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We write A . B if there is an implicit constant C which depends
on fixed parameters such as n (dimension of Rn) and p (the index
of Lp) such that

A ≤ CB .

C will never depend on the scales δ,N.

We often write A .ǫ N
ǫ to denote the fact that the implicit

constant depends on ǫ. For example logN .ǫ N
ǫ, for each ǫ > 0

We will use the notation e(z) = e2πiz , z ∈ R.
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For each integers s ≥ 1 and n,N ≥ 2 denote by Js,n(N) the
number of integral solutions for the following system

X i
1 + . . .+ X i

s = Y i
1 + . . . + Y i

s , 1 ≤ i ≤ n,

with 1 ≤ X1, . . . ,Xs ,Y1, . . . ,Ys ≤ N.
Example: n=2

{
X1 + . . .+ Xs = Y1 + . . .+ Ys

X 2
1 + . . . + X 2

s = Y 2
1 + . . .+ Y 2

s

.

Theorem (Vinogradov’s Mean Value “Theorem”)

For each s ≥ 1, ǫ > 0 and n,N ≥ 2 we have the upper bound

Js,n(N) .ǫ N
s+ǫ + N2s− n(n+1)

2
+ǫ.

The number Js,n(N) has the following analytic representation

Js,n(N) =

∫

[0,1]n
|

N∑

j=1

e(x1j + x2j
2 + . . .+ xnj

n)|2sdx1 . . . dxn.
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Theorem (Vinogradov’s Mean Value “Theorem” (VMVT))

For each p ≥ 2, ǫ > 0 and n,N ≥ 2 we have the upper bound

(

∫

[0,1]n
|

N∑

j=1

e(x1j + x2j
2 + . . . + xnj

n)|pdx1 . . . dxn)1/p .ǫ

{
N

1
2
+ǫ, if 2 ≤ p ≤ n(n + 1)

N
1− n(n+1)

2p
+ǫ
, if p ≥ n(n + 1)

.

When p = 2,∞ we have sharp estimates

‖
N∑

j=1

e(x1j + x2j
2 + . . .+ xnj

n)‖Lp(Tn) =

{
N

1
2 , p = 2

N, p = ∞

Given n, the full range of estimates in VMVT will follow if we
prove the case p = n(n+ 1) (critical exponent)
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• n=2 is easy and has been known (folklore?). It has critical
exponent p = 2(2 + 1) = 6. One needs to check that

{
X1 + X2 + X3 = Y1 + Y2 + Y3

X 2
1 + X 2

2 + X 2
3 = Y 2

1 + Y 2
2 + Y 2

3

.

has O(N3+ǫ) integral solutions in the interval [1,N]. Note that
(X1,X1,X3,X1,X2,X3) is always a (trivial) solution, so we have at
least N3 solutions. The required estimate says that fixing
X1,X2,X3 will determine Y1,Y2,Y3 within O(Nǫ) choices. Using
easy algebraic manipulations this boils down to the fact that a
circle of radius N contains at most O(Nǫ) lattice points.

Ciprian Demeter (Indiana University) joint with Jean Bourgain (IAS) and Larry Guth (MIT)Vinogradov’s Mean Value Theorem



• n ≥ 3 : Only partial results have been known until ∼ 2012

Theorem (Vinogradov (1935), Karatsuba, Stechkin)

VMVT holds for p ≥ n2(4 log n + 2 log log n+ 10), and in fact one
has a sharp asymptotic formula

‖
N∑

j=1

e(x1j + x2j
2 + . . .+ xnj

n)‖Lp(Tn) ∼ C (p, n)N1−
n(n+1)

2p

Wooley developed the efficient congruencing method which led to
the following progress

Theorem (Wooley, 2012 and later)

VMVT holds for
• n = 3 and all values of p
• p ≤ n(n+ 1)− 2n

3 + O(n2/3),
• p ≥ 2n(n − 1), all n ≥ 3
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Theorem (Bourgain, D, Guth 2015)

VMVT holds for all n ≥ 2 and all p.

Moreover, when combining this with known sharp estimates on
major arcs, there will be no losses in the supercritical regime
p > n(n + 1)

‖
N∑

j=1

e(x1j + x2j
2 + . . .+ xnj

n)‖Lp(Tn) ≤ C (p, n)N
1− n(n+1)

2p .

Our method does not seem to say anything meaningful about the
implicit constant C (p, n), so we can’t say anything new about the
zero-free regions of the Riemann zeta. But the are at least two
other classical applications.
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Weyl sums
x = (x1, . . . , xn)

fn(x,N) =
N∑

j=1

e(x1j + x2j
2 + . . .+ xnj

n)

Theorem (H. Weyl)

Assume |xn − a
q
| ≤ 1

q2
, (a, q) = 1. Then

|fn(x,N)| . N1+ǫ(q−1 + N−1 + qN−n)2
1−n

As a consequence of VMVT we can now replace 21−n with
σ(n) = 1

n(n−1) (best known bounds for large n).
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The asymptotic formula in Waring’s problem

Rs,k(n) = number of representations of the integer n as a sum of s
kth powers. Based on circle method heuristics, the following
asymptotic formula is conjectured

Rs,k(n) =
Γ(1 + 1

k
)s

Γ( s
k
)

Gs,k(n)n
s
k
−1 + o(n

s
k
−1), n → ∞

for s ≥ k + 1, k ≥ 3. Let G̃(k) (Waring number) be the smallest
s for which the formula holds.
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Wooley showed that VMVT would imply for all k ≥ 3

G̃(k) ≤ k2 + 1− max
1≤j≤k−1

2j≤k2

[
kj − 2j

k + 1− j

]
.

In particular, we get

G̃ (k) ≤ k2 + 1−
[
log k

log 2

]

This improves all previous bounds on G̃(k), except for Vaughan’s
G̃ (3) ≤ 8 (1986).

Further improvements are possible. Our VMVT leads (rather
immediately) to progress on Hua’s lemma, which leads (Bourgain
2016) to a further improvement

G̃ (k) ≤ k2 − k + O(
√
k).
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f (x) =
∑

j∼N

e(jnx)

Conjecture:
∫ 1
0 |f (x)|pdx . Np−n+ǫ, for p ≥ 2n

Lemma (Hua)

For l ≤ n

∫ 1

0
|f (x)|2l dx . N2l−l+ǫ, sharp when l = n

Theorem (Bourgain, 2016)

For s ≤ n

∫ 1

0
|f (x)|s(s+1)dx . Ns2+ǫ, sharp when s = n
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Motivated in part by investigations by T. Wolff from late 1990s,
Bourgain and I have developed a decoupling theory for Lp spaces.
In a nutshell, our theorems go as follows:

Theorem (Abstract decoupling theorem)

Let f : M → C be a function on some compact manifold M in
Rn, with natural measure σ. Partition the manifold into caps τ of
size δ (with some variations forced by curvature) and let fτ = f 1τ
be the restriction of f to τ . Then there is a critical index pc > 2
and some q ≥ 2 (both depending on the manifold) so that we have

‖f̂dσ‖Lp(Bδ−q ) .ǫ δ
−ǫ(

∑

τ :δ−cap

‖ ̂fτdσ‖2Lp(Bδ−q )
)1/2

for each ball Bδ−q in Rn with radius δ−q and each 2 ≤ p ≤ pc .
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For a ”non-degenerate” d -dimensional smooth, compact graph
manifold in Rn

M = {(t1, . . . , td , φ1(t1, . . . , td ), . . . , φn−d (t1, . . . , td ))}

it seems reasonable to expect (at least for lp decouplings)

(1) pc = 4n
d
− 2 and q = 2, if d > n

3 . This should be achieved with

purely quadratic φi . When d = n − 1, pc = 2(n+1)
n−1 .

(2) pc = 3 · 4 and q = 3, if n
4 < d ≤ n

3 . The cubic terms become
relevant. Examples include

(t, t2, t3) in R
3, (t1, t

2
1 , t

3
1 , t2, t

2
2 , t

3
2 , 0) in R

7

(3) pc = 4 · 5 and q = 4, if n
5 < d ≤ n

4 . The quartic terms become
relevant. One example is (t, t2, t3, t4) in R4.

It is clear how to continue.
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Bourgain’s observation (2011): To get from...

Theorem (Abstract decoupling theorem)

‖f̂dσ‖Lp(Bδ−q ) .ǫ δ
−ǫ(

∑

τ :δ−cap

‖ ̂fτdσ‖2Lp(Bδ−q )
)1/2

for each ball Bδ−q in Rn with radius δ−q and each 2 ≤ p ≤ pc .

...to the exponential sum estimate

Theorem (Abstract exponential sum estimate)

For each cap τ let ξτ ∈ τ and aτ ∈ C. Then

|Bδ−q |−1/p‖
∑

τ

aτe(ξτ · x)‖Lp(Bδ−q ) .ǫ δ
−ǫ(

∑

τ

|aτ |2)1/2

for each ball Bδ−q in Rn with radius δ−q and each 2 ≤ p ≤ pc ,

simply use (a smooth approximation of) f (ξ) =
∑

τ aτδξτ
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We have so far established the optimal decoupling theory for the
following manifolds M, with the following applications

• Hypersurfaces in Rn with nonzero Gaussian curvature
(pc = 2(n+1)

n−1 ). Many applications: Optimal Strichartz estimates
for Shrödinger equation on both rational and irrational tori in all
dimensions, improved Lp estimates for the eigenfunctions of the
Laplacian on the torus, etc

• The cone (zero Gaussian curvature) in Rn (pc = 2n
n−2 ). Many

applications: progress on Sogge’s “local smoothing conjecture for
the wave equation”, etc

• (Bourgain) Two dimensional surfaces in R4 (pc = 6).
Application: Bourgain used this to improve the estimate in the
Lindelöf hypothesis for the growth of Riemann zeta

• (with Larry, too) Curves with torsion in Rn (pc = n(n + 1)).
Application: Vinogradov’s Mean Value Theorem.
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Here is some insight on why we need to work on ”big” balls Bδ−q .

Typically, working with q = 1 does not produce interesting results,
decoupling only works at this scale for p = 2. The very standard
(L2 almost orthogonality) estimate is that, for any δ- separated
points ξ in Rn.

(
1

|Bδ−1 |

∫

B
δ−1

|
∑

ξ

aξe(ξ · x)|2dx)1/2 . ‖aξ‖l2 .

One can not replace the L2 average with an Lp (p > 2) average if
no additional restrictions are imposed.
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Even under the curvature assumption Λ ⊂ Sn−1, when p = 2(n+1)
n−1

the expected estimate is (equivalent form of Stein-Tomas)

(
1

|Bδ−1 |

∫

Bδ−1

|
∑

ξ∈Λ

aξe(ξ · x)|pdx)1/p . δ
n
p
−

n−1
2 ‖aξ‖l2 .

Note that the exponent n
p
− n−1

2 is negative.

However, by averaging the same exponential sum on the larger ball
Bδ−2 (this allows more room for the oscillations to annihilate each
other), we get a stronger estimate (reverse Hölder)

(
1

|Bδ−2 |

∫

Bδ−2

|
∑

ξ∈Λ

aξe(ξ · x)|pdx)1/p . δ−ǫ‖aξ‖l2 .

This perhaps explains why early attempts to prove optimal
Strichartz estimates on Tn using the Stein-Tomas approach failed.

Recap: Decouplings need separation, curvature and large
enough spatial balls.
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Theorem (Bourgain, D, Guth, 2015)

Let ξ̄ = (ξ, . . . , ξn) be δ−separated points on the curve

{(t, t2, . . . , tn) : 0 ≤ t ≤ 1}.

Then for each 2 ≤ p ≤ n(n + 1)

(
1

|Bδ−n |

∫

Bδ−n

|
∑

ξ̄

aξ̄e(ξx1 + ξ2x2 + . . . ξnxn)|pdx)1/p .ǫ δ
−ǫ‖aξ̄‖l2

Apply this with ξ = j
N
, 1 ≤ j ≤ N. Change variables

x1
N

= y1, . . . ,
xn
Nn = yn. Then we get (δ = 1

N
)

(
1

|C |

∫

C

|
N∑

j=1

aje(jy1 + j2y2 + . . . jnyn)|pdy)1/p .ǫ N
ǫ‖aj‖l2

C = [−Nn−1,Nn−1]× [−Nn−2,Nn−2]× . . .× [−1, 1]
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(
1

|C |

∫

C

|
N∑

j=1

aje(jy1 + j2y2 + . . . jnyn)|pdy)1/p .ǫ N
ǫ‖aj‖l2

C = [−Nn−1,Nn−1]× [−Nn−2,Nn−2]× . . .× [−1, 1]

Next cover C with translates of [0, 1]n and use periodicity to get

(

∫

Tn

|
N∑

j=1

aje(jy1 + j2y2 + . . . jnyn)|pdy)1/p .ǫ N
ǫ‖aj‖l2

Conclusions

1. Periodicity is the only fact that we exploit about integers j . We
have no other number theory in our argument. In fact, integers
can be replaced with well separated real numbers.

2. We recover a more general theorem, with coefficients aj .
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The proof of our decoupling theorem (n=3)...

M = {(t, t2, t3) : 0 ≤ t ≤ 1}.

Theorem

Let f : M → C. Partition M into caps τ of size δ. Then

‖f̂dσ‖L12(Bδ−3 ) .ǫ δ
−ǫ(

∑

τ

‖ ̂fτdσ‖2L12(Bδ−3 )
)1/2

for each ball Bδ−3 in R3 with radius δ−3.

...goes via gradually decreasing the size of the caps τ and at the
same time increasing the radius of the balls. This is done using the
following tools.
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• L2 decoupling: This is a form of L2 orthogonality

‖f̂dσ‖L2(Bδ−1 ) . (
∑

τ

‖ ̂fτdσ‖2L2(Bδ−1 )
)1/2

It only works for L2 but it decouples efficiently, into caps of very
small size, equal to

1

radius of the ball
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• Lower dimensional decoupling: We use induction on
dimension. We assume and use the n = 2 decoupling result at L6.

The weakness of this is that the critical exponent pc = 6 for
n = 2 is small compared to 12 (n = 3).

The strength is the fact that it decouples into small intervals, of
length 1

R1/2 as opposed to 1
R1/3 (R is the radius of the spatial ball).

At the right spatial scale, arcs of the twisted cubic look planar.
One can treat them with L6 decoupling. For example, the ∼ δ−3

neighborhood of
{(t, t2, t3) : 0 ≤ t ≤ δ}

is essentially the same as the ∼ δ−3 neighborhood of the arc of
parabola

{(t, t2, 0) : 0 ≤ t ≤ δ}

so there is an L6 decoupling of this into δ
3
2 arcs on Bδ−3
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• Multilinear Kakeya type inequalities: Do a wave packet
decomposition of f̂dσ using plates.

There is a hierarchy of incidence geometry inequalities about how
these plates intersect, ranging from easy to hard. These
inequalities have only been clarified in the last two years.
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Theorem (Multilinear Kakeya in disguise)

Fix 1 ≤ k ≤ n − 1, p ≥ 2n and n! separated intervals Ii ⊂ [0, 1].
Let B be an arbitrary ball in Rn with radius δ−(k+1), and let B be
a finitely overlapping cover of B with balls ∆ of radius δ−k . Then
(# denotes an average)

1

|B|
∑

∆∈B




n!∏

i=1

(
∑

Ji⊂Ii
|Ji |=δ

‖ĝJi dσ‖2
L
pk
n

♯ (∆)
)1/2




p/n!

.

δ−ǫ




n!∏

i=1

(
∑

Ji⊂Ii
|Ji |=δ

‖ĝJi dσ‖2
L
pk
n

♯ (B)
)1/2




p/n!

.

Our first attempt (Jean and I) to prove VMVT only used the
k = 1 result and resulted in the poor range 2 ≤ p ≤ 4n − 2.
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• Parabolic rescaling: Each arc on (t, t2, . . . , tn) can be mapped
via an affine transformation to the full arc (0 ≤ t ≤ 1).

• Lots of induction on scales: Let Cδ be the best constant in
some decoupling inequality at scale δ. How does Cδ relate to
Cδ1/2?

• Lots of Hölder’s inequality and ball inflations
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