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Bilinear Hilbert transforms

Let f1, f2 be Schwartz functions. The bilinear Hilbert transform is given by

H(f1, f2)(x) = p.v .

∫
R
f1(x − t)f2(x + t)

dt

t
. (1)

Theorem (Lacey-Thiele, ‘97)

‖H(f1, f2)‖r ≤ C‖f1‖p1‖f2‖p2 , (2)

provided that p1, p2, r obey 1
r = 1

p1
+ 1

p2
, p1, p2 > 1 and r > 2/3.
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Bilinear Hilbert transform along curves

Let Γ denote curve (t, γ(t)), where γ is a continuous function on R. The
bilinear Hilbert transform along the curve Γ is defined by

HΓ(f1, f2)(x) = p.v .

∫
R
f1(x − t)f2(x − γ(t))

dt

t
. (3)

Theorem (L., ‘08)

If Γ = (t, tα) for some real number α 6= 1, then HΓ can be extended to a
bounded operator from L2 × L2 to L1.

Theorem (Lie, ‘11)

HΓ is bounded from L2 × L2 to L1 if Γ is a ”non-flat” smooth curve.
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Uniform estimates for Bilinear Hilbert transform along
polynomial curves

Let Γ be a polynomial curve given by (t,P(t)) for some real polynomial P.
The bilinear Hilbert transform HΓ along (t,P(t)) is

HΓ(f1, f2)(x) = p.v .

∫
R
f1(x − t)f2(x − P(t))

dt

t
(4)

Bilinear maximal function along Γ is given by

MΓ(f1, f2)(x) = sup
ε>0

1

2ε

∫ ε

−ε

∣∣f1(x − t)f2(x − P(t))
∣∣dt . (5)

Theorem (L.-Xiao, ‘13)

Suppose that Γ is a polynomial curve (t,P(t)) and P is a real polynomial
without a linear term. Then both of HΓ and MΓ are bounded from
Lp1 × Lp2 to Lr for r > d−1

d , p1, p2 > 1, and 1
r = 1

p1
+ 1

p2
. Moreover, the

bound is uniform in a sense that it depends on the degree of the
polynomial P but independent of the coefficients of P.
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Main Ingredients in the proof for the uniform estimates

After removing finitely many intervals, the polynomial P is a
monomial plus a tiny perturbation. The perturbation is handled via a
quantitative version of inverse function theorem.

Using σ-uniformity method, locally there is a decay estimate from
L2 × L2 to L1, after removing finitely many paraproducts.

Those paraproducts are uniformly bounded from Lp × Lq to Lr for all
p, q > 1 and r > 1/2 with 1

r = 1
p1

+ 1
p2

.

Locally there is an appropriate upper bound that grows slowly
enough, in contract to the decay estimate. This is one of the main
difficulties in the uniform estimate. It can be achieved by a Whitney
type decomposition.
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The constraint of r

In the uniform estimates, the range of r > d−1
d , p1, p2 > 1 with

1
r = 1

p1
+ 1

p2
is the best range.

Let Γ be a polynomial curve (t,P(t)). It is natural to ask that, for a
given polynomial P, what is the lower bound of r such that HΓ and
MΓ are bounded from Lp1 × Lp2 to Lr .

Theorem (L.-Xiao, ’13)

Let P be a polynomial without a linear term. The following are equivalent
i) All the roots of P ′(t)− 1 = 0 have order at most k − 1.
ii) There is a constant CP such that, for sufficiently small ε > 0, the
following level set estimate holds:∣∣{t : |P ′(t)− 1| < ε}

∣∣ ≤ CPε
1

k−1 , (6)

iii) HΓ and MΓ map from Lp1 × Lp2 to Lr for all r > k−1
k , p1, p2 > 1 with

1
r = 1

p1
+ 1

p2
.
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Trilnear Hilbert transform along curves

Let d ≥ 2. Consider the trilinear Hilbert transform along curve
Γ = (t,−t, td), given by

Hd(f1, f2, f3)(x) = p.v .

∫
R
f1(x − t)f2(x + t)f3(x − td)

dt

t
. (7)

Question 1. Is Hd bounded from L2 × L2 × L2 to L
2
3 ?

This question can be reduced to the boundedness of the following trilinear
operator T , defined by

T (f1, f2, f3)(x) :=
∑
k≥0

Hk(f1, f2)(x)f3,k(x) (8)

where f3,k is a Fourier (smooth) restriction of f3 to [0, 2dk ], and Hk is
given by

Hk(f1, f2)(x) =

∫∫
f̂1(ξ1)f̂2(η)e2πi(ξ+η)xφ

(ξ − η
2k

)
dξdη . (9)

Here φ is a smooth cut-off away from the origin.
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Discrete bilinear operators

The discrete bilinear Hilbert transform along (m,P(m)) is given by

T (f1, f2)(n) =
∑
m 6=0

1

m
f1(n −m)f2(n − P(m)) , (10)

where m ∈ Z.
The discrete bilinear maximal operator along (m,P(m)) is given by

T ∗(f1, f2)(n) = sup
M∈N

1

M

∣∣∑
m∈Z

f1(n −m)f2(n − P(m))
∣∣ . (11)

Question 2. Is T (or T ∗) maps boundedly from L2(Z)× L2(Z) to L1(Z)?
Here Lp(Z) is the Lp space associated to the counting measure.
T and T ∗ are discrete analogue of HΓ and MΓ, respectively, for
Γ = (t,P(t)). Because there is no transference principle available, it is not
clear the boundedness of HΓ ( or MΓ) implies any boundedness of T (or
T ∗).
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clear the boundedness of HΓ ( or MΓ) implies any boundedness of T (or
T ∗).
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Ionescu and Wainger’s Theorem

Define a discrete singular Radon transform operator

Tf (n1, n2) =
∑
m 6=0

1

m
f (n1 −m, n2 − P(m)) (12)

where P(m) is a real polynomial.

Theorem (Ionescu-Wainger, ‘05)

The discrete singular Radon transform T can be extended to a bounded
operator on Lp(Z2) for any 1 < p <∞.
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Major arcs and Minor arcs

Lemma (Dirichlet Principle)

For any given N ∈ N and any x ∈ (0, 1), there exist a, q ∈ N such that∣∣∣∣x − a

q

∣∣∣∣ ≤ 1

Nq
,

1 ≤ q ≤ N, a ∈ Pq .

Here
Pq = {y ∈ N : 1 ≤ y ≤ q, (y , q) = 1} .

For a ∈ Pq, let

Ja/q =

(
− 1

Nq
+

a

q
,

1

Nq
+

a

q

)
.

If q ≤ N/100, then Ja/q is called a major arc. Otherwise a minor arc.
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Major arcs

The Lp(Z2) boundedness of the discrete singular Radon transform T is
equivalent to the Lp(R2) boundedness of T̃ , given by

T̃ f (x1, x2) =
∑
m 6=0

1

m
f (x1 −m, x2 − P(m)) . (13)

̂̃Tf (ξ, η) =
∞∑
j=0

∑
m

ρ
(m

2j
)
e−imξe−iP(m)η f̂ (ξ, η) . (14)

Definition

For any given positive integers a1, a2, q with (a1, a2, q) = 1 and
q ∈ [1, 2j/100], define the major arc by

Jj(a1/q, a2/q) = {(ξ1, ξ2) ∈ R2 : |ξk − ak/q| ≤ 2−(k−1/2)j , k = 1, 2} .
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Minor arcs make a small contribution in the linear operator

By the Dirichlet principle and the Weyl sum estimate, if (ξ, η) does not
belong to any major arc, then∑

m

ρ
(m

2j
)
e−imξe−iP(m)η = O(2−δj) (15)

for some positive δ. By Plancherel theorem, it follows that the
contribution from minor arcs is negligible. Thus the main story in
Ionescu-Wainger’s proof is to establish the almost orthogonality for the
major arcs. Each major arc here is a tiny neighborhood of (a1/q, a2/q) for
some q ∈ [1, 2j/100].
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Discrete bilinear Hilbert transform along (t, t2)

The discrete bilinear Hilbert transform along (t, t2) is

H2(f , g)(x) =
∑
m 6=1

1

m
f (x −m)g(x −m2) . (16)

It can be written as

H2(f , g) =

∫∫
f̂ (ξ)ĝ(η)e2πi(ξ+η)xσ(ξ, η)dξη , (17)

where σ is given by

σ(ξ, η) =
∞∑
j=0

1

2j

∑
m

ρ
(m

2j
)
e−2πimξe−2πim2η (18)

for a suitable smooth cut-off ρ in a small neighborhood of 1.
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Discrete bilinear Hilbert transform along (t, t2)

It seems that Hardy-Littlewood circle method can not be applied to the
bilinear case, because the contribution from the minor arcs is significant.
Let H∗2 denote the discrete bilinear maximal function defined by

H∗2 (f , g)(n) = sup
M∈N

1

M

M∑
m=1

∣∣f (n −m)g(n −m2)
∣∣ . (19)

Using the exponential sum estimate, we have

Theorem (Hu-L., ‘13)

The discrete bilinear maximal function H∗2 is bounded from L2(Z)× L2(Z)
to Lr (Z) if r > 1.
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Proposition (Dong-L., ’16)

Let σj be defined by

σj(ξ, η) =
1

2j

∑
m

ρ
(m

2j
)
e−2πiξme−2πiηm2

. (20)

T0 is a bilinear operator given by

T0(f , g)(x) =

∫∫
f̂ (ξ)ĝ(η)e2πi(ξ+η)x

∞∑
j=0

σj(ξ, η)ψ0

( η

1/2j/2

)
dξdη . (21)

Here ψ0 is a bump function near 0. Then T0 is bounded from L2 × L2 to
L1.

Question. Is the discrete bilinear Hilbert transform H2 (or the discrete
bilinear maximal operator H∗2 ) bounded from L2 × L2 to L1?
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Discrete Fourier restriction

Let d ≥ 3 be a positive integer. Suppose p > 2(d + 1). Is it true that

N∑
n=1

∣∣∣f̂ (n, nd)
∣∣∣2 ≤ CN1− 2(d+1)

p
+ε‖f ‖2

p′ ? (22)

(22) is equivalent to, by duality,

∥∥ N∑
n=1

ane
2πinxe2πitnd

∥∥
Lp(T2)

≤ CN
1
2
− d+1

p
+ε(∑

n

|an|2
)1/2

. (23)
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∥∥ N∑
n=1

ane
2πinxe2πitnd

∥∥
Lp(T2)

≤ CN
1
2
− d+1

p
+ε(∑

n

|an|2
)1/2
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Weighted restriction

For any integer d ≥ 3, define the weighted restriction operator

RN f (x , t) =

∫ 1

0
f (ξ)e2πi(xξ+tξd ) 1

Nd−1

Nd−1∑
k=1

e−2πikNξ dξ . (24)

We use B(r) to denote a cube (or ball) in R2 with side length (or radius)
r > 0.

‖RN f ‖Lp(B(Nd )) ≤ CN−(d−1)( 1
2
− 1

p
)+ε‖f ‖2 . (25)

(25) is equivalent to

N∑
n=1

∣∣∣f̂ (n, nd)
∣∣∣2 ≤ CN1− 2(d+1)

p
+ε‖f ‖2

p′ .
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Periodic Strichartz estimate

The discrete Fourier restriction estimate (23) is periodic Strichartz
estimate associated to dispersive equations. For instance, when d = 3,
(23) is the Strichartz estimate for the periodic KDV-equation:

∂tu + ∂3
xu + u∂xu = 0

with the initial periodic data

u(x , 0) = φ(x) .
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Application

The Strichartz estimates (23) with p = 6 can be used to obtain the local
well-posedness for the dispersive equations. For instance,

Theorem (Hu-L., ‘13)

The Cauchy problem of periodic gKdV is the generalized KdV equation

ut + uxxx + F (u)ux = 0 (26)

with the initial condition u(x , 0) = φ(x) for x ∈ T, t ∈ R. The Cauchy
problem (26) is locally well-posed provided that F is a C 5 function and the
initial data φ ∈ Hs for s > 1/2.
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Waring’s problem

Besides the relation to the dispersive equations, the Lp estimates for the
exponential sum (23) are also motivated by Waring’s problem.
For positive integers N and r , let Wr (N) be the number of solutions of the
Diophantine equation

xd1 + · · ·+ xdr = N , (27)

with positive x1, · · · , xr . The size of Wr (N) is the main concern in
Waring’s problem.
Let Ap,N denote the best constant obeying

∥∥ N∑
n=1

ane
2πinxe2πind t

∥∥
Lp(T2)

≤ Ap,N

( N∑
n=1

|an|2
)1/2

. (28)
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Waring’s problem

The estimate A2(d+1),N ≤ Nε implies, for p ≥ 2(d + 1),

∥∥ N∑
n=0

e2πind t
∥∥
Lp(T)

≤ CN1− d
p

+ε
. (29)

(29) provides a new result for the asymptotic formula of Wr (N). Hardy
and Littlewood established an asymptotic formula for r very large by the
circle method. Vinogradov refined Hardy-Littlewood’s circle method and
provided an asymptotic formula for r ≥ Cd2 log d .
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Suppose the following estimate is true

∥∥ N∑
n=0

e2πind t
∥∥
Lp(T)

≤ CN1− d
p

+ε
.

Then, for r ≥ 2d + 3, the number Wr (N) of representations of N as the
sum of r d-th powers of positive integers satisfies

Wr (N) =

(
Γ(1 + 1

d )
)r

Γ(r/d)
N

r
d
−1S(N, r)+O(N

r
d
−1− 1

d2 )+O(N
r
d
−1− ρ(r−2(d+1))

d
+ε) ,

(30)

where ρ =
(
3d(d − 1) log(12d2)

)−1
and S(N, r) is the singular series

defined by

S(N, r) =
∞∑
q=1

1

qr

∑
a∈Pq

(S(a/q))r e−2πi a
q
N
. (31)

Here S(a/q) =
∑q−1

n=0 e
2πi a

q
nd and Pq is the collection of all integers in

{1, · · · , q} that are relatively prime to q.
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Asymptotic formula

It is well-known that for r ≥ 4d , the singular series S(N, r) satisfies
S(N, r) ≥ C1 The exponential sum

∥∥ N∑
n=0

e2πind t
∥∥
Lp(T)

≤ CN1− d
p

+ε

yields
Wr (N) ∼ Cr ,dN

r
d
−1 (32)

for some positive number Cr ,d depending on r , d only. Consequently,
A2(d+1),N ≤ Nε implies that, for r ≥ 4d and N sufficiently large, the

number of solutions of (27) is at least Cd ,rN
r/d−1 for some positive

constant Cr ,d depending on d and r only.
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G(d)

Let G (d) denote the least value of r with the property that for every
sufficiently large positive integer N, N can be represented as

N = xd1 + · · ·+ xdr (33)

for positive integers x1, · · · , xr . Then

A2(d+1),N ≤ Nε ⇒ G (d) ≤ 4d . (34)
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Discrete restriction associated with (n, n3)

Theorem (Hu-L., ‘13)

N∑
n=1

∣∣∣f̂ (n, n3)
∣∣∣2≤ CN1− 8

p
+ε‖f ‖2

p′ (35)

for p ≥ 14.

Here the following Weyl sum estimate should be utilized

Lemma (Weyl)

Suppose that |t − a/q| ≤ 1/q2 , and that (a, q) = 1. Then∣∣∣∣∣
N∑

n=1

e2πi(tn3+αn2+βn)

∣∣∣∣∣≤ CεN
1
4

+εq
1
4

if q ≥ N2.
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Discrete restriction associated with (n, n4)

Theorem (Hua) ∫
T×T

∣∣∣∣∣
N∑

n=1

e2πi(tn3+xn)

∣∣∣∣∣
10

dxdt ≤ CN6+ε . (36)

Theorem (Hu-L., 14)

N∑
n=1

∣∣∣f̂ (n, n4)
∣∣∣2≤ CN1− 10

p
+ε‖f ‖2

p′ (37)

for p ≥ 48.
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Discrete restriction associated with (n, nd)

Theorem

N∑
n=1

∣∣∣f̂ (n, nd)
∣∣∣2≤ CN1− 2(d+1)

p
+ε‖f ‖2

p′ (38)

for p ≥ O(d2).
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THANK YOU !!!
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