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Part 1: Introduction



Young’s convolution inequality for Rd [1913]

• For functions on Rd

‖f ∗ g‖r ≤ Ad
pq‖f ‖p‖g‖q

where Apq is a certain explicit constant
Apq < 1 when p, q, r ∈ (1,∞)

• Beckner and Brascamp-Lieb (1974/75)

• Extremizers are (compatible) ordered pairs of Gaussians.
(Lieb 1990)



Young’s inequality (continued)

I Monotonicity of 〈f ∗ g , h〉 under a certain nonlinear heat flow
establishes these results.

I The heat flow analysis was developed for arbitrary
Hölder-Brascamp-Lieb multilinear inequalities by
Bennett-Carbery-Tao circa 2008.

I Ordered pairs that satisfy

‖f ∗ g‖r ≥ (1− δ)Ad
pq‖f ‖p‖g‖q for small δ > 0

are those close in Lp × Lq to the extremizing Gaussians.
(C. 2011)



Riesz-Sobolev inequality (1930, 1938)

For any Lebesgue measurable sets A,B,C ⊂ Rd with finite
Lebesgue measures,

〈1A ∗ 1B, 1C〉 ≤ 〈1A? ∗ 1B? , 1C?〉.

where A? = ball centered at 0 with |A?| = |A|, et cetera.

Corresponding result for general nonnegative functions follows by
expressing f as superposition of indicator functions of superlevel
sets {x : f (x) > t}.



Equality in Riesz-Sobolev (Burchard [1998])

Let d = 1. If Ej satisfy

〈1E1 ∗ 1E2 , 1E3〉 = 〈1E?
1
∗ 1E?

2
, 1E?

3
〉

then (up to null sets) En are intervals whose centers satisfy

c3 = c1 + c2

provided

|Ek | ≤ |Ei |+ |Ej | called admissibility

for all permutations (i , j , k) of (1, 2, 3).



Equality in Riesz-Sobolev (continued)

For d > 1, Burchard showed that equality occurs

I Only for (homothetic, compatibly centered) ellipsoids in the
strictly admissible case |Ek |1/d < |Ei |1/d + |Ej |1/d ,

I Only for (homothetic, compatibly centered) convex sets in
the borderline admissible case.

There are two entirely different components in the analysis.

d = 1 A clever device, based on the ordering property of R
(attributed by Burchard to Riesz). This device builds on the
characterization of equality in the Brunn-Minkowski inequality.

d > 1 Combination of the d = 1 theorem with (repeated)
Steiner symmetrization.



Brascamp-Lieb-Luttinger inequality (1974)

Let m ≥ 2 and n ≥ m. Consider

Φ(f1, f2, . . . , fn) =

∫
Rm

n∏
j=1

(fj ◦ Lj) dx

where Lj : Rm → R1 are (distinct) surjective linear mappings
(with no common nullspace).

Theorem.
Φ(f1, . . . , fn) ≤ Φ(f ?1 , . . . , f

?
n ).

The case of nonnegative functions follows directly from the
fundamental case of indicator functions of arbitrary sets.



Part 2

Which sets maximize BLL functionals with Lj : Rm → R1?



Hölder-Brascamp-Lieb/BLL functional symmetry group

• A BLL functional defined by integration over Rm has an
m–dimensional group of symmetries:∫

Rm

n∏
j=1

1Ej
(Lj(x)) dx

is invariant under any translation x 7→ x + v of Rm.

• This corresponds to translating each Ej by Lj(v), so |Ej | is
unchanged.

• Maximizing tuples can be unique only up to the action of this
group.



Example: Gowers forms and norms

• For k ≥ 2 the Gowers forms are

Tk(fα : α ∈ {0, 1}k) =

∫
x∈R

∫
h∈Rk

∏
α∈{0,1}k

fα(x + α · h) dh dx

where fα : R→ [0,∞].

• There are 2k functions fα; integration is over Rk+1.

• Gowers norms are

‖f ‖2kUk = Tk(f , f , . . . , f ).



Example: Gowers forms and norms (continued)

I Tk(fα : α ∈ {0, 1}k) ≤ Ak
∏
α ‖fα‖Lpk where pk is dictated by

scaling.

I Extremizing tuples are tuples of Gaussians; Eisner-Tao found
the optimal constant in the inequality.

I C. showed that sets whose indicator functions have nearly
maximal Gowers norms, among sets of specified Lebesgue
measure, are nearly equal to intervals.

I My student Anh Nguyen is working to prove the
corresponding stability result: Functions of nearly maximal
Gowers norm are nearly (in norm) equal to Gaussians.



Maximizers of the Brascamp-Lieb-Luttinger inequality?

I Burchard characterized (admissible) extremizers of BLL
functionals for n = m + 1 (one more function than
dimension). (A corollary of her theorem on the Riesz-Sobolev
inequality (m = 2, n = 3).)

I Flock and C. treated ∫
R2

∏
j

(fj ◦ Lj)

for an arbitrarily large number of functions fj

I but were unable to generalize further.

I C. used Burchard’s theorem in characterizing extremizers for a
natural inequality for the Radon transform. Flock and Drouot
extended this to the k-plane transform for all k .



Theorem: Maximizers of the B-L-L inequality

Assumptions/notation.

I Lj : Rm → R1 surjective linear mappings. (Natural
nondegeneracy hypotheses.)

I n = number of sets Ej is > m.

I (|Ej | : 1 ≤ j ≤ n) strictly admissible.

Conclusion. If Φ(E1, . . . ,En) = Φ(E ?1 , . . . ,E
?
n ) then Ej are

intervals with compatibly situated centers.

Admissibility is equivalent to this simple necessary condition: If Ej are

intervals of the specified lengths centered at 0, and if any one of these

intervals is translated, then the functional Φ decreases.



A flow on special sets (Brascamp-Lieb)

For any finite union of intervals E ⊂ R, define a flow t 7→ E (t)
for t ∈ [0, 1], as follows:

I E (0) = E .

I Each constituent interval moves rigidly at a constant speed so
that its center will arrive at the origin at t = 1

I until the first time of collision.

I Stop the clock, glue together any intervals that have collided.
The total number of intervals decreases.

I Restart the clock, with each interval moving at a constant
speed chosen so that its center will arrive at the origin at
t = 1

I until the next collision . . .

If sets Ej each flow in this way then Φ(E1(t), . . . ,En(t)) is a
nondecreasing function of t for any tuple of sets.



“Theorem”:1 Flow on general (Lebesgue measurable) sets

There exists a flow [0, 1] 3 t 7→ E (t) satisfying

I Flow is as already defined for finite unions of intervals.

I E (0) arbitrary; E (1) = E (0)?.

I Continuous: lims→t |E (s) ∆E (t)| = 0.

I Measure-preserving: |E (t)| ≡ |E |

I Inclusion monotonic: A ⊂ B ⇒ A(t) ⊂ B(t)

I Contractive: |A(t) ∆B(t)| ≤ |A∆B|.

I Functional monotonic: For any BLL functional,
Φ(E1(t), . . . ,En(t)) is a nondecreasing function of t.

1Folklore; perhaps first noticed by Burchard?



Aside: Smoothing property of the flow

For any set E ⊂ R (positive, finite Lebesgue measure), for any
t > 0, E (t) is (up to a null set) a countable union of intervals.



Corollary

Corollary of flow. In order to characterize maximizers of a BLL
functional it suffices to prove that tuples of intervals centered at 0
are strict LOCAL maximizers.

This means that one need only examine tuples satisfying

|Ej ∆E ?j | ≤ δ0 ∀j

where δ0 may be chosen as small as desired (but fixed).



Part 3: Perturbative analysis

I I will next sketch how the proof of local maximality works for
the Riesz-Sobolev inequality.

I This provides a more complicated alternative proof of
Burchard’s 1998 theorem for R1.

I The proof of the new theorem that I have stated
— the analysis for general BLL functionals —
requires additional ideas.

I (The extension of the flow to general sets is not actually
required in the argument below; I just like it and wanted to
share it.)



Expansion

• Express 1Ej
= 1E?

j
+ fj . Thus

fj =


+1 on Ej \ E ?j
−1 on E ?j \ Ej

0 else.

• By hypothesis, ‖fj‖1 � |Ej |.
• Crucially,

∫
fj = 0 ∀ j .

• Expand

〈1E1 ∗ 1E2 , 1E3〉 =
〈

(1E?
1

+ f1) ∗ (1E?
2

+ f2), (1E?
3

+ f3)
〉

into 8 terms.



Perturbative analysis (continued)

• The first variation term is
∑3

n=1

∫
Knfn

where Kn = 1E?
i
∗ 1E?

j
and {1, 2, 3} = {i , j , n}.

• The kernel Kn satisfies

inf
x∈E?

n

Kn(x) = sup
x /∈E?

n

Kn(x),

is even, is nonincreasing on [0,∞), and has strictly negative
derivative at the right endpoint of E ?n .

• This is a constrained optimization problem. The first variation is
not necessarily zero; it is typically negative and thus helps us.

• However, the second variation typically has the wrong sign.



• First variation term ∫
Knfn � −|En ∆E ?n |2

if nearly all points of En ∆E ?n are located within distance
C |En ∆E ?n | of the boundary of E ?n , but is otherwise much more
negative.

• The second and third order terms are O(maxj |Ej ∆E ?j |2).

• A simple analysis exploiting this and based on the above
properties of Kn allows reduction to the case in which
every point of Ej ∆E ?j lies within distance C |Ej ∆E ?j | of an
endpoint of the interval E ?j .



Perturbations near edges of E ?
j

Given (Ej : j ∈ {1, 2, 3}) define

δ = inf
v∈Rm

max
j
|
(
Ej + Lj(v)

)
∆E ?j |

where the infimum is taken over all v ∈ Rm.

Thus consider orbit of (E1,E2,E3) under the symmetry group
introduced above, and choose v that provides the optimal
approximation by a system of compatibly centered intervals.



There are two cases

Case (1) Not quite intervals.
There exists n such that En has

diameter(En) ≥ |En|+ cδ

where “diameter” means that any interval of diameter < |En|+ cδ
misses a subset of En having measure ≥ c ′δ.

Case (2) Not quite optimally situated intervals.
Each set En is very nearly an interval, but their centers satisfy

|c3 − c1 − c2| ≥ c ′′δ.



Cancellation

I Consider case in which E1 is not quite an interval.

I Exploit symmetry group to make
∫
R+ f1 =

∫
R− f1 = 0.

I Thus fj = f +j + f −j with both terms supported on short
intervals, and both having vanishing integrals for j = 1.

I 〈f1, f2 ∗ 1E?
3
〉 = 0! Indeed,

〈f1, f2 ∗ 1E?
3
〉 =

∫
E2

∫
R
f1(y)1E?

3 +x(y) dy dx .

If x belongs to the support of f2 then for one choice of ± sign,
E ?3 + x contains the support of f ±1 ; for the other choice,
E ?3 + x is disjoint from the support of f ±1 .

I Same for 〈f1, f3 ∗ 1E?
2
〉.



Cancellation

I Thus

〈1E1 ∗ 1E2 , 1E3〉 = 〈1E?
1
∗ 1E2 , 1E3〉+ 〈K1, f1〉.

No second or third variation terms.

I First term ≤ 〈1E?
1
∗ 1E?

2
, 1E?

3
〉 by Riesz-Sobolev inequality,

while 〈K1, f1〉 < 0.

I reiterate: Analysis for general BLL functionals requires
supplementary ideas.



Part 4: The functional ‖1̂E‖q
|E |1/p

The affine group is a group of symmetries.



Maximizers

Theorem. Let d ≥ 1. Let 2m be an even integer ≥ 4.
Let q > 2 be sufficiently close to 2m.

E maximizes
‖1̂E‖q
|E |1/p

if and only if E is an ellipsoid.

Previous work:

I The case q = 2m is a corollary of Burchard’s theorem.
I True for

1. d = 1
2. d = 2 and q close to 4
3. q sufficiently large (and close to 2m) for all d

I Maximizers exist for all 2 < q <∞ and all d ≥ 1.



Reduction

• Let B = unit ball.

• Reduction: It suffices to prove for q ∈ {4, 6, 8, . . . }:
If |E | = |B| then

‖1̂E‖q ≤ ‖1̂B‖q − cd ,q inf
E ellipsoid

|E ∆E |2.

This reduction relies on a compactness theorem, whose proof relies
on additive combinatorics (Freiman’s theorem).

• Compactness/stability theorem plus Burchard’s theorem reduce
matters to small perturbations: |E ∆B| � 1.



Expansion

• Write 1E = 1B + f where
∫
f = 0

• Expansion

‖1̂E‖qq = ‖1̂B‖qq + q〈Kq, f〉+ 1
2q(q − 1)〈f ∗ Lq, f〉+ O(|E ∆B|2+η)

where

I Kq = convolution of q − 1 factors of 1B

I Lq = convolution of q − 2 factors of 1B

These are too complicated to calculate in closed form.



I Leading term 〈Kq, f 〉 = 〈Kq, 1E − 1B〉 is nonpositive and
behaves like −|E \ B| on the part of E that is not near
boundary of B

I This allows reduction to the case in which E ∆B is contained
in C |E ∆B|–neighborhood of Sd−1.

I Defining

F (θ) =

∫
R+

f (rθ)rd−1 dr =

∫
R+

(
1E (rθ)− 1B(rθ)

)
rd−1 dr .

I one has

‖1̂E‖qq = ‖1̂B‖qq − γd ,q‖F‖2L2(Sd−1)

+
x

Sd−1×Sd−1

F (x)F (y) Lq(x − y) dσ(x) dσ(y)

+ O(|E ∆B|2+η).



Bad news / good news

• / I am not able to calculate the eigenvalues for the quadratic
form x

Sd−1×Sd−1

F (x)F (y) Lq(x − y) dσ(x) dσ(y).

• I am not able to calculate γd ,q. ,

• This inability is potentially good news! If one wants to determine
whether a− b < 0, if a, b have the same order of magnitude and if
one knows a exactly but one cannot calculate b, then one is stuck.
But if one cannot calculate either quantity exactly, then there still
may be hope.



I The quadratic form is diagonalized by spherical harmonics.
Obviously its eigenvalues tend to 0.

I Spherical harmonics of degrees 1, 2 can be eliminated by
exploiting the affine symmetry group.

I Let Y be a spherical harmonic of degree ≥ 3. Define

Et = {x = rθ : 0 ≤ r ≤ 1 + tY (θ)}.

Matters are reduced to showing that for small t,

‖1Et ∗ 1Et ∗ · · · ∗ 1Et‖22 ≤ ‖1E?
t
∗ 1E?

t
∗ · · · ∗ 1E?

t
‖22 − c t2 (*)

where c > 0 is allowed to depend on Y .

I have oversimplified a bit . . .



I Analyze this using Steiner symmetrization.

I Equality in 1D Riesz-Sobolev inequality must be achieved up
to o(t) for almost all interactions of vertical slices
E ∩ {x : xd = s}.

I Vertical slices are intervals; this forces their centers to lie on a
common hyperplane.

I This must hold for all rotates of E .

I This strong constraint is satisfied only by spherical harmonics
of degrees 1, 2.


