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Part 1: Introduction



Young's convolution inequality for RY [1913]

e For functions on R?

1% gllr < Aggllfllpllgllq

where A, is a certain explicit constant
A,y <1 when p,q,r e (1,00)

e Beckner and Brascamp-Lieb (1974/75)

e Extremizers are (compatible) ordered pairs of Gaussians.
(Lieb 1990)



Young's inequality (continued)

» Monotonicity of (f % g, h) under a certain nonlinear heat flow
establishes these results.

» The heat flow analysis was developed for arbitrary
Holder-Brascamp-Lieb multilinear inequalities by
Bennett-Carbery-Tao circa 2008.

» Ordered pairs that satisfy
I+ gllr > (1= )AL fllpllglly  for small 6 >0

are those close in LP x L9 to the extremizing Gaussians.
(C. 2011)



Riesz-Sobolev inequality (1930, 1938)

For any Lebesgue measurable sets A, B, C C R? with finite
Lebesgue measures,

where A* = ball centered at 0 with |A*| = |A|, et cetera.

Corresponding result for general nonnegative functions follows by
expressing f as superposition of indicator functions of superlevel
sets {x : f(x) > t}.



Equality in Riesz-Sobolev (Burchard [1998])

Let d = 1. If E; satisfy

<1E1 * 1E27]-E3> = <1E1* x 1E2*’1E3T>

then (up to null sets) ’ E, are intervals ‘ whose centers satisfy

provided

|Ex| <|Ei| +|E| |called admissibility

for all permutations (i, J, k) of (1,2, 3).



Equality in Riesz-Sobolev (continued)

For d > 1, Burchard showed that equality occurs

» Only for (homothetic, compatibly centered) ellipsoids in the
strictly admissible case |Ex |9 < |E;|Y/9 + |E;|M/9,

» Only for (homothetic, compatibly centered) in
the borderline admissible case.

There are two entirely different components in the analysis.

A clever device, based on the ordering property of R
(attributed by Burchard to Riesz). This device builds on the

characterization of equality in the Brunn-Minkowski inequality.

Combination of the d = 1 theorem with (repeated)
Steiner symmetrization.



Brascamp-Lieb-Luttinger inequality (1974)

Let m > 2 and n > m. Consider

¢<f1,f2,...,fn)=/ (f 0 L;) d
iy

j=

where L; : R™ — R! are (distinct) surjective linear mappings
(with no common nullspace).

Theorem.
O(f,...,f) <O, ..., ).

The case of nonnegative functions follows directly from the
fundamental case of indicator functions of arbitrary sets.



Part 2

Which sets maximize BLL functionals with L; : R™ — R1?



Holder-Brascamp-Lieb/BLL functional symmetry group

e A BLL functional defined by integration over R™ has an
m—dimensional group of symmetries:

/ HIE x)) dx

is invariant under any translation x — x 4+ v of R™.

e This corresponds to translating each E; by Lj(v), so |E;j| is
unchanged.

e Maximizing tuples can be unique only up to the action of this
group.



Example: Gowers forms and norms

e For kK > 2 the Gowers

Ti(fo € {0,1}5) / / w(x + a - h)dhdx
x€R J heRk

ae{0, 1}k
where f, : R — [0, o0].
e There are 2* functions f,,; integration is over Rk+1L,

e Gowers are

11125 = Ta(F, ..., F).



Example: Gowers forms and norms (continued)

> Ti(fa o € {0,1}%) < Ak [1, lIfallrx where py is dictated by
scaling.

» Extremizing tuples are tuples of Gaussians; Eisner-Tao found
the optimal constant in the inequality.

» C. showed that sets whose indicator functions have nearly
maximal Gowers norms, among sets of specified Lebesgue
measure, are nearly equal to intervals.

» My student Anh Nguyen is working to prove the
corresponding stability result: Functions of nearly maximal
Gowers norm are nearly (in norm) equal to Gaussians.



Maximizers of the Brascamp-Lieb-Luttinger inequality?

» Burchard characterized (admissible) extremizers of BLL
functionals for n = m + 1 (one more function than
dimension). (A corollary of her theorem on the Riesz-Sobolev
inequality (m =2, n=3).)

» Flock and C. treated
/ [[(fioL)
R?

for an arbitrarily large number of functions f;
» but were unable to generalize further.

» C. used Burchard's theorem in characterizing extremizers for a
natural inequality for the Radon transform. Flock and Drouot
extended this to the k-plane transform for all k.



Theorem: Maximizers of the B-L-L inequality

Assumptions/notation.
» L;: R™ — R surjective linear mappings. (Natural
nondegeneracy hypotheses.)
» n = number of sets E; is > m.
> (15l 1<) <n) :
Conclusion. If ®(Eq, ..., E,) = ®(Ef, ..., E}) then Ej are
intervals with compatibly situated centers.

Admissibility is equivalent to this simple necessary condition: If E; are
intervals of the specified lengths centered at 0, and if any one of these
intervals is translated, then the functional ® decreases.



A flow on special sets (Brascamp-Lieb)

For any finite union of intervals E C R, define a flow t — E(t)
for t € [0, 1], as follows:

>

>

>

E(0) =E.
Each constituent interval moves rigidly at a constant speed so
that its center will arrive at the originat t =1

Stop the clock, glue together any intervals that have collided.
The total number of intervals decreases.

Restart the clock, with each interval moving at a constant
speed chosen so that its center will arrive at the origin at
t=1

until the next collision . ..

If sets E; each flow in this way then ®(Ei(t),..., E,(t)) is a

nondecreasing function of t for any tuple of sets.



“Theorem”:! Flow on general (Lebesgue measurable) sets
There exists a flow [0,1] 5 t — E(t) satisfying
» Flow is as already defined for finite unions of intervals.
» E(0) arbitrary; E(1) = E(0)*.
» Continuous: lims_,+ |E(s) A E(t)| = 0.
» Measure-preserving: |E(t)| = |E]|
» Inclusion monotonic: A C B = A(t) C B(t)
» Contractive: |A(t) A B(t)| < |AAB|.

» Functional monotonic: For any BLL functional,
®(Ei(t),. .., Es(t)) is a nondecreasing function of t.




Aside: Smoothing property of the flow

For any set E C R (positive, finite Lebesgue measure), for any
t >0, E(t) is (up to a null set) a countable union of intervals.



Corollary

Corollary of flow. In order to characterize maximizers of a BLL
functional it suffices to prove that tuples of intervals centered at 0

are strict | LOCAL | maximizers. O

This means that one need only examine tuples satisfying
EAE|<8

where dp may be chosen as small as desired (but fixed).



v

Part 3: Perturbative analysis

| will next sketch how the proof of local maximality works for
the Riesz-Sobolev inequality.

This provides a alternative proof of
Burchard's 1998 theorem for R,

The proof of the new theorem that | have stated
— the analysis for general BLL functionals —
requires additional ideas.

(The extension of the flow to general sets is not actually
required in the argument below; | just like it and wanted to
share it.)



Expansion
® Express 1, = lEj* + fj. Thus

+1on E;\ Ef
fi = —lonEj*\Ej

0 else.

e By hypotbhesis, ||fj|1 < |Ej|.
e Crucially, [fj=0 V.
e Expand

(16 16, 15) = ((Lg + A) * (15 + £), (1g; + 5))

into 8 terms.



Perturbative analysis (continued)

e The first variation term is Zi:l | Knfy
where | K, = 1gx * IEJ,* and {1,2,3} = {i,j, n}.

e The kernel K, satisfies

Xienz_f; Kn(x) = XS;E; Kn(x),

is even, is nonincreasing on [0,00), and has strictly negative
derivative at the right endpoint of E}.

e This is a constrained optimization problem. The first variation is
not necessarily zero; it is typically negative and thus helps us.

e However, the second variation typically has the wrong sign.



e First variation term
/ann = —|E, A EX|?

if nearly all points of E, A E} are located within distance
C|E, A E| of the boundary of E}, but is otherwise much more
negative.

e The second and third order terms are O(max; |E; A EJ-*\z).

e A simple analysis exploiting this and based on the above
properties of K, allows reduction to the case in which

every point of £; A EF lies within distance C|E; A Ef| of an
endpoint of the interval Ej*.



Perturbations near edges of Ef

Given (E;j : j € {1,2,3}) define

= inf E + L; A EF
6= inf max|(E+Li(v)) AEf|

where the infimum is taken over all v € R™.
Thus consider orbit of (E1, Ez, E3) under the symmetry group

introduced above, and choose v that provides the optimal
approximation by a system of compatibly centered intervals.



There are two cases

Case (1)
There exists n such that E, has

diameter(E,) > |E,| + ¢d

where “diameter” means that any interval of diameter < |E,| + ¢d
misses a subset of E, having measure > ¢’¢.

Case (2)
Each set E, is very nearly an interval, but their centers satisfy

lcs — a1 — | > 6.



Cancellation

» Consider case in which E; is not quite an interval.
» Exploit symmetry group to make [p, fi = [- i =0.

» Thus f; = GJF + 6-* with both terms supported on short
intervals, and both having vanishing integrals for j = 1.

> <f-]_7f2>l<1E3*> = 0! Indeed,

(i foe 1) = / / () Les +x(y) dy dx.
E, JR

If x belongs to the support of f, then for one choice of + sign,
E3 + x contains the support of fli; for the other choice,
E5 + x is disjoint from the support of fli.

» Same for (fi, 3 * 15;).



Cancellation

» Thus

<1E1 * 1527 lE3> = <1E1* * ]-E27 1E3> + <K1; f1>~

No second or third variation terms.

» First term < (1g; * 1g;, 1g;) by Riesz-Sobolev inequality,
while (K, f1) < 0.

| reiterate: Analysis for general BLL functionals requires
supplementary ideas.



Part 4: The functional }‘;‘%Ug

The affine group is a group of symmetries.



Maximizers

Theorem. Let d > 1. Let 2m be an even integer > 4.
Let g > 2 be sufficiently close to 2m.

1Ellq

|E[/p if and only if E is an ellipsoid.

E maximizes

Previous work:

» The case g = 2m is a corollary of Burchard’s theorem.
» True for

1. d=1

2. d =2 and q close to 4

3. g sufficiently large (and close to 2m) for all d

» Maximizers exist for all 2 < g < oo and all d > 1.



Reduction

e Let B = unit ball.

e Reduction: It suffices to prove for g € {4,6,8,...}:
If |E| = |B| then

I1ellqg < |1Bllg — ca,q . inf [EAE
& ellipsoid

This reduction relies on a compactness theorem, whose proof relies
on additive combinatorics (Freiman's theorem).

e Compactness/stability theorem plus Burchard's theorem reduce
matters to small perturbations: |E AB| < 1.



Expansion

e Write 1z = 1p + f where [f =0
e Expansion

1) = 1819 + q(Kq. f) + 3q(q — 1)(F + Lq, f) + O(|E AB|**7)

where
» Ky = convolution of g — 1 factors of 1p
» L, = convolution of g — 2 factors of 1y

These are too complicated to calculate in closed form.



Leading term (K, f) = (K4, 1 — 1p) is nonpositive and
behaves like —|E \ B| on the part of E that is not near
boundary of B

This allows reduction to the case in which E AB is contained
in C|E AB|-neighborhood of S9~1.

Defining

F(8) = /R+ F(ro)rd=1 dr = /]R+ (1E(r9) - IB(rH)) rd=14r.
one has

ILellg = 111l — va.ql Flliz s

- ff F(x) F(y) Lg(x — y) do(x) do(y)
§d—1y d—1

+ O(|E ABJ>T™).



Bad news / good news

e ® | am not able to calculate the eigenvalues for the quadratic
form
F(x) F(y) Lg(x — y) do(x) do(y).

Sd—1y §d—1

e | am not able to calculate 74,,. ©

e This inability is potentially good news! If one wants to determine
whether a — b < 0, if a, b have the same order of magnitude and if
one knows a exactly but one cannot calculate b, then one is stuck.
But if one cannot calculate either quantity exactly, then there still

may be hope.



» The quadratic form is diagonalized by spherical harmonics.
Obviously its eigenvalues tend to 0.

» Spherical harmonics of degrees 1,2 can be eliminated by
exploiting the affine symmetry group.

> Let Y be a spherical harmonic of degree > 3. Define
Et={x=r0:0<r<1+tY(0)}.
Matters are reduced to showing that for small t,
Ile, *1g, %% 1g )13 < [[Lgr # Lgp - - x 1ge[3 —[€]E® (%)

where ¢ > 0 is allowed to depend on Y.

I have oversimplified a bit . ..



Analyze this using Steiner symmetrization.
Equality in 1D Riesz-Sobolev inequality must be achieved up
to o(t) for almost all interactions of vertical slices

ENn{x:xq4=-s}.

Vertical slices are intervals; this forces their centers to lie on a
common hyperplane.

This must hold for all rotates of E.

This strong constraint is satisfied only by spherical harmonics
of degrees 1, 2.



