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Since the 1970’s there has been a widely held belief that “coher-
ent structures” describe the long–time asymptotic behavior of general
solutions to nonlinear hyperbolic/dispersive equations.

This belief has come to be known as the soliton resolution conjec-
ture.
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This is one of the grand challenges in partial differential equations.
Loosely speaking, this conjecture says that the long–time evolution of
a general solution of most hyperbolic/dispersive equations, asymptoti-
cally in time decouple into a sum of modulated solitons (traveling wave
solutions) and a free radiation term (linear solution) which disperses to
0.
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This is a beautiful, remarkable conjecture which postulates a “sim-
plification” of the very complicated dynamics into a superposition of
simple “nonlinear objects,” namely traveling waves solutions, and radi-
ation, a linear object.

Until recently, the only cases in which these asymptotics had been
proved was for integrable equations (which reduce the nonlinear problem
to a collection of linear ones) and in perturbative regimes.
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In 2012–13, Duyckaerts–K–Merle broke the impasse by establishing
the desired asymptotic decomposition for radial solutions of the energy
critical wave equation in 3 space dimensions, first for a well–chosen
sequence of times, and then for general times.
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This is the equation{
∂2

t u −∆u − |u|4/(N−2)u = 0, (x , t) ∈ RN × I

u|t=0 = u0 ∈ Ḣ1, ∂tu|t=0 = u1 ∈ L2,
(NLW)

N = 3, 4, 5, 6 . . . Here, I is an interval, 0 ∈ I .
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In this problem, small data yield global solutions which “scatter,”
while for large data, we have solutions u ∈ C (I ; Ḣ1×L2), with a maximal
interval of existence (T−(u),T+(u)) and u ∈ L2(N+1)/(N−2)(RN × I ′)
for each I ′ b I .

The energy norm is “critical” since for all λ > 0, uλ(x , t) :=
λ−(N−2)/2u(x/λ, t/λ) is also a solution and

‖(u0,λ, u1,λ)‖Ḣ1×L2 = ‖(u0, u1)‖Ḣ1×L2 .
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The equation is focusing, the conserved energy is

E (u0, u1) =
1

2

∫
|∇u0|2 + |u1|2dx − N − 2

2N

∫
|u0|2N/(N−2)dx .
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It is easy to construct solutions which blow–up in finite time say at
T = 1, by considering the ODE. For instance, when N = 3, u(x , t) =(

3
4

)1/4
(1 − t)−1/2 is a solution, and using finite speed of propaga-

tion it is then easy to construct solutions with T+ = 1, such that
limt↑T+ ‖(u(t), ∂tu(t))‖Ḣ1×L2 =∞. This is called type I blow–up.
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There exist also type II blow–up solutions, i.e. solutions for which
T+ < ∞, and sup0<t<T+

‖(u(t), ∂tu(t))‖Ḣ1×L2 < ∞. Here the break–
down occurs by “concentration.” The existence of such solutions is a
typical feature of energy critical problems.

The first example of such solutions (radial) were constructed for
N = 3 by Krieger–Schlag–Tataru (2009), then for N = 4 by Hillairet–
Raphael (2012), and recently by Jendrej (2015) for N = 5.
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For this equation one expects soliton resolution for type II solutions,
i.e. solutions such that sup0<t<T+

‖(u(t), ∂tu(t))‖Ḣ1×L2 < ∞, where
T+ may be finite or infinite.

Some examples of type II solutions when T+ = ∞ are: scattering
solutions, that is solutions such that T+ =∞, and ∃(u+

0 , u
+
1 ) ∈ Ḣ1×L2,

such that

lim
t→∞

∥∥(u(t), ∂u(t))−
(
S(t)(u+

0 , u
+
1 ), ∂tS(t)(u+

0 , u
+
1 )
)∥∥

Ḣ1×L2 = 0,

where S(t)(u+
0 , u

+
1 ) is the solution to the associated linear equation with

data (u+
0 , u

+
1 ). For example, for (u0, u1) small in Ḣ1 × L2, we have a

scattering solution.
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Other examples of type II solutions of (NLW) with T+ =∞ are the
stationary solutions, that is the solutions Q 6= 0 of the elliptic equation

∆Q + |Q|4/(N−2)Q = 0, Q ∈ Ḣ1.

We say Q ∈ Σ.
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For example,

W (x) =

(
1 +

|x |2

N(N − 2)

)−(N−2)/2

is such a solution. These stationary solutions do not scatter (if u scatters
then

∫
|x |<1 |∇x ,tu(x , t)|2dx → 0 as t →∞). W has several important

characterizations: up to sign and scaling it is the only radial, non–zero
solution. Up to translation and scaling it is also the only non–negative
solution.
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However, there is a continuum of variable sign, non–radial Q ∈ Σ
(Ding 1986, Del Pino–Musso–Pacard–Pistoia 2011, 2013). W also has a
variational characterization as the extremizer for the Sobolev embedding
‖f ‖L2N/(N−2) ≤ CN‖∇f ‖L2 . It is referred to as the “ground state.”
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In 2008, K–Merle established the following “ground state conjec-
ture” for (NLW). For u a solution of (NLW) with E (u0, u1) < E (W , 0),
the following dichotomy holds: if ‖∇u0‖ < ‖∇W ‖ then T+ = ∞,
T− = −∞, and u scatters in both time directions, while if ‖∇u0‖ >
‖∇W ‖, then T+ < ∞ and T− > −∞. The case ‖∇u0‖ = ‖∇W ‖
is vacuous because of variational considerations. The threshold case
E (u0, u1) = E (W , 0) was completely described by Duyckaerts–Merle
(2008) in an important work.
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The proof of the “ground state conjecture” was obtained through
the “concentration–compactness/rigidity theorem” method, introduced
by K–Merle for this purpose, which has since become the standard tool
to understand the global in time behavior of solutions, below the ground–
state threshold, for critical dispersive problems.
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Other non–scattering solutions, with T+ = ∞, are the traveling
wave solutions. They are obtained as Lorentz transforms of Q ∈ Σ. Let
~̀ ∈ RN , |~̀| < 1. Then,

Q~̀(x , t) = Q~̀(x − t~̀, 0)

= Q

 −t√
1− |~̀|2

+
1

|~̀|2

 1√
1− |~̀|2

− 1

 ~̀ · x

 ~̀+ x


is a traveling wave solution of (NLW).
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When K–Merle introduced the “concentration–compactness/rigidity
theorem” method to study critical dispersive problems, the ultimate goal
was to establish the soliton resolution conjecture.

As I said earlier, for (NLW) one expects to have soliton resolution
for type II solutions. Thus, if u is a type II solution, one would want to
show that ∃J ∈ N ∪ {0}, Qj , j = 1, . . . , J, Qj ∈ Σ, ~̀j ∈ RN , |~̀j | < 1,
1 ≤ j ≤ J, such that, if tn ↑ T+ (which may be finite or infinite), there

exist λj ,n > 0, xj ,n ∈ RN , j = 1, . . . , J, with
λj,n

λj ′,n +
λj′,n
λj ,n +

|xj,n−xj′,n|
λj ,n →n

∞ for j 6= j ′ (orthogonality of the parameters) and a linear solution
vL(x , t) (the radiation term) such that
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(u(tn), ∂tu(tn))

=
J∑

j=1

 1

λ
(N−2)/2
j ,n

Q j
~̀
j

(
x − xj ,n

λj ,n
, 0

)
,

1

λ
N/2
j ,n

∂tQ j
~̀
j

(
x − xj ,n

λj ,n
, 0

)
+ (vL(x , tn), ∂tvL(x , tn)) + on(1)

as n→∞.
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So far this has been proven in the radial case, N = 3 (DKM 12’,
13’), and in the general case, N = 3, 5 when T+ <∞ and u is “close”
to W , (DKM 11’).

Let me discuss now the radial results. In DKM 12’, the decompo-
sition was proved for a well–chosen sequence of times {tn}n, while in
DKM 13’ it was proven for any sequence of times {tn}n.
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Let me first quickly describe the proof of the 13’ result. The key
new idea was the use of the “channel of energy” method introduced by
DKM, which was used to quantify the ejection of energy as we approach
the final time of existence T+.

The main new fact shown was that if u is a radial, type II, non–
scattering solution, ∃r0 > 0, η > 0, and a small radial global solution
ũ, with u(r , t) = ũ(r , t), for r ≥ r0 + |t|, t ∈ Imax(u), such that ∀t ≥ 0
or ∀t ≤ 0, ∫

|x |≥|t|+r0

|∇x ,t ũ(x , t)|2dx ≥ η.
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The key tool for proving this is what I like to call “outer energy lower
bounds,” which are valid for solutions of the linear wave equation. Let
N = 3, for r0 > 0, Pr0 =

{
(ar−1, 0) : a ∈ R, r ≥ r0

}
⊂ Ḣ1×L2(r ≥ r0).

Let π⊥r0 be the orthogonal projection onto the orthogonal complement
of Pr0 .

Then: for v a radial solution of the linear wave equation, ∀t ≥ 0
or ∀t ≤ 0, we have∫

|x |≥|t|+r0

|∇x ,tv |2 ≥ c
∥∥∥π⊥r0 (v0, v1)

∥∥∥2

Ḣ1×L2(r≥r0)
(DKM 09’). (1)

Carlos Kenig The Energy Critical Wave Equation



In the non–radial case, we have for N = 3, 5, 7, . . . for v a solution
of the linear wave equation, ∀t ≥ or ∀t ≤ 0∫

|x |≥|t|
|∇vx ,t |2dx ≥ c

∫
|∇v0|2 + |v1|2dx (DKM 11’). (2)

When r0 = 0, the two inequalities coincide.
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For the proof in DKM 13’, say when T+ = 1 (the case T+ =∞ is
similar) we first consider (v0, v1) = weak limit of (u(t), ∂tu(t)) as t ↑ 1,
in Ḣ1× L2, which can be shown to exist. Then, vL is the linear solution
with data (v0, v1) at time 1, the “radiation” term. We let v be the
nonlinear solution with data (v0, v1) at time 1, so that, with ~v(t) =
(v(t), ∂tv(t)), ~vL(t) = (vL(t), ∂tvL(t)), ‖~v(t) − ~vL(t)‖Ḣ1×L2 → 0 as
t → 1. It is easy to see from finite speed of propagation, that, for t
near 1, supp(~u(x , t)− ~v(x , t)) ⊆ {|x | ≤ 1− t}.

We then break up ~u(tn)−~v(tn) into a sum of “blocks” (technically,
nonlinear profiles U j associated to a Bahouri–Gérard profile decomposi-
tion) plus a “dispersive” error ~wn which is small in a weaker “dispersive”
norm.
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If one of the “blocks” U j is not ±W , it will send energy outside
the light cone at t = 1 (case t ≥ 0) , a contradiction to the support
property of ~u − ~v , or arbitrarily close to the boundary of the inverted
light cone at t = 0 (case t ≤ 0), also a contradiction. Finally, one uses
(1) again to show that the dispersive error has to be small in energy, by
a similar argument.
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The argument in DKM 12’, for a well–chosen sequence of times,
was different. The first step, say again in the case T+ = 1, was to show
that “no self–similar blow–up” is possible. This means to show, for each
0 < λ < 1, that

lim
t↑1

∫
λ(1−t)<|x |<1−t

|∇x ,tu(x , t)|2dx = 0.

The proof of this used (1).
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One then combines this with virial identities: if 2∗ = 2N/(N − 2),
and ϕ is a suitable cut-off, we have:

∂t

∫
ϕu∂tudx =

∫
|∂tu|2dx −

∫
[|∇u|2 − |u|2∗ ]dx + error, (3)

∂t

∫
ϕx · ∇u∂tudx = −N

2

∫
|∂tu|2dx

+
N − 2

2

∫
[|∇u|2dx − |u|2∗ ]dx + error.

(4)

When N = 3, adding 1
2(3) + (4), we obtain (using no self–similar blow–

up)

∂t

(∫
ϕu∂tudx +

∫
ϕx · ∇u∂tudx

)
= −

∫
|∂tu|2dx + error

which gives us

lim
t↑1

1

1− t

∫ 1

t

∫
|x |≤1−s

|∂tu|2dxds = 0.

Carlos Kenig The Energy Critical Wave Equation



Using this fact, one can show that each nonlinear block U j is time
independent, and hence ±W , and that the dispersive error ~wn has time
derivative going to 0 in L2, for a well chosen sequence of times.

One can then use (2) to show wn → 0 in Ḣ1.
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We next turn our attention to higher dimensions and the non–
radial case. Before doing so, let me mention that the techniques just
explained have found important applications to the study of equivariant
wave maps and to the defocusing energy critical wave equation with a
trapping potential, in works of Côte, Lawrie, Schlag, Liu, Jia, K, etc.

Now we should mention a fundamental fact, proved by Côte–K–
Schlag 13’: (1) and (2) fail for all even N, radial solutions. However, (2)
holds for N = 4, 8, 12, . . . for (v0, v1) = (v0, 0) and for N = 6, 10, 14, . . .
for (v0, v1) = (0, v1), but not necessarily otherwise.
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Moreover, K–Lawrie–Liu–Schlag 14’ have shown that an analogue
of (1) holds for all odd N, u radial, and applied this to a stable soliton
resolution for exterior wave maps on R3.

In 14’, my student Casey Rodriguez used this analogue of (1) for
all odd N to prove the radial case of soliton resolution along a well–
chosen sequence of times for (NLW) in all odd dimensions, following
the argument in DKM 12’.
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What to do for N even, radial case, non–radial case?

We start by discussing the radial case for N = 4, which is very close
in spirit to co–rotational wave maps from R2 into the sphere S2. The
first obstacle is that, due to the failure of (1), we did not know that
self–similar blow–up is ruled out, which is the first thing to do in order
to implement the strategy of DKM 12’ for a well–chosen sequence of
times.
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This was not a difficulty in the work of Côte–Kenig–Lawrie–Schlag
13’ on co–rotational wave maps, due to classical results of Christodoulou,
Shatah, and Tahvildar–Zadeh from the 90’s, who showed it by integra-
tion by parts, exploiting the finiteness of the flux, a consequence of the
fact that the energy density is non–negative.

This obviously does not hold for (NLW) and is a major difficulty.
This difficulty was overcome by Côte–K–Lawrie–Schlag 14’, by reversing
the usual analogy with co-rotational wave maps.
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We observed that if u is a radial solution to the energy critical wave
equation on R4, then ψ(r , t) = ru(r , t) solves

∂2
t ψ − ∂2

r ψ −
1

r
∂rψ +

ψ − ψ3

r2
= 0.

We let f (ψ) = ψ − ψ3, F (ψ) =
∫ ψ
0 f (α)dα = ψ2

2

[
1− ψ2

2

]
, and the

“energy” is

1

2

∫ ∞
0

[
(∂tψ)2 + (∂rψ)2 +

2F (ψ)

r2

]
rdr ,

which is conserved. Note that if |ψ| ≤
√

2, F (ψ) ≥ 0.
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Now recall that we have the “radiation” v such that supp(~u(t) −
~v(t)) ⊂ {0 < r ≤ 1 − t} and since v is a “regular” solution at t = 1,
v → 0, for r = 1 − t, t → 1. Thus, the same holds for u, which
shows that, for λ0 close to 1, λ0(1− t) < r < (1− t) we have the non–
negativity of F (ψ), and the classical argument applies, also yielding that
now ψ → 0 on r = λ0(1− t).

An iterative argument in λ0 now gives the lack of self–similar blow–
up. Hence we could start the process in DKM 12’, and use the fact that
on R4 (2) holds for data of the form (v0, 0), which is the type that we
have for the dispersive error, and everything works.
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What do we do when N = 6, when the good data in (2) are of
the form (0, v1)? This was the same difficulty one encountered for 2–
equivariant wave maps into the sphere, and for radial Yang–Mills in
R4.

All of this was overcome in recent work of Hao Jia–K, who proved
the analog of DKM 12’ for a well–chosen sequence of times in all di-
mensions, and also dealt with all equivariant classes for wave maps and
radial Yang–Mills in R4. This was done by not using the “channels of
energy.”
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The first step is to prove lack of self–similar blow–up. The ar-
gument I sketched in R4 in fact applies to all dimensions, yielding a
decomposition with blocks that are ±W and a dispersive error, for a
well–chosen sequence of times {t1

n}n.

We then use again the second virial (4) which now gives

lim
t↑1

1

1− t

∫ 1

t

∫
|x |≤1−s

[|∇u|2 − |u|2∗ ]dxds = 0.

On static solutions,
∫

[|∇Q|2 − |Q|2∗ ]dx = 0, and thus we obtain,
by real variable arguments that, for a possibly different, well–chosen
sequence of times {t2

n}n we have lim
∫

[|∇wn|2 − |wn|2
∗
]dx ≤ 0. But,

for the dispersive error
∫
|wn|2

∗
dx → 0, which concludes the argument.
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I would like to conclude with some recent results in the non–radial
setting. Last summer, Hao Jia was able to extend the analogy with
wave maps to the non–radial setting and in particular control the flux,
when T+ <∞, i.e. the type II blow–up case.

This allowed him to obtain a Morawetz type identity (adapted from
the wave maps one), to find a well–chosen sequence of times tn → T+ <
∞, so that the desired decomposition holds in the non–radial case when
T+ <∞, with an error tending to 0 in the dispersive sense.

Here he also used the idea of combining virial identities I just ex-
plained.
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In the case T+ = ∞, one new difficulty is the extraction of the
linear radiation term. This has been done recently by DKM 16’ (arXiv).
Moreover, very recently, in the joint work of D–Jia–K–M 16’ (arXiv) we
have obtained the soliton resolution for a well–chosen sequence of times,
for general type II solutions, both in the case T+ < ∞ and T+ = ∞.
The result is:

Theorem (D–Jia–K–M 16’)

Let u ∈ C ([0,T+), Ḣ1 × L2(RN)), 3 ≤ N ≤ 6, be such that

sup
0≤t<T+

‖(u(t), ∂tu(t))‖Ḣ1×L2 ≤ M.
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Theorem (D–Jia–K–M 16’) contd.

Case 1: T+ <∞. Consider the singular set S, which is a finite set of
points, and x∗ ∈ S. Then ∃J∗ ∈ N, J ≥ 1, r∗ > 0, v ∈ Ḣ1 × L2 a
regular solution near T+, tn ↑ T+, scales λj

n, 0 < λj
n � (T+ − tn),

positions c j
n ∈ RN such that c j

n ∈ Bβ(T+−tn)(x∗), β ∈ (0, 1) with
~̀
j = limn(c j

n − x∗)/(T+ − tn) well defined and traveling waves Q j
~̀
j

for

1 ≤ j ≤ J∗ such that in the ball Br∗(x∗) we have

~u(tn) = ~v(tn)

+
J∗∑
j=1

(
(λj

n)1−N/2Q j
~̀
j

(x − c j
n

λj
n

, 0
)
, (λj

n)−N/2∂tQ j
~̀
j

(x − c j
n

λj
n

, 0
))

+ oḢ1×L2(1) as n→∞,

and λj
n/λ

j ′
n + λj

n/λ
j ′
n + |c j

n − c j ′
n |/λj

n →n ∞, 1 ≤ j 6= j ′ ≤ J∗.
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Theorem (D–Jia–K–M 16’) contd.

Case 2:T+ =∞. ∃ a linear solution uL such that

lim
t→∞

∫
|x |≥t−A

|∇(u − uL)|(x , t)2 + |∂t(u − uL)|(x , t)2dx = 0,

for all A > 0. Moreover, ∃J∗ ∈ N, tn ↑ ∞, λj
n, 0 < λj

n � tn, c
j
n ∈ RN

such that c j
n ∈ Bβtn(0), β ∈ (0, 1) with ~̀j = limn c j

n/tn well defined

and traveling waves Q j
~̀
j

for 1 ≤ j ≤ J∗ such that

~u(tn) = ~uL(tn)

+
J∗∑
j=1

(
(λj

n)1−N/2Q j
~̀
j

(x − c j
n

λj
n

, 0
)
, (λj

n)−N/2∂tQ j
~̀
j

(x − c j
n

λj
n

, 0
))

+ oḢ1×L2(1) as n→∞,

and λj
n/λ

j ′
n + λj

n/λ
j ′
n + |c j

n − c j ′
n |/λj

n →n ∞, 1 ≤ j 6= j ′ ≤ J∗.
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The passage to arbitrary time sequences seems to require substan-
tially different arguments.
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Thank you for your attention.
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