillation seminorm for a sequence $(a_n(x) : n \in \mathbb{N})$ of complex-valued functions is defined by

$$O_J(a_n(x): n \in \mathbb{N}) = \Big(\sum_{j=1}^J \sup_{N_j \le n < N_{j+1}} |a_n(x) - a_{N_j}(x)|^2\Big)^{1/2}$$

Bourgain's oscillation inequality

There are constants C > 0 and c < 1/2 such that for all $J \in \mathbb{N}$

$$\left\|O_J\left(A_N^P f: N \in \mathbb{N}\right)\right\|_{L^2} \le C J^c \|f\|_{L^2}.$$

For any r > 2 by Hölder's inequality we have

$$O_J(a_n(x):n\in\mathbb{N})\leq J^{1/2-1/r}V_r(a_n(x):n\in\mathbb{N}).$$

$$V_r(a_n(x):n\in\mathbb{N}) = \sup_{\substack{k_0 < k_1 < \dots < k_j \\ k_j \in \mathbb{N}}} \left(\sum_{j=0}^{J-1} |a_{k_{j+1}}(x) - a_{k_j}(x)|^r\right)^{1/r}.$$

Given a lacunary sequence $(N_j : j \in \mathbb{N})$, the oscillation seminorm for a sequence $(a_n(x) : n \in \mathbb{N})$ of complex-valued functions is defined by

$$O_J(a_n(x): n \in \mathbb{N}) = \left(\sum_{j=1}^J \sup_{N_j \le n < N_{j+1}} |a_n(x) - a_{N_j}(x)|^2\right)^{1/2}$$

Bourgain's oscillation inequality

There are constants C > 0 and c < 1/2 such that for all $J \in \mathbb{N}$

$$\left\|O_J\left(A_N^P f: N \in \mathbb{N}\right)\right\|_{L^2} \le C J^c \|f\|_{L^2}.$$

For any r > 2 by Hölder's inequality we have

$$O_J(a_n(x):n\in\mathbb{N})\leq J^{1/2-1/r}V_r(a_n(x):n\in\mathbb{N}).$$

$$V_r(a_n(x):n\in\mathbb{N}) = \sup_{\substack{k_0 < k_1 < \dots < k_j \\ k_j \in \mathbb{N}}} \left(\sum_{j=0}^{J-1} |a_{k_{j+1}}(x) - a_{k_j}(x)|^r\right)^{1/r}.$$

► In the discrete settings Bourgain used the circle method of Hardy and Littlewood to provide ℓ^p(ℤ) estimates. The method arising from analytic number theory which allows us to obtain the asymptotic formula for the number of solutions in the Waring problem

 $n_1^k + \ldots + n_d^k = N.$

- ▶ Bourgain's method was a breakthrough shedding new light on various discrete analogues in harmonic analysis, but his l^p(Z) theory does not fall into the Littlewood–Paley paradigm.
- ► Is it possible to build up an appropriate Littlewood–Paley theory in the discrete setup which would allow us to deal with l^p(Z) boundedness of discrete operators of Radon type?

► In the discrete settings Bourgain used the circle method of Hardy and Littlewood to provide ℓ^p(ℤ) estimates. The method arising from analytic number theory which allows us to obtain the asymptotic formula for the number of solutions in the Waring problem

 $n_1^k + \ldots + n_d^k = N.$

- ▶ Bourgain's method was a breakthrough shedding new light on various discrete analogues in harmonic analysis, but his l^p(Z) theory does not fall into the Littlewood–Paley paradigm.
- ► Is it possible to build up an appropriate Littlewood–Paley theory in the discrete setup which would allow us to deal with l^p(Z) boundedness of discrete operators of Radon type?

► In the discrete settings Bourgain used the circle method of Hardy and Littlewood to provide ℓ^p(ℤ) estimates. The method arising from analytic number theory which allows us to obtain the asymptotic formula for the number of solutions in the Waring problem

$$n_1^k + \ldots + n_d^k = N.$$

- ▶ Bourgain's method was a breakthrough shedding new light on various discrete analogues in harmonic analysis, but his l^p(Z) theory does not fall into the Littlewood–Paley paradigm.
- ► Is it possible to build up an appropriate Littlewood–Paley theory in the discrete setup which would allow us to deal with l^p(Z) boundedness of discrete operators of Radon type?

► In the discrete settings Bourgain used the circle method of Hardy and Littlewood to provide ℓ^p(ℤ) estimates. The method arising from analytic number theory which allows us to obtain the asymptotic formula for the number of solutions in the Waring problem

$$n_1^k + \ldots + n_d^k = N.$$

- ▶ Bourgain's method was a breakthrough shedding new light on various discrete analogues in harmonic analysis, but his l^p(Z) theory does not fall into the Littlewood–Paley paradigm.
- ► Is it possible to build up an appropriate Littlewood–Paley theory in the discrete setup which would allow us to deal with l^p(Z) boundedness of discrete operators of Radon type?

► In the discrete settings Bourgain used the circle method of Hardy and Littlewood to provide ℓ^p(ℤ) estimates. The method arising from analytic number theory which allows us to obtain the asymptotic formula for the number of solutions in the Waring problem

$$n_1^k + \ldots + n_d^k = N.$$

- ▶ Bourgain's method was a breakthrough shedding new light on various discrete analogues in harmonic analysis, but his l^p(Z) theory does not fall into the Littlewood–Paley paradigm.
- ► Is it possible to build up an appropriate Littlewood–Paley theory in the discrete setup which would allow us to deal with l^p(Z) boundedness of discrete operators of Radon type?

Variational estimates in the discrete setup

Let $\mathcal{P} = (\mathcal{P}_1, \dots, \mathcal{P}_d) : \mathbb{Z}^k \to \mathbb{Z}^d$ be a polynomial mapping. Define Radon averages

$$M_N^{\mathcal{P}}f(x) = N^{-k} \sum_{y \in [1,N]^k \cap \mathbb{N}^k} f\left(x - \mathcal{P}(y)\right).$$

Theorem (M., E.M. Stein and B. Trojan) For every $p \in (1, \infty)$ and $r \in (2, \infty)$ there is $C_p > 0$ such that for all $f \in \ell^p(\mathbb{Z}^d)$ $\|V_r(M_N^{\mathcal{P}}f: N \in \mathbb{N})\|_{\ell^p} \leq C_p \frac{r}{r-2} \|f\|_{\ell^p}.$

Variational estimates in the discrete setup

Let $\mathcal{P} = (\mathcal{P}_1, \dots, \mathcal{P}_d) : \mathbb{Z}^k \to \mathbb{Z}^d$ be a polynomial mapping. Define Radon averages

$$M_N^{\mathcal{P}}f(x) = N^{-k} \sum_{y \in [1,N]^k \cap \mathbb{N}^k} f(x - \mathcal{P}(y)).$$

Theorem (M., E.M. Stein and B. Trojan) For every $p \in (1, \infty)$ and $r \in (2, \infty)$ there is $C_p > 0$ such that for all $f \in \ell^p(\mathbb{Z}^d)$ $\|V_r(M_N^{\mathcal{P}}f: N \in \mathbb{N})\|_{\ell^p} \leq C_p \frac{r}{r-2} \|f\|_{\ell^p}.$

Variational estimates in the discrete setup

Let $\mathcal{P} = (\mathcal{P}_1, \dots, \mathcal{P}_d) : \mathbb{Z}^k \to \mathbb{Z}^d$ be a polynomial mapping. Define Radon averages

$$M_N^{\mathcal{P}}f(x) = N^{-k} \sum_{y \in [1,N]^k \cap \mathbb{N}^k} f\left(x - \mathcal{P}(y)\right).$$

Theorem (M., E.M. Stein and B. Trojan) For every $p \in (1, \infty)$ and $r \in (2, \infty)$ there is $C_p > 0$ such that for all $f \in \ell^p(\mathbb{Z}^d)$ $\|V_r(M_N^{\mathcal{P}}f: N \in \mathbb{N})\|_{\ell^p} \leq C_p \frac{r}{r-2} \|f\|_{\ell^p}.$

Variational estimates for truncated Radon transform

Suppose that $K \in C^1(\mathbb{R}^k \setminus \{0\})$ is a Calderón–Zygmund kernel obeying

 $|y|^{k}|K(y)| + |y|^{k+1}|\nabla K(y)| \le 1$

for all $y \in \mathbb{R}^k \setminus \{0\}$ and a cancellation condition

$$\int_{\lambda_1 \le |y| \le \lambda_2} K(y) \mathrm{d}y = 0$$

for all $\lambda_1 < \lambda_2$. Define truncated Radon transform

$$T_N^{\mathcal{P}} f(x) = \sum_{y \in \mathbb{B}_N \setminus \{0\}} f(x - \mathcal{P}(y)) K(y)$$

where $\mathbb{B}_N = \{x \in \mathbb{R}^k : |x| \leq N\} \cap \mathbb{Z}^k$.

Theorem (M., E.M. Stein and B. Trojan)

For every 1 and <math>r > 2 there is $C_p > 0$ such that for all $f \in \ell^p(\mathbb{Z}^d)$

$$\left\|V_r\left(T_N^{\mathcal{P}}f:N\in\mathbb{N}\right)\right\|_{\ell^p}\leq C_prac{r}{r-2}\|f\|_{\ell^p}.$$

Variational estimates for truncated Radon transform

Suppose that $K \in C^1(\mathbb{R}^k \setminus \{0\})$ is a Calderón–Zygmund kernel obeying

$$|y|^{k}|K(y)| + |y|^{k+1}|\nabla K(y)| \le 1$$

for all $y \in \mathbb{R}^k \setminus \{0\}$ and a cancellation condition

$$\int_{\lambda_1 \le |y| \le \lambda_2} K(y) \mathrm{d}y = 0$$

for all $\lambda_1 < \lambda_2$. Define truncated Radon transform

$$T_N^{\mathcal{P}} f(x) = \sum_{y \in \mathbb{B}_N \setminus \{0\}} f(x - \mathcal{P}(y)) K(y)$$

where $\mathbb{B}_N = \{x \in \mathbb{R}^k : |x| \le N\} \cap \mathbb{Z}^k$.

Theorem (M., E.M. Stein and B. Trojan)

For every 1 and <math>r > 2 there is $C_p > 0$ such that for all $f \in \ell^p(\mathbb{Z}^d)$

$$\left\|V_r\left(T_N^{\mathcal{P}}f:N\in\mathbb{N}\right)\right\|_{\ell^p}\leq C_prac{r}{r-2}\|f\|_{\ell^p}.$$

Variational estimates for truncated Radon transform

Suppose that $K \in C^1(\mathbb{R}^k \setminus \{0\})$ is a Calderón–Zygmund kernel obeying

$$|y|^{k}|K(y)| + |y|^{k+1}|\nabla K(y)| \le 1$$

for all $y \in \mathbb{R}^k \setminus \{0\}$ and a cancellation condition

$$\int_{\lambda_1 \le |y| \le \lambda_2} K(y) \mathrm{d}y = 0$$

for all $\lambda_1 < \lambda_2$. Define truncated Radon transform

$$T_N^{\mathcal{P}} f(x) = \sum_{y \in \mathbb{B}_N \setminus \{0\}} f(x - \mathcal{P}(y)) K(y)$$

where $\mathbb{B}_N = \{x \in \mathbb{R}^k : |x| \le N\} \cap \mathbb{Z}^k$.

Theorem (M., E.M. Stein and B. Trojan)

For every 1 and <math>r > 2 there is $C_p > 0$ such that for all $f \in \ell^p(\mathbb{Z}^d)$

$$\left\|V_r\left(T_N^{\mathcal{P}}f:N\in\mathbb{N}\right)\right\|_{\ell^p}\leq C_p\frac{r}{r-2}\|f\|_{\ell^p}.$$

Ionescu and Wainger result

Our result immediately implies the following.

Theorem (Ionescu and Wainger)

Let $p \in (1, \infty)$, then for every $f \in \ell^p(\mathbb{Z}^d)$, the discrete Radon transform

$$T^{\mathcal{P}}f(x) = \sum_{y \in \mathbb{Z}^k \setminus \{0\}} f(x - \mathcal{P}(y)) K(y),$$

is bounded on $\ell^p(\mathbb{Z}^d)$.

Some of the ideas of Ionescu and Wainger turned out to be very useful in our construction of the square function.

Ionescu and Wainger result

Our result immediately implies the following.

Theorem (Ionescu and Wainger) Let $p \in (1, \infty)$, then for every $f \in \ell^p(\mathbb{Z}^d)$, the discrete Radon transform

$$T^{\mathcal{P}}f(x) = \sum_{y \in \mathbb{Z}^k \setminus \{0\}} f(x - \mathcal{P}(y))K(y),$$

is bounded on $\ell^p(\mathbb{Z}^d)$.

Some of the ideas of Ionescu and Wainger turned out to be very useful in our construction of the square function.

Ionescu and Wainger result

Our result immediately implies the following.

Theorem (Ionescu and Wainger) Let $p \in (1, \infty)$, then for every $f \in \ell^p(\mathbb{Z}^d)$, the discrete Radon transform

$$T^{\mathcal{P}}f(x) = \sum_{y \in \mathbb{Z}^k \setminus \{0\}} f(x - \mathcal{P}(y))K(y),$$

is bounded on $\ell^p(\mathbb{Z}^d)$.

Some of the ideas of Ionescu and Wainger turned out to be very useful in our construction of the square function.

- ► The estimates of *r*-variations for the one dimensional Bourgain's averaging operator were provided by Krause for all *p* ∈ (1,∞) and *r* > max{*p*,*p*'}.
- ▶ Not long afterwards Zorin-Kranich obtained *r*-variational estimates for all *r* > 2 and *p* > 1 satisfying

$$\left|\frac{1}{p} - \frac{1}{2}\right| \le \frac{1}{2(D+1)}$$

- ▶ Their proofs were based on variational estimates of famous Bourgain's logarithmic lemma provided by Nazarov, Oberlin and Thiele. That was the critical building block in their arguments.
- Although, logarithmic lemma gives very nice ℓ²(Z) theory in Bourgain's maximal theorem, it is very inefficient in ℓ^p(Z) theory. The reason, loosely speaking, is that it produces a polynomial growth of norm for p ≠ 2.

- ► The estimates of *r*-variations for the one dimensional Bourgain's averaging operator were provided by Krause for all *p* ∈ (1,∞) and *r* > max{*p*,*p*'}.
- Not long afterwards Zorin-Kranich obtained *r*-variational estimates for all *r* > 2 and *p* > 1 satisfying

$$\left|\frac{1}{p} - \frac{1}{2}\right| \leq \frac{1}{2(D+1)}$$

- ▶ Their proofs were based on variational estimates of famous Bourgain's logarithmic lemma provided by Nazarov, Oberlin and Thiele. That was the critical building block in their arguments.
- ► Although, logarithmic lemma gives very nice l²(Z) theory in Bourgain's maximal theorem, it is very inefficient in l^p(Z) theory. The reason, loosely speaking, is that it produces a polynomial growth of norm for p ≠ 2.

- ► The estimates of *r*-variations for the one dimensional Bourgain's averaging operator were provided by Krause for all *p* ∈ (1,∞) and *r* > max{*p*,*p*'}.
- Not long afterwards Zorin-Kranich obtained *r*-variational estimates for all *r* > 2 and *p* > 1 satisfying

$$\left|\frac{1}{p} - \frac{1}{2}\right| \le \frac{1}{2(D+1)}$$

- Their proofs were based on variational estimates of famous Bourgain's logarithmic lemma provided by Nazarov, Oberlin and Thiele. That was the critical building block in their arguments.
- Although, logarithmic lemma gives very nice $\ell^2(\mathbb{Z})$ theory in Bourgain's maximal theorem, it is very inefficient in $\ell^p(\mathbb{Z})$ theory. The reason, loosely speaking, is that it produces a polynomial growth of norm for $p \neq 2$.

- ► The estimates of *r*-variations for the one dimensional Bourgain's averaging operator were provided by Krause for all *p* ∈ (1,∞) and *r* > max{*p*,*p*'}.
- Not long afterwards Zorin-Kranich obtained *r*-variational estimates for all *r* > 2 and *p* > 1 satisfying

$$\left|\frac{1}{p} - \frac{1}{2}\right| \le \frac{1}{2(D+1)}$$

- Their proofs were based on variational estimates of famous Bourgain's logarithmic lemma provided by Nazarov, Oberlin and Thiele. That was the critical building block in their arguments.
- Although, logarithmic lemma gives very nice ℓ²(Z) theory in Bourgain's maximal theorem, it is very inefficient in ℓ^p(Z) theory. The reason, loosely speaking, is that it produces a polynomial growth of norm for p ≠ 2.

Discrete Littlewood–Paley theory

We propose completely different approach to attack *r*-variations. Instead of Bourgain's logarithmic lemma we established a discrete counterpart of the Littlewood–Paley theory by introducing the following family of projections

$$\Delta_{n,s}(\xi) = \sum_{a/q \in \mathscr{U}_s} \big(\eta \big(2^{nd} (\xi - a/q) \big) - \eta \big(2^{nd+1} (\xi - a/q) \big) \big) \eta \big(2^{s(d-\chi)} (\xi - a/q) \big),$$

where η a smooth cut-off function and

$$\mathscr{U}_s = \{a/q \in \mathbb{T} : (a,q) = 1 \text{ and } q \in \mathbf{P}_s\},$$

where the denominators $q \in \mathbf{P}_s$ have appropriate limitation in terms of their prime power factorization.

$$\left\|\left(\sum_{n\in\mathbb{Z}}\left|\mathcal{F}^{-1}\left(\Delta_{n,s}\widehat{f}\right)\right|^{2}\right)^{1/2}\right\|_{\ell^{p}}\leq C\log(s+2)\|f\|_{\ell^{p}}.$$

Discrete Littlewood–Paley theory

We propose completely different approach to attack *r*-variations. Instead of Bourgain's logarithmic lemma we established a discrete counterpart of the Littlewood–Paley theory by introducing the following family of projections

$$\Delta_{n,s}(\xi) = \sum_{a/q \in \mathscr{U}_s} \big(\eta \big(2^{nd} (\xi - a/q) \big) - \eta \big(2^{nd+1} (\xi - a/q) \big) \big) \eta \big(2^{s(d-\chi)} (\xi - a/q) \big),$$

where η a smooth cut-off function and

$$\mathscr{U}_s = \{a/q \in \mathbb{T} : (a,q) = 1 \text{ and } q \in \mathbf{P}_s\},$$

where the denominators $q \in \mathbf{P}_s$ have appropriate limitation in terms of their prime power factorization.

▶ We were able to show that for each p > 1 there is a constant C > 0 such that

$$\left\|\left(\sum_{n\in\mathbb{Z}}\left|\mathcal{F}^{-1}\left(\Delta_{n,s}\widehat{f}\right)\right|^{2}\right)^{1/2}\right\|_{\ell^{p}}\leq C\log(s+2)\|f\|_{\ell^{p}}.$$

Assume that $\mathcal{P}(x) = x^d$ and $d \ge 2$ and observe that $M_N^{\mathcal{P}} f(x) = K_N * f(x)$, where

$$K_N(x) = \frac{1}{N} \sum_{k=1}^N \delta_{\mathcal{P}(k)}(x).$$

Then

$$m_N(\xi) = \widehat{K}_N(\xi) = rac{1}{N} \sum_{k=1}^N e^{2\pi i \xi k^d} \quad (\xi \in \mathbb{T}).$$

If $\xi = a/q$ and (a,q) = 1 then we see that $m_N(a/q)$ behaves like a complete Gaussian sum

$$G(a/q) = \frac{1}{q} \sum_{r=1}^{q} e^{2\pi i \frac{a}{q} r^d}.$$

This suggests that the asymptotics for m_N should be concentrated in some neighbourhoods of Diophantine approximations of ξ with small denominators. Indeed, if $|\xi - a/q| \leq \text{`small in terms of } N$ ' with small q in terms of N then

$$m_N(\xi) \simeq \left(\frac{1}{q} \sum_{r=1}^q e^{2\pi i \frac{a}{q} r^d}\right) \cdot \left(\int_0^1 e^{2\pi i (\xi - \frac{a}{q})(Nx)^d} dx\right).$$

Assume that $\mathcal{P}(x) = x^d$ and $d \ge 2$ and observe that $M_N^{\mathcal{P}} f(x) = K_N * f(x)$, where

$$K_N(x) = \frac{1}{N} \sum_{k=1}^N \delta_{\mathcal{P}(k)}(x).$$

Then

$$m_N(\xi) = \widehat{K}_N(\xi) = rac{1}{N} \sum_{k=1}^N e^{2\pi i \xi k^d} \quad (\xi \in \mathbb{T}).$$

If $\xi = a/q$ and (a,q) = 1 then we see that $m_N(a/q)$ behaves like a complete Gaussian sum

$$G(a/q) = \frac{1}{q} \sum_{r=1}^{q} e^{2\pi i \frac{a}{q} r^d}.$$

This suggests that the asymptotics for m_N should be concentrated in some neighbourhoods of Diophantine approximations of ξ with small denominators. Indeed, if $|\xi - a/q| \leq \text{'small}$ in terms of N' with small q in terms of N then

$$m_N(\xi) \simeq \left(\frac{1}{q} \sum_{r=1}^q e^{2\pi i \frac{a}{q} r^d}\right) \cdot \left(\int_0^1 e^{2\pi i (\xi - \frac{a}{q})(Nx)^d} dx\right).$$

Assume that $\mathcal{P}(x) = x^d$ and $d \ge 2$ and observe that $M_N^{\mathcal{P}} f(x) = K_N * f(x)$, where

$$K_N(x) = \frac{1}{N} \sum_{k=1}^N \delta_{\mathcal{P}(k)}(x).$$

Then

$$m_N(\xi) = \widehat{K}_N(\xi) = rac{1}{N} \sum_{k=1}^N e^{2\pi i \xi k^d} \quad (\xi \in \mathbb{T}).$$

If $\xi = a/q$ and (a,q) = 1 then we see that $m_N(a/q)$ behaves like a complete Gaussian sum

$$G(a/q) = \frac{1}{q} \sum_{r=1}^{q} e^{2\pi i \frac{a}{q} r^d}.$$

This suggests that the asymptotics for m_N should be concentrated in some neighbourhoods of Diophantine approximations of ξ with small denominators. Indeed, if $|\xi - a/q| \leq \text{'small}$ in terms of N' with small q in terms of N then

$$m_N(\xi) \simeq \left(\frac{1}{q} \sum_{r=1}^q e^{2\pi i \frac{a}{q} r^d}\right) \cdot \left(\int_0^1 e^{2\pi i (\xi - \frac{a}{q})(Nx)^d} dx\right).$$

Assume that $\mathcal{P}(x) = x^d$ and $d \ge 2$ and observe that $M_N^{\mathcal{P}} f(x) = K_N * f(x)$, where

$$K_N(x) = \frac{1}{N} \sum_{k=1}^N \delta_{\mathcal{P}(k)}(x).$$

Then

$$m_N(\xi) = \widehat{K}_N(\xi) = rac{1}{N} \sum_{k=1}^N e^{2\pi i \xi k^d} \quad (\xi \in \mathbb{T}).$$

If $\xi = a/q$ and (a,q) = 1 then we see that $m_N(a/q)$ behaves like a complete Gaussian sum

$$G(a/q) = \frac{1}{q} \sum_{r=1}^{q} e^{2\pi i \frac{a}{q} r^d}.$$

This suggests that the asymptotics for m_N should be concentrated in some neighbourhoods of Diophantine approximations of ξ with small denominators. Indeed, if $|\xi - a/q| \leq \text{'small in terms of } N$ ' with small q in terms of N then

$$m_N(\xi)\simeq \left(rac{1}{q}\sum_{r=1}^q e^{2\pi i rac{a}{q}r^d}
ight)\cdot \left(\int_0^1 e^{2\pi i (\xi-rac{a}{q})(Nx)^d}dx
ight).$$

Thank You!