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Introduction

Basic questions – I

Let us work in euclidean n-space Rn. Given indices 0 < pj <∞ we
consider inequalities of the form

‖f0‖p0 . . . ‖fn‖pn ≤ C sup
x0,...,xn

f0(x0) . . . fn(xn)Vol co(x0, x1, . . . xn)

where C = C(pj ,n) is independent of the nonnegative measurable
functions fj and

Vol co(x0, x1, . . . xn)

denotes the volume of the convex hull of the simplex in Rn spanned by
x0, . . . , xn.

Of course

n!Vol co(x0, x1, . . . xn) = |det(x1 − x0 . . . xn − x0)|

=
∣∣∣det

(
1 1 · · · 1
x0 x1 · · · xn

) ∣∣∣
where det(y1 y2 . . . yn) denotes the determinant of the n × n matrix

whose columns are y1, . . . , yn.
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Basic questions – II

‖f0‖p0 . . . ‖fn‖pn ≤ C sup
x0,...,xn

f0(x0) . . . fn(xn)Vol co(x0, x1, . . . xn)

Closely related are inequalities like:

‖f1‖Lp1,∞ . . . ‖fn‖Lpn,∞ ≤ C sup
x1,...,xn

f1(x1) . . . fn(xn)|det(x1 x2 . . . xn)|

where C = C(pj ,n) is independent of the nonnegative measurable
functions fj .
When n = 1 this reduces to

‖f‖Lp,∞ ≤ C sup
x

f (x)|x |

– which is true for p = 1, with sharp constant C = 2.
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Connection with Gressman’s inequalities

Gressman considered (much more generally) multilinear determinant
inequalities generalising 1-dimensional fractional integration:∫

(Rn)n+1
f0(x0) . . . fn(xn)Vol co(x0 . . . xn)−αdx0 . . . dxn ≤ C‖f0‖p0 . . . ‖fn‖pn

where fj ≥ 0, α > 0 and pj > 1. As with classical fractional integration,
these are equivalent to their reverse forms

‖f0‖p0 . . . ‖fn‖pn ≤ C
∫

(Rn)n+1
f0(x0) . . . fn(xn)Vol co (x0 . . . xn)+αdx0 . . . dxn

where now pj < 1. Changing notation, these are in turn equivalent to

‖f0‖p0 . . . ‖fn‖pn ≤ C‖f0(x0) . . . fn(xn)Vol co(x0 . . . xn)+α‖Lr ((Rn)n+1)

for pj > 0 and max{pj} < r <∞.

Sending r →∞ leads us to consider inequalities of the form

‖f0‖p0 . . . ‖fn‖pn ≤ C sup
x0,...,xn

f0(x0) . . . fn(xn)Vol co(x0 . . . xn).
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Connection with old work of Macbeath

‖f0‖p0 . . . ‖fn‖pn ≤ C sup
x0,...,xn

f0(x0) . . . fn(xn)Vol co(x0 . . . xn).

Macbeath in the 1950’s was concerned with various geometrical
questions, including finding extremal sets E ⊆ Rn for the inequality

|E | ≤ Cn sup
x0,x1,...,xn∈E

Vol co(x0, x1, . . . xn).

This is a special case f0 = f1 = · · · = fn = χE of our problem, and asks,
amongst all sets E of given volume, which ones have simplices of least
maximal volume with vertices in E?

Or, in other words, what is the sharp constant cn so that given a set E
of volume 1, one is guaranteed to find n + 1 points in E which span a
simplex of volume at least cn, and which sets realise that constant?
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Solution to Macbeath’s problem

|E | ≤ Cn sup
x0,x1,...,xn∈E

Vol co(x0, x1, . . . xn)

It is clear that E can be assumed to be convex and that Cn ≤ nn since
if E has centroid 0 and T is a simplex of maximal voulme contained in
E then T ⊆ nE .

Moreover the problem is clearly affine invariant and the extremising
sets turn out to be balls and ellipsoids. Thus

Cn =
Vol(Bn)

Vol(Σn)

where Σn is a maximal regular simplex inscribed in the unit ball Bn of
Rn.
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Why regular?

A nice argument for why it has to be regular simplices maximimising
the volume of simplices inscribed in the unit ball:

Consider an extremal simplex. Consider an arbitrary face. Then the
remaining vertex must be on the unit sphere at maximal distance to the
hyperplane in which this face lies.

So, when n = 2, the line through the remaining vertex and the origin
meets the chosen face at right angles, forcing the triangle to be
isoceles. By symmetry it must be equilateral.

When n ≥ 3, proceed inductively starting in the same way. The
“height” of the simplex above the face under consideration is
determined, and the face itself is a simplex of one lower dimension
inscribed in a sphere of one lower dimension, and so must be of a
regular simplex in one lower dimension, by induction. By symmetry on
the faces we conclude that the maximising simplex is indeed regular.
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Finding structures in large sets

Given a set E , one can find n + 1 points in E which span a simplex of
volume at least cnVol(E).

Some work Mike, Jim Wright and I did on sublevel sets in the
mid-1990’s is in the same spirit.

A variant in the plane: if E ⊆ Q = [0,1]2 then there will always exist an
axis-parallel rectangle R with vertices in E whose area is “large”.

Natural examples suggest that we should have

|R| ≥ C|E |2,

but to date the best known is still the slightly weaker

|R| ≥ Cε
|E |2

log(1/|E |)2− .

Open problems: Decide whether the log term is really there. Figure out
what is going on in higher dimensions.
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Connection with recent work of Christ

In recent work concerning near-extremisers for the Hausdorff-Young
inequality, Mike has needed to study some questions analogous to
those he, Jim & I studied, but with euclidean n-space replaced by the
space of n × n real matrices, and volume replaced by determinant.

So a primordial question in this context is whether for suitable sets
E ⊆Mn×n(R) we can assert the existence of matrices A ∈ E with
large determinant.

A moment’s thought reveals that the correct scaling is

Vol(E)1/n ≤ Cn sup
A∈E
|det A|.

However, the set {A : |det A| ≤ 1} has infinite volume, so we cannot
expect such inequalities for general subsets ofMn×n(R): some sort of
convexity hypotheses will be needed.



Some elementary inequalities

A simple lemma in one dimension

For a set E ⊆ R, let E∗ be the interval centred at 0 with the same
length as E .

Lemma
For aj ∈ R we have

sup
x∗j ∈E∗j

|
k∑

j=1

ajx∗j | ≤ sup
xj∈Ej

|
k∑

j=1

ajxj |.

For k = 1 this says there is an x ∈ E such that |x | ≥ |E |/2.

Replacing Ej by ajEj reduces us to the case aj = 1 for all j .

So we want to see there are xj ∈ Ej such that |
∑

j xj | ≥ 1
2
∑

j |Ej |.

If not, for all xj ∈ Ej we have |
∑

j xj | < 1
2
∑

j |Ej |.
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Proof

For all xj ∈ Ej we have |
∑

j xj | < 1
2
∑

j |Ej |.

Pick x±j ∈ Ej with x+
j ∼ sup Ej and x−j ∼ inf Ej . Then

x+
j − x−j ≥ |Ej |,

|
∑

j

x+
j | <

1
2

∑
j

|Ej | and |
∑

j

x−j | <
1
2

∑
j

|Ej |.

Hence ∑
j

|Ej | ≤
∑

j

(x+
j − x−j ) = (

∑
j

x+
j )− (

∑
j

x−j )

<
1
2

∑
j

|Ej |+
1
2

∑
j

|Ej | =
∑

j

|Ej |,

contradiction.
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A restatement

For aj ∈ R we have

sup
x∗j ∈E∗j

|
k∑

j=1

ajx∗j | ≤ sup
xj∈Ej

|
k∑

j=1

ajxj |.

So for E = E1 × E2 × · · · × Ek ⊆ Rk and SE its rectangular
rearrangement, we have for all a ∈ Rk ,

sup
x∈SE

|a · x | ≤ sup
x∈E
|a · x |.
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A consequence for determinants

For ξ ∈ Rn write ξ = (ξ1, ξ
′) where ξ′ ∈ Rn−1. Let E1, . . . ,En ⊆ Rn. We

have, for xj ∈ Ej ,

det(x1 . . . xn) = det

 x11 x21 · · · xn1
...

... · · ·
...

x1n x2n · · · xnn

 = x11A1+x21A1+. . . xn1An,

where the Aj depend only on {x1
′, . . . , xn

′}.
For each j fix xj

′ := (xj2, . . . , xjn), let Ej(x ′j ) = {xj1 ∈ R : (xj1, x ′j ) ∈ Ej},
and apply the lemma with k = n to get

sup
x∗j1∈Ej (x ′j )∗

|
n∑

j=1

Ajx∗j1| ≤ sup
xj1∈Ej (x ′j )

|
n∑

j=1

Ajxj1|.

Hence, with Ê the symmetrisation of E with respect to e⊥1 ,

sup
xj∈Êj

|det(x1 . . . xn)| ≤ sup
xj∈Ej

|det(x1 . . . xn)|.



Some elementary inequalities

Similarly for convex hulls...

Similarly,

n!Vol co(x0, x1, . . . , xn) = |det(x1 − x0 x2 − x0 . . . xn − x0)|

=
∣∣∣det

 x11 − x01 x21 − x01 · · · xn1 − x01
...

... · · ·
...

x1n − x0n x2n − x0n · · · xnn − x0n

∣∣∣
= |x01A0 + x11A1 + x21A1 + . . . xn1An|,

where the Aj depend only on {x0
′, . . . , xn

′}. So, by the case k = n + 1
of the lemma,

sup
x∗j1∈Ej (x ′j )∗

|
n∑

j=0

Ajx∗j1| ≤ sup
xj1∈Ej (x ′j )

|
n∑

j=0

Ajxj1|,

and hence

sup
xj∈Êj

|Vol co(x0, . . . , xn)| ≤ sup
xj∈Ej

|Vol co(x0, . . . , xn)|.
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Rotation invariance

sup
xj∈Êj

|det(x1 . . . xn)| ≤ sup
xj∈Ej

|det(x1 . . . xn)|.

sup
xj∈Êj

|Vol co(x0, . . . , xn)| ≤ sup
xj∈Ej

|Vol co(x0, . . . , xn)|.

For ω ∈ Sn−1 let Êω be symmetrisation of E with respect to ω⊥:

sup
xj∈Êj

ω
|det(x1 . . . xn)| ≤ sup

xj∈Ej

|det(x1 . . . xn)|

sup
xj∈Êj

ω
|Vol co(x0, . . . , xn)| ≤ sup

xj∈Ej

|Vol co(x0, . . . , xn)|.

Repeating gives, with E∗ the radial rearrangement of E ,

sup
xj∈Ej

∗
|det(x1 . . . xn)| ≤ sup

xj∈Ej

|det(x1 . . . xn)|,

sup
xj∈Ej

∗
|Vol co(x0, . . . , xn)| ≤ sup

xj∈Ej

|Vol co(x0, . . . , xn)|.
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Now with functions...

Let fj be nonnegative functions defined on Rn and let f ∗j be their radial
nonincreasing rearrangements.

Proposition

sup f ∗1 (x1) . . . f ∗n (xn)|det(x1 . . . xn)|

≤ sup f1(x1) . . . fn(xn)|det(x1 . . . xn)|.

Proposition

sup f ∗0 (x0) . . . f ∗n (xn)Vol co(x0, . . . , xn)

≤ sup f0(x0) . . . fn(xn)Vol co(x0, . . . , xn).

The proofs are straightforward from the special case of characteristic
functions of sets already established. (There is also a functional
version of the simple lemma.)
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An n-linear corollary

For arbitrary sets Ej ⊆ Rn,

sup
xj∈Ej

∗
|det(x1 . . . xn)| ≤ sup

xj∈Ej

|det(x1 . . . xn)|,

or equivalently

|E1|1/n . . . |En|1/n ≤ Vol(Bn) sup
xj∈Ej

|det(x1 . . . xn)|.

And, for arbitrary fj , by taking Ej = {x : |fj(x)| > λj}, we get the
(sharp)

‖f1‖Ln,∞ . . . ‖fn‖Ln,∞ ≤ Vol(Bn) sup f1(x1) . . . fn(xn)|det(x1 . . . xn)|.
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An (n + 1)-linear Macbeath theorem

Applying

sup
xj∈Ej

∗
|Vol co(x0, . . . , xn)| ≤ sup

xj∈Ej

|Vol co(x0, . . . , xn)|

with Ej = E for all j immediately gives Macbeath’s theorem.

One can also take different sets Ej . For example in R2 let Ej have
measure πr2

j . Then the maximising simplex for the left hand side must
be such that its vertices are distant r0, r1 and r2 from its orthocentre.

Let A(r0, r1, r2) be the area of such a triangle. It can be shown that

A(r0, r1, r2) =
1
2

(
r0r1

√
1− λ2r2

2 + r1r2

√
1− λ2r2

0 + r2r0

√
1− λ2r2

1

)
where λ is the unique negative solution of the cubic equation

2r0r1r2λ
3 − (r2

0 + r2
1 + r2

2 )λ2 + 1 = 0.

(In higher dimensions not every simplex is orthocentric so the
calculations are somewhat “in principle”...)
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Sharp (n + 1)-linear weak-type inequalities

Let V (r0, . . . , rn) be the volume of the maximal simplex with vertices in
E∗0 , . . . ,E

∗
n where Vol(Ej) = Vol(Bn)rn

j . Then for
∑n

j=0 αj = 1 and
0 ≤ αj ≤ 1/n we have

rnα0
0 . . . rnαn

n ≤ CαV (r0, . . . , rn)

with a sharp Cα, leading to inequalities

|E0|α0 . . . |En|αn ≤ Cα sup
xj∈Ej

|Vol co(x0, . . . , xn)|

which are sharp in the sense that for each α there are extremal sets
Ej which are balls of certain radii depending on the αj ’s.

These in turn lead to sharp inequalities

‖f0‖p0,∞ . . . ‖fn‖pn,∞ ≤ Cp sup
x0,...,xn

f0(x0) . . . fn(xn)Vol co(x0, . . . , xn)

for
∑n

j=0 1/pj = 1 and pj ≥ n for all j .
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(n + 1)-linear strong-type inequalities

‖f0‖p0,∞ . . . ‖fn‖pn,∞ ≤ Cp supx0,...,xn
f0(x0) . . . fn(xn)Vol co(x0, . . . , xn)

for
∑n

j=0 1/pj = 1 and pj ≥ n for all j .

By interpolation or otherwise we get (non-sharp) limiting Gressman
inequalities

‖f0‖p0 . . . ‖fn‖pn ≤ C sup
x0,...,xn

f0(x0) . . . fn(xn)Vol co(x0, . . . , xn)

for
∑n

j=0 1/pj = 1 and pj > n for all j . (These conditions are necessary
for the limiting Gressman inequalities to hold.)
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Extremals on the diagonal

We have the endpoint limiting Gressman inequalities

‖f0‖p0 . . . ‖fn‖pn ≤ C sup
x0,...,xn

f0(x0) . . . fn(xn)Vol co(x0, . . . , xn)

for
∑n

j=0 1/pj = 1 and pj > n for all j .

On the diagonal (pj = n + 1 for all j) Ting Chen has established that
there are extremals of the form

fj(x) =

(
1

1 + |x |2

)1/2

.

The argument uses the interplay between euclidean and spherical
symmetries via stereographic projection.

Probably one cannot hope for more at present.
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Two results of Christ

In this section E will be a subset ofMn×n(R) regarded as the
euclidean space Rn2

, together with Lebesgue measure.

Proposition (M. Christ)

There exists a constant An such that if E ⊆Mn×n(R) is convex (and
symmetric), then

|E |1/n ≤ An sup
A∈E
|det(A)|.

Theorem (M. Christ)

There exists a constant Bn such that for every E ⊆Mn×n(R)

|E |1/n ≤ Bn

n∑
j=1

sup
A1,...,Aj∈E

|det(A1 + · · ·+ Aj)|.

Note the need for sums of fewer than n matrices on the right-hand side
in the second result; result is false if we take only single summands.
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Comments on Christ’s results

Mike reduced the second result to the first using an auxiliary
polynomial argument, and established the first using Loomis–Whitney.

The second result implies the first: if is E convex, we have Ak ∈ E for
1 ≤ k ≤ j implies 1

j (A1 + · · ·+ Aj) ∈ E so

sup
A1,...,Aj∈E

|det(A1 + · · ·+ Aj)| ≤ jn sup
A∈E
|det(A)|.

Now applying the theorem we obtain

|E |1/n .
n∑

j=1

sup
A1,...,Aj∈E

|det(A1 + · · ·+ Aj)| . sup
A∈E
|det(A)|.

In fact convexity is crucial in the study of these inequalities –
E + · · ·+ E is “more convex” than E – for any E , “limm→∞

E+···+E
m ” is

convex.
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Geometrical considerations

Lack of a large group of invariants – no euclidean or affine invariance
at the level of actions onMn×n(R) = Rn2

.

Nevertheless, there is an important action of SL(n,R) onMn×n(R) by
(pre-)multiplication.

That is, if T ∈ GL(n,R), A ∈Mn×n(R) and E ⊆Mn×n(R) then

det(TA) = det T det A

and
|TE | = |det T |n|E |.

So both of Mike’s results are invariant under premultiplication by a
matrix of unimodular determinant.

This observation already featured in Mike’s analysis.
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A theorem of Ting Chen

Theorem (Ting Chen, 2016)

There exists a constant Cn such that for every E1, . . . ,En ⊆Mn×n(R),

n∏
j=1

|Ej |1/n2 ≤ Cn sup
A1∈E1...,An∈En

|det(A1 + · · ·+ An)|.

Note the “multilinear” nature of the result.

Taking Ej = E for all j we obtain a slightly improved version of Christ’s
theorem: we no longer need to consider j-fold Minkowski sums for
1 ≤ j ≤ n − 1.
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Ting Chen’s argument – Notation

Let us work in the three-dimensional case.

We have three sets of matrices E ,F ,G ⊆M3×3(R).

Members of E will be denoted by

X = (x1x2x3)

where xj are 3× 1 column vectors.

Members of F will be denoted by

Y = (y1y2y3)

and members of G will be denoted by

Z = (z1z2z3) .

We supsose that supX∈E ,Y∈F ,Z∈G |det(X + Y + Z )| = s.

We want to show that

|E |1/9|F |1/9|G|1/9 . s.
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Ting Chen’s argument – Projections and slices

We define Π12 :M3×3(R)→M3×2(R) by Π12(x1x2x3) = (x1x2) and
we define Π1 :M3×2(R)→M3×1(R) by Π1(x1x2) = x1.

We use standard superscript notation to denote slices: For
x1 ∈M3×1(R) we define Ex1 := {(x2x3) (x1x2x3) ∈ E}; for
(x1x2) ∈M3×2(R) we define Ex1x2 := {x3 : (x1x2x3) ∈ E}; and for
x1 ∈M3×1(R) and H ⊆M3×2(R) we define Hx1 := {x2 : (x1x2) ∈ H}.

Since |E | =
∫

Π12(E) |E
x1x2 |dx1dx2 there is an (x1x2) ∈ Π12(E) such that

|Ex1x2 ||Π12(E)| ≥ |E |.

Similarly there is a y1 ∈ Π1(Π12(F )) such that

|(Π12F )y1 ||Π1(Π12(F ))| ≥ |Π12(F )|.
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Ting Chen’s argument – I

Then for all x3 ∈ Ex1x2 , for all (y2y3) ∈ F y1 and all Z ∈ G we have

|det(x1 + y1 + z1 x2 + y2 + z2 x3 + y3 + z3)| ≤ s,

i.e. for all y2 ∈ Π12(F )y1 , all y3 ∈ F y1y2 , and all Z ∈ G

sup
x3∈Ex1x2 +y3+z3

|det(x1 + y1 + z1 x2 + y2 + z2 x3)| ≤ s.

We now pretend that Ex1x2 – and hence its translate by y3 + z3 – is a
set of product form in R3 =M3×1(R).

By the simple lemma we then have, for all y2 ∈ (Π12F )y1 and all
(z1z2) ∈ Π12G,

sup
x3∈S(Ex1x2 )

|det(x1 + y1 + z1 x2 + y2 + z2 x3)| ≤ s.
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Ting Chen’s argument – II

For all x3 ∈ S(Ex1x2), all y2 ∈ (Π12F )y1 and all (z1z2) ∈ Π12G,

|det(x1 + y1 + z1 x2 + y2 + z2 x3)| ≤ s,

i.e. for all x3 ∈ S(Ex1x2), all z1 ∈ Π1(Π12G) and all z2 ∈ Π12(G)z1 ,

sup
y2∈(Π12F )y1 +x2+z2

|det(x1 + y1 + z1 y2 x3)| ≤ s.

We now pretend that (Π12F )y1 – and hence its translate by x2 + z2 – is
a set of product form in R3 =M3×1(R).

By the simple lemma we therefore have, for all x3 ∈ S(Ex1x2), and all
z1 ∈ Π1(Π12G),

sup
y2∈S(Π12F )y1

|det(x1 + y1 + z1 y2 x3)| ≤ s.
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Ting Chen’s argument – III

sup
z1∈Π1(Π12G)

sup
y2∈S(Π12F )y1

sup
x3∈S(Ex1x2 )

|det(x1 + y1 + z1 y2 x3)| ≤ s.

By the trilinear measure estimate in R3, we therefore have

|Π1(Π12G)|1/3|S(Π12F )y1 |1/3|S(Ex1x2)|1/3 . s,

or
|Π1(Π12G)|1/3|(Π12F )y1 |1/3|Ex1x2 |1/3 . s.

(BOARD!)
This, together with the slicing inequalities

|Ex1x2 ||Π12(E)| ≥ |E |

|(Π12F )y1 ||Π1(Π12(F ))| ≥ |Π12(F )|

is what we need to proceed.
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Ting Chen’s argument – IV

For certain x1, x2 and y1 we have

|Π1(Π12G)|1/3|(Π12F )y1 |1/3|Ex1x2 |1/3 . s

|Ex1x2 ||Π12(E)| ≥ |E | and |(Π12F )y1 ||Π1(Π12(F ))| ≥ |Π12(F )|

By repeating the same arguments starting with F and G respectively
we get that for certain y∗1 , y

∗
2 and z∗1

|Π1(Π12E)|1/3|(Π12G)z∗1 |1/3|F y∗1 y∗2 |1/3 . s

|F y∗1 y∗2 ||Π12(F )| ≥ |F | and |(Π12G)z∗1 ||Π1(Π12(G))| ≥ |Π12(G)|

and for certain ẑ1, ẑ2 and x̂1,

|Π1(Π12F )|1/3|(Π12E)x̂1 |1/3|Gẑ1ẑ2 |1/3 . s

|Gẑ1ẑ2 ||Π12(G)| ≥ |G| and |(Π12E)x̂1 ||Π1(Π12(E))| ≥ |Π12(E)|.
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Ting Chen’s argument – Conclusion

Combining the blue inequalities |Gẑ1ẑ2 ||Π12(G)| ≥ |G| and
|(Π12G)z∗1 ||Π1(Π12(G))| ≥ |Π12(G)| we get

|G| ≤ |Gẑ1ẑ2 ||(Π12G)z∗1 ||Π1(Π12(G))|,

and similarly
|E | ≤ |Ex1x2 ||(Π12E)x̂1 ||Π1(Π12E)|

|F | ≤ |F y∗1 y∗2 ||(Π12F )y1 ||Π1(Π12F )|.

Taking the geometric mean of the inequalities

|Π1(Π12G)|1/3|(Π12F )y1 |1/3|Ex1x2 |1/3 . s

|Π1(Π12E)|1/3|(Π12G)z∗1 |1/3|F y∗1 y∗2 |1/3 . s

|Π1(Π12F )|1/3|(Π12E)x̂1 |1/3|Gẑ1ẑ2 |1/3 . s

and applying the previous displayed inequalities yields the result.
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Ting Chen’s argument – Succesive renormalisation

We still have to deal with the blatant lies.

And so far we have not used the advertised invariance of the problem.

We now exploit this invariance to renormalise multiple times (3× 2 = 6
times in the n = 3 case, and n(n − 1) in the general case) to deal with
the lies. The invariance enters as a catalyst yielding measure theoretic
consequences, and its presence vanishes without trace.

We do not use the invariance of the entire problem under the action of
left-multiplication by members of SL(n,R), but instead the facts which
underly this invariance, i.e. that the action preserves determinants of
individual matrices, and preserves volumes of sets.
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Renormalisation details – I

“For all y2 ∈ Π12(F )y1 , all y3 ∈ F y1y2 , and all Z ∈ G

sup
x3∈Ex1x2 +y3+z3

|det(x1 + y1 + z1 x2 + y2 + z2 x3)| ≤ s.

We now pretend that Ex1x2 – and hence its translate by y3 + z3 – is a
set of product form in R3 =M3×1(R).”

Of course we can do no such thing – Ex1x2 is an essentially arbitrary
subset of R3 =M3×1(R).

But, due to linearity of the determinant in each column, and hence
convexity of |det | in each column, we do have:
For all y2 ∈ Π12(F )y1 , all y3 ∈ F y1y2 , and all Z ∈ G

sup
x3∈co Ex1x2 +y3+z3

|det(x1 + y1 + z1 x2 + y2 + z2 x3)| ≤ s.

We now introduce a T ∈ SL(3,R) such that T co Ex1x2 contains an
axis-parallel rectangle and is contained in a similar axis-parallel
rectangle all with comparable volumes (cf. John ellipsoid).
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Renormalistion details – II

For all y2 ∈ Π12(F )y1 , all y3 ∈ F y1y2 , and all Z ∈ G

sup
x3∈co Ex1x2 +y3+z3

|det(x1 + y1 + z1 x2 + y2 + z2 x3)| ≤ s

is the same as: for all y2 ∈ Π12(F )y1 , all y3 ∈ F y1y2 , and all Z ∈ G

sup
x3∈co Ex1x2 +y3+z3

|det(T x1 + T y1 + Tz1 T x2 + Ty2 + Tz2 Tx3)| ≤ s,

i.e.

sup
x3∈T co Ex1x2 +Ty3+Tz3

|det(T x1 + T y1 + Tz1 T x2 + Ty2 + Tz2 x3)| ≤ s.

By the simple lemma (since T co Ex1x2 is essentially an axis parallel
rectangle) we therefore have, for all y2 ∈ (Π12TF )Ty1 and all
(z1z2) ∈ Π12TG,

sup
x3∈S(T co Ex1x2 )

|det(T x1 + T y1 + z1 Tx2 + y2 + z2 x3)| ≤ s.
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Renormalisation details – III

Now we have: for all x3 ∈ S(T co Ex1x2), for all y2 ∈ (Π12TF )Ty1 and all
(z1z2) ∈ Π12TG,

|det(T x1 + T y1 + z1 Tx2 + y2 + z2 x3)| ≤ s.

(Reality check: previously, in the cheating version, we had: For all
x3 ∈ S(Ex1x2), all y2 ∈ (Π12F )y1 and all (z1z2) ∈ Π12G,

|det(x1 + y1 + z1 x2 + y2 + z2 x3)| ≤ s.)

Proceed as we did before: for all x3 ∈ S(T co Ex1x2), all z1 ∈ Π1(Π12TG)
and all z2 ∈ Π12(TG)z1 ,

sup
y2∈(Π12TF )Ty1 +T x2+z2

|det(T x1 + T y1 + z1 y2 x3)| ≤ s.
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Renormalisation details – IV

For all x3 ∈ S(T co Ex1x2), all z1 ∈ Π1(Π12TG) and all z2 ∈ Π12(TG)z1 ,

sup
y2∈(Π12TF )Ty1 +T x2+z2

|det(T x1 + T y1 + z1 y2 x3)| ≤ s.

As before, the same inequality persists if we pass to the convex hull of
(Π12TF )Ty1 + Tx2 + z2, and as before we choose an S ∈ SL(3,R) such
that Sco(Π12TF )Ty1 is essentially an axis-parallel rectangle in R3 with
comparable volume. So, under the same conditions on x3, z1 and z2,

sup
y2∈co(Π12TF )Ty1 +T x2+z2

|det(STx1 + STy1 + Sz1 Sy2 Sx3)| ≤ s,

i.e. for x3 ∈ SS(T co Ex1x2), z1 ∈ Π1(Π12STG), z2 ∈ Π12(STG)Sz1 and
y2 ∈ coS(Π12TF )T y1 + STx2 + Sz2,

|det(STx1 + STy1 + z1 y2 x3)| ≤ s.
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Renormalisation details – V

For x3 ∈ SS(T co Ex1x2), z1 ∈ Π1(Π12STG), z2 ∈ Π12(STG)Sz1 and
y2 ∈ coS(Π12TF )T y1 + STx2 + Sz2,

|det(STx1 + STy1 + z1 y2 x3)| ≤ s.

By the simple lemma once more we therefore have

|det(STx1 + STy1 + z1 y2 x3)| ≤ s

for x3 ∈ SS(T co Ex1x2), y2 ∈ ScoS(Π12TF )Ty1 , z1 ∈ Π1(Π12STG).
By the measure estimate we therefore have

|Π1(Π12STG)|1/3|ScoS(Π12TF )T y1 |1/3|SS(T co Ex1x2)|1/3 ≤ s.

Since S, T and S preserve volumes this is the same as

|Π1(Π12G)|1/3|co(Π12F )y1 |1/3|co (Ex1x2)|1/3 ≤ s,

which clearly implies

|Π1(Π12G)|1/3|(Π12F )y1 |1/3|Ex1x2 |1/3 ≤ s,

thus closing the circle.
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For full details see the upcoming PhD thesis of Chen Ting, University
of Edinburgh, 2016, and look out for her article on the ArXiv.
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Finally...

HAPPY BIRTHDAY MIKE!!
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