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The k-plane transform.

I For f : Rd → R a smooth function and π ⊂ Rd is a k-plane
we define

Rf (π) =

∫
π
f .

I The operator R is the k-plane transform.

I If the space of k-planes G is provided with its invariant
measure µ then R extends to a continuous operator
L1(Rd , dx) to L1(G, dµ) (Fubini) and Lp(Rd , dx) to
Lq(G, dµ), where

p =
d + 1

k + 1
, q = d + 1.

I Other Lp to Lq boundedness properties on Lebesgue spaces
follow from interpolation theory between the L1 estimate and
the endpoint case.
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What are the extremizers for the inequality
|Rf |p ≤ A|f |q?

I Extremizers are functions for which the ratio |Rf |q/|f |p is
maximal.

I Conjecture (Baernstein-Loss, ′97): some extremizers take
the form 〈x〉−α for a certain exponent α depending on
p, q, k , d . Here 〈x〉 = (1 + |x |2)1/2.

I They proved their conjecture in the cases of the 2-plane
transform when q is an integer; and when q = 2.

Theorem (Christ ’11, Drouot ’11, Flock ’13)

In the endpoint case p = d+1
k+1 , q = d + 1 the extremizers are all

given by a〈Lx〉−k−1, where L is an affine map and a is a non-zero
constant.
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Non-increasing radial rearrangement.

f f ∗

Theorem (Christ ’84)

If q ≤ d + 1 is an integer then |Rf |q ≤ |Rf ∗|q.

Hence (if one puts aside the uniqueness question) we can restrict
ourselves to radial non-increasing extremizers.
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Mapping the inequality on the sphere I.

•x
R2

•

•

S2

•
ω

•−ω

•

•

Correspondance x ∈ Rd ←→ ±ω ∈ Sd , f (x)←→ F (ω). After
insertion of a Jacobian factor,

if p =
d + 1

k + 1
then |f |p = |F |p.

The radial nonincreasing rearrangement on Rd transfers to an
asymmetric notion of rearrangement on Sd through f 7→ F .
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Mapping the inequality on the sphere II.

R2π

•

•

S2

π
C

•

•

Correspondance π ←→ C, g(π)←→ G (C). Let R+ be the k-circle
transform (on Sd) and recall the correspondance f (x)←→ F (ω).

Theorem (Drury ’89)

If q = d + 1 then |R+F |q = |Rf |q.

Hence we can consider the inequality on the sphere instead.
We discover new symmetries: rotations about the ex , ey axis.
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Competing symmetries (after Carlen and Loss).

Function F0 localized near the black spots.

Radialize; get F ∗0 . Note |R+F
∗
0 |q ≥ |R+F0|q.

Rotate; get F1. Note |R+F1|q = |R+F
∗
0 |q.

Radialize; get F ∗1 . Note |R+F
∗
1 |q ≥ |R+F1|q.

Rotate; get F2. Note |R+F2|q = |R+F
∗
1 |q.

...

We get F0,F1, ... with |F0|p = |F1|p = ... and |R+F0|q ≤ |R+F1|q ≤ ...
It seems that Fn → 1. True by general result of Carlen, Loss.

Since F0 was arbitrary we have ∀F0, |R+F0|q ≤ |R+1|q.

Hence 1 is an extremizer. Back to Rd : 〈x〉−k−1 is extremizer.
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Since F0 was arbitrary we have ∀F0, |R+F0|q ≤ |R+1|q.

Hence 1 is an extremizer. Back to Rd : 〈x〉−k−1 is extremizer.
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No extremizers for the k-plane transform on Hd .
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The map ζ ∈ Hd 7→ x ∈ Bd transfers to a Lp-isometry F(ζ) 7→
f |Bd (x). The sharp constants for the k-plane transform R−
on Hd and R are equal: as before |Rf |Bd |q = |R−F|q and some
extremizers for R are essentially localized in Bd . But none have
compact support: no extremizers for R−.
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Conclusion.

In the endpoint case p = d+1
k+1 , q = d + 1:

1. 〈x〉−k−1 is extremizer for the Lp → Lq inequality satisfied by
the k-plane transform on Rd .

2. 1 is extremizer for the Lp → Lq inequality satisfied by the
k-plane transform on Sd .

3. There are no extremizers for the Lp → Lq inequality
satisfied by the k-plane transform on Hd .

Thanks for your attention!
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