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d+1

p PERE q +

» Other LP to L9 boundedness properties on Lebesgue spaces
follow from interpolation theory between the L! estimate and
the endpoint case.
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Theorem (Christ '11, Drouot '11, Flock '13)

In the endpoint case p = %, g = d + 1 the extremizers are all

given by a(Lx) %=1, where L is an affine map and a is a non-zero
constant.
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Theorem (Christ '84)
If g < d+1is an integer then |Rf|q < |Rf*|q.

Hence (if one puts aside the uniqueness question) we can restrict
ourselves to radial non-increasing extremizers.
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S2

I

Correspondance x € RY «— 4w € §9, f(x) +— F(w). After
insertion of a Jacobian factor,

]R2

d+1
if p=—— then |f|, = |F|,.
p k+1 1o = IFlp
The radial nonincreasing rearrangement on RY transfers to an
asymmetric notion of rearrangement on S¢ through f — F.
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Hence we can consider the inequality on the sphere instead.
We discover new symmetries: rotations about the e, e, axis.
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The map ¢ € HY — x € B? transfers to a LP-isometry F({)
flgs(x). The sharp constants for the k-plane transform R _
on HY and R are equal: as before |Rf|gd|q = |R_F]|q and some
extremizers for R are essentially localized in BY. But none have
compact support: no extremizers for R_.
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Thanks for your attention!



