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Consider the nonlinear Schrédinger equation (NLS) on T = R/(27Z):

iU + Uy £ |UPu=0, xeT,teR,
u(-,0) = g(-) € H(T).
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Consider the nonlinear Schrédinger equation (NLS) on T = R/(27Z):

iU + Uy £ |UPu=0, xeT,teR,
u(-,0) = g(-) € H¥(T).

¢ Satisfies the mass and energy conservation:
[ulliz = [Igll2,

1 1
E(t) = Sll0xul% 7 llullfs = E().
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¢ Bourgain '93: NLS is globally wellposed in H*(T), s > 0.
Provides solutions in C? H§ that depends continuously on the initial
data.
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¢ Bourgain '93: NLS is globally wellposed in H*(T), s > 0.
Provides solutions in C? H§ that depends continuously on the initial
data.

e Burg—Gérard—Tzvetkov '02, Christ—Colliander—Tao '03: lllposedness
in H3(T), s < 0.
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¢ Bourgain '93: NLS is globally wellposed in H*(T), s > 0.
Provides solutions in C? H§ that depends continuously on the initial
data.

e Burg—Gérard—Tzvetkov '02, Christ—Colliander—Tao '03: lllposedness
in H3(T), s < 0.

e Scaling H=1/2 or F¢>
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¢ Bourgain '93: NLS is globally wellposed in H*(T), s > 0.
Provides solutions in C?HS that depends continuously on the initial
data.

e Burg—Gérard—Tzvetkov '02, Christ—Colliander—Tao '03: lllposedness
in H3(T), s < 0.

e Scaling H=1/2 or F¢>

e In a 2007 paper, M. Christ introduced a new method for constructing
solutions and obtained continuous in time local solutions of (Wick
ordered) NLS for g € F¢9 = {g : ||g|lea < o0}, g € [1,0).
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¢ Bourgain '93: NLS is globally wellposed in H*(T), s > 0.
Provides solutions in C?HS that depends continuously on the initial
data.

e Burg—Gérard—Tzvetkov '02, Christ—Colliander—Tao '03: lllposedness
in H3(T), s < 0.

e Scaling H=1/2 or F¢>

e In a 2007 paper, M. Christ introduced a new method for constructing
solutions and obtained continuous in time local solutions of (Wick
ordered) NLS for g € F¢9 = {g : ||g|lea < o0}, g € [1,0).

e Closes the gap between scaling g = o~ and wellposedness g = 2.
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e In addition, the solutions exhibit the following smoothing property:
Forany p>q/3andp > 1,

u(x, t) — e g e COFIR.
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e In addition, the solutions exhibit the following smoothing property:
Forany p>q/3andp > 1,

u(x, t) — e g e COFIR.

e Earlier constructions on R with infinite L2 norm data by Griinrock *04
and by Vargas—\Vega '04.
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¢ In addition, the solutions exhibit the following smoothing property:
Forany p>q/3andp > 1,

u(x, t) — e g e COFIR.

e Earlier constructions on R with infinite L2 norm data by Griinrock *04
and by Vargas—\Vega '04.

e H® smoothing on R" setting: Bourgain 98, 2d cubic NLS: For H*
data, sy < s < 1, the nonlinear part of the evolution is in H'.
Extension to other dimensions by Keraani-Vargas '09.
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e Why does the F¢9 — F(P smoothing hold?
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e Why does the F¢9 — F(P smoothing hold?

2 da, . (i _
an(t) == e™tu(t,n) = i S PP Plg g,
j—k+£=n
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e Why does the F¢9 — F(P smoothing hold?

2 da, . (i _
an(t) == e™tu(t,n) = i S PP Plg g,
j—k+£=n

t . e [
an(t) — an(0) =i > /e’(”2‘/2+"2“z)saj(s)ak(s)ag(s)ds
j—k+t=n"0
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e Why does the F¢9 — F(P smoothing hold?

2 da, . (i _
an(t) == e™tu(t,n) = i S PP Plg g,
j—k+£=n

t . e [
an(t) — an(0) =i > /e’(”2‘/2+"2“z)saj(s)ak(s)ag(s)ds
j—k+t=n"0

e Ignoring the resonant terms: n? — j2 + k? — (2 =0

5 A e ey

j—k+4=n
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e Why does the F¢9 — F(P smoothing hold?

2 da, . (i _
an(t) == e™tu(t,n) = i S PP Plg g,
j—k+£=n

t . P [
an(t) — an(0) =i > /e’(”2‘/2+"2“z)saj(s)ak(s)ag(s)ds
j—k+t=n"0

e Ignoring the resonant terms: n? — j2 + k? — (2 =0

5 A e ey

j—k+4=n

o If g; € (9 for some g < 3, say, then the sum is in K},.
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e Why does the F¢9 — F(P smoothing hold?

2 da, . (i _
an(t) == e™tu(t,n) = i S PP Plg g,
j—k+L=n

t . o [
an(t) — an(0) =i > /e’(”zfz“‘zez)saj(s)ak(s)ag(s)ds
j—k+t=n"0

e Ignoring the resonant terms: n? — j2 + k? — (2 =0
1 —~  aj(0)ax(0)a(0) i(mP—2+k2—2)t
_ ! )+
2 n-jn-n ° )

j—k+4=n

o If g; € (9 for some g < 3, say, then the sum is in é},.

e "-.."is the real difficulty. Repeat the process infinitely many times!
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Smoothing properties of nonlinear dispersive PDE on T or on R™

ur+ L(u)+N(u)=0, xeT, teR,
{u(x,O) = g(x) € H5(T).
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Smoothing properties of nonlinear dispersive PDE on T or on R

ur+ L(u)+N(u)=0, xeT, teR,
{u(x,O) = g(x) € H5(T).

e Duhamel’s formula:

t
U(t) _ e—tLg _/ e_(t_t/)LN(U(tI))dtI.
0

Erdogan (UIUC) Smoothing estimates for dispersive PDE 5/17/16 6/32



Smoothing properties of nonlinear dispersive PDE on T or on R

ur+ L(u)+N(u)=0, xeT, teR,
{u(x, 0) = g(x) € H3(T).

e Duhamel’s formula:
t
u(t) = e g - / e (-OLN(u(t))al
0

e Question: Is the nonlinear Duhamel term smoother than the initial
data (is it in H5"@ for some a > 0)?
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Smoothing properties of nonlinear dispersive PDE on T or on R

ur+ Lu)+Nu)=0, xeT, teR,
{u(x, 0) = g(x) € H3(T).

e Duhamel’s formula:
t
u(t) = etg — / e~ (=OLN(u(F))dt.
0

e Question: Is the nonlinear Duhamel term smoother than the initial
data (is it in H5+2 for some a > 0)?

e The answer is affirmative for KdV, modified KdV, Zakharov system,
cubic NLS, and fractional cubic NLS. Also for NLS on R™*.
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Smoothing properties of nonlinear dispersive PDE on T or on R
ur+ Lu)+Nu)=0, xeT, teR,
u(x,0) = g(x) € H3(T).

e Duhamel’s formula:
t
u(t) = etg — / e~ (=OLN(u(F))dt.
0

e Question: Is the nonlinear Duhamel term smoother than the initial
data (is it in H5+2 for some a > 0)?

e The answer is affirmative for KdV, modified KdV, Zakharov system,
cubic NLS, and fractional cubic NLS. Also for NLS on R™*.

e Applications of smoothing: Growth bounds for H® norms, existence
of global attractors, Talbot effect (fractal solutions).
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Theorem (E., Tzirakis *13)
Fix s > 0. Assume that g € H*(T). Then for any a < min(2s,1/2),

u(x, t) — e"O*tPg e CRpHER, P =||gll3/m.
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Theorem (E., Tzirakis *13)
Fix s > 0. Assume that g € H*(T). Then for any a < min(2s,1/2),

U(X7 t) - It(BXXJrP)g € Cte]RHfz'Sv P ||g||§/7r

e The proof uses X5 spaces:

2\b 73 —6xx
lullxse = || (k)% + K2 UK, 7|, , = e~ llpgpp-

22

Erdogan (UIUC) Smoothing estimates for dispersive PDE 5/17/16 7132



Theorem (E., Tzirakis *13)
Fix s > 0. Assume that g € H*(T). Then for any a < min(2s,1/2),

U(X7 t) - It(BXXJrP)g € Cte]RHfz'Sv P ||g||§/7r

e The proof uses X5 spaces:

2\b 73 —6xx
lullxse = || (k)% + K2 UK, 7|, , = e~ llpgpp-

22

o For b > %, XsP c COHS.
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Theorem (E., Tzirakis ’13)
Fix s > 0. Assume that g € H*(T). Then for any a < min(2s,1/2),

U(X7 t) - ’t(aXXJrP)g € CtERHfz'I? P ngg/ﬂ-

e The proof uses X5 spaces:

Huuxsbw VS(r + k)b T(k, 7)

= [le”" %t pepp.

2)2

o For b > %, XsP c COHS.
o For fixed s > 0, a < min(2s, }), 0 < b — } (sufficiently small)

SIRW) I xsrab—1 S [[Ul¥s.or
Xs+a,b

t H !
H | Rueyar
0

where R(u) = (|u® — L|ul3,)u.
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e The analogous statement on R is also valid without the phase P
(Compaan ’14).
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e The analogous statement on R is also valid without the phase P
(Compaan ’14).

o Demirbas—E.—Tzirakis '14: For o € ($,1) and s > 52, there is
min(2s + a — 1,a — })-smoothing for the fractional Schrodinger:

iU+ (—A)u + |ufPu=0, u(x,0)=g(x) € HT).
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e The analogous statement on R is also valid without the phase P
(Compaan ’14).

o Demirbas—E.—Tzirakis '14: For o € ($,1) and s > 52, there is
min(2s + a — 1,a — })-smoothing for the fractional Schrodinger:

iU+ (—A)u + |ufPu=0, u(x,0)=g(x) € HT).
e E.—Tzirakis '13: min(2s + 1, 1)-smoothing for KdV on T:
1
Ut + Uxxx + Uy = 0, u(0,-) =g(-) € H¥(T), s> —5

Requires a normal form transform and a trilinear X5 space estimate
for the modified nonlinearity.
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Inverse scattering methods

o Kappeler—Schaad-Topalov '15: defocusing NLS on T. For g € HX,
k > 1 integer,

lu— €™ gl < Cllgl), teR

where L is a linear operator depending on g nonlinearly.
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Inverse scattering methods

o Kappeler—Schaad-Topalov '15: defocusing NLS on T. For g € HX,
k > 1 integer,

lu— €™ gl < Cllgl), teR

where L is a linear operator depending on g nonlinearly.

e Kappeler—Schaad—Topalov '13: Analogous results for KdV for data in
HX(T), k > 0 integer.
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Inverse scattering methods

e Kappeler—Schaad-Topalov ’15: defocusing NLS on T. For g € H¥,
k > 1 integer,

lu— €™ gl < Cllgl), teR

where L is a linear operator depending on g nonlinearly.

e Kappeler—Schaad—Topalov '13: Analogous results for KdV for data in
HX(T), k > 0 integer.

e Implies that if g € H® for some s > 1, then |ju||ys <1 for all times.
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Inverse scattering methods

e Kappeler—Schaad-Topalov ’15: defocusing NLS on T. For g € H¥,
k > 1 integer,

lu— €™ gl < Cllgl), teR

where L is a linear operator depending on g nonlinearly.

e Kappeler—Schaad—Topalov '13: Analogous results for KdV for data in
HX(T), k > 0 integer.

e Implies that if g € H® for some s > 1, then |ju||ys <1 for all times.

e They also have 1-smoothing for u(x, t) — e@«+P)tg when k > 2.
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NLSon R™"

Consider the following initial-boundary value problem

i + Uy £ |UPu=0, xeRT, teR", (1)
u(x,0) = g(x), u(0,t)=h(t).

Here g € HS(R*) and h e H%" (R*), s € [0, 3)\{}, 3}, with the
additional compatibility condition g(0) = h(0) for s > 3.
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NLSon R™"

Consider the following initial-boundary value problem
i + Uy £ |UPu=0, xeRT, teR", (1)
u(x,0) = g(x), u(0,t)=h(t).
Here g € HS(R*) and h e H%" (R*), s € [0, 3)\{}, 3}, with the
additional compatibility condition g(0) = h(0) for s > 3.
e Kato smoothing:

||n(t)eitaXXgHL?oH%SHQHHS(R)-

t
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Brief history

e Carroll-Bu '91: Unique global H?(R™) solutions for g € H? and
he C2.

e Fokas '02: complete integrability methods for smooth g and h.

e Colliander—Kenig '02, Holmer *05: KdV using X5, converting
boundary data to forcing.

e Holmer ’05: NLS on R*, s > 0, using Colliander—Kenig method and
Strichartz.

e Bona—Sun—-Zhang ’15: Laplace transform method and Strichartz for
NLS on R*, s > 0. Global in H'.
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To construct the solutions of (1), first consider the linear problem:

25+1

v(x,0) = g(x) € HS(R"), v(0,t) = h(t) e H+ (R).
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To construct the solutions of (1), first consider the linear problem:

25+1

v(x,0) = g(x) € HS(R"), v(0,t) = h(t) e H+ (R).

v = Wg(g. h) = W(0, h — p) + "% ge,
where ge is an H® extension of g to R, and p(t) = e"%»ge|, _,, which is
locally in H= (R™) by Kato smoothing.

Here W{(0, h) denotes the solution of (2) when g = 0.
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Using Laplace transform (c.f. Bona—Sun—Zhang), we have
WE(0, h) = Wyh+ Wah, where

Wib(x.t) = - [ et gh(— )i,

Woh(x,) = 1 [ &5 (5x)h(52)d5,

0

p(x): a smooth function supported on (-2, ), p(x) = 1 for x > 0.

HE) = Flxomh)© = [ e it

0
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Using Laplace transform (c.f. Bona—Sun—Zhang), we have
WE(0, h) = Wyh+ Wah, where

Wib(x.t) = - [ et gh(— )i,

Woh(x,) = 1 [ &5 (5x)h(52)d5,

0
p(x): a smooth function supported on (—2, c0), p(x) = 1 for x > 0.

h(€) = F(x(0,00)h) (€) = / h e Eth(t)dt.

0

WE(0, h) is well-defined for x € R, but satisfies linear Schrédinger for
x > 0.
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Duhamel’s formula for (1).

t
u(t) = Wi(g. h) + /0 - uudt — Wi(0,9)(t),  (3)

t
0

Solve (3) on R. The restriction of the solution to R* satisfies NLS.
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Duhamel’s formula for (1).

t
u(t) = Wi(g. h) + /0 - uudt — Wi(0,9)(t),  (3)

t
0

Solve (3) on R. The restriction of the solution to R* satisfies NLS.

Fixed point argument on X5 on R for b < }, s > 0.
In addition, the solution is in

0 05
CiHyNCyH, * .
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Xsb estimates (0 < b < 1)

t
[no [ etimrenar |, < Il s € R
0 s
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Xsb estimates (0 < b < 1)

s, S HF”XS’—ba SER,

t
(=)0 (4 s
utty [ e F(eyar ], <

[7OWE(. Mo SNG4 18l s o 920,
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Xsb estimates (0 < b < 1)

oo S Fllxecs, SER,

t
(=)0 (4 s
utty [ e Feeyar |, <

[n(t)W5(g. h HXsbN\\QllHS(R+)+IIh!! 22, §20,
(R

t
Hn(t) / /(=) ot 2501 S
0 CoH, *
[[F ] xs.-o 0<s<1)2
HF”X%7ZS_1_4b +||Fllxs—» 1/2<s<5/2.
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e Forfixed0 < s < 3,and 0 < a< min(2s, 1, 3 — s), there exists ¢ > 0
such that for § — e < b < }, we have

H |u|2UHXs+a,—b5||UH?(S,ba

H|U|2uHX%gs+2a4—1—4b SHUH‘}(S,I,, for 1/2<s+a<5/2.
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e Forfixed0 < s < 3,and 0 < a< min(2s, 1, 3 — s), there exists ¢ > 0
such that for § — e < b < 1, we have

10120 ora oSN Ul %0,

H|U|2uHX%gs+2a4—1—4b SHUH‘;S(SJ,, for 1/2<s+a<5/2.

e Yields the local theory for 0 < s < g and smoothing:
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e Forfixed0 < s < 3,and 0 < a< min(2s, 1, 3 — s), there exists ¢ > 0
such that for § — e < b < 1, we have

10120 ora oSN Ul %0,

H|u!2uHX%’ZS+2a;174b <|lul3ss, for 1/2<s+a<5/2.

e Yields the local theory for 0 < s < g and smoothing:

Theorem (E., Tzirakis *15)
Fixs € (0,3), g € HS(R*), and h e H% (R+) with the additional
compat/b/l/ty condition g(0) = h(0) for s > }. Then,

. 15
u(x, t) — Wl(g,h) € COHS@,  a < min(2s, 55— 5)

Erdogan (UIUC) Smoothing estimates for dispersive PDE 5/17/16 16/32



Energy identities

Recall that on R: llullz2 = llgll2, and

1 1
E(t) = 5loxull? F 4 lullfs = E(0).
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Energy identities

Recall that on R: llullz2 = llgll2, and

1 1
E(t) = 5 l0:ulf: F 4 llull = E(0)

The following provide a priori bounds for the H' norm of the solution,
bounded in the defocusing, and exponential in the focusing case.

Ouf? = 23 (uxD)x,
1 —
On|ux® F 5ul*) = 2R(ucTi)x,

Ol lunl? & 1) = ~1[(UTR); — (uTR)].
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Energy identities

Recall that on R: llullz2 = llgll2, and

1 1
E(t) := 3lloxullz. F llullje = E(0).
2 4

The following provide a priori bounds for the H' norm of the solution,
bounded in the defocusing, and exponential in the focusing case.

At|ul? = —23(uxl)x,
1 _
O|unl? F 1ul*) = 2R (i),
1 R _
Ox(|ux|® + E‘Um = —i[(utx)t — (ut)x]-

e Bona-Sun—-Zhang ’15. Solution is global in H' if g, h € H'.
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Theorem (E., Tzirakis '15)

2541

Inthe case s € [1,3), g € HS(RT),andhe H + (R*) n H'(R"), the
solution u is global and the smoothing statement holds for all times.
Moreover, in the defocusing case ||ul|ysr+) grows at most

polynomially, whereas in the focusing case it grows at most
exponentially.
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Theorem (E., Tzirakis '15)

2541

Inthe case s € [1,3), g € HS(RT),andhe H + (R*) n H'(R"), the
solution u is global and the smoothing statement holds for all times.
Moreover, in the defocusing case ||ul|ysr+) grows at most
polynomially, whereas in the focusing case it grows at most
exponentially.

e In preparation: analogous results for the Zakharov system on R™.
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Talbot effect
Berry et al, starting from 80s:

Linear Schrédinger on T
it + Ue = 0, u(0,x) = g(x) € L*(T).

)
U(t, X) _ eitaxe _ Z e_itkzﬁ(k)eikx.

k=—o0
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Talbot effect
Berry et al, starting from 80s:

Linear Schrédinger on T

it + uxx = 0, u(0,x) = g(x) € L3(T).

u(t X _ eltaxx Z e—ltKZA IKX‘

k=—o0

Observations/conjectures:

e Quantization: At t = 272, the solution is a linear combination of up to
g translates of the initial data.
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Talbot effect
Berry et al, starting from 80s:

Linear Schrédinger on T

iU + Uy = 0, u(0,x) = g(x) e L3(T).

U(t X _ elfaxx Z e—ll’k IKX‘

k=—oc0

Observations/conjectures:

e Quantization: At t = 27r§, the solution is a linear combination of up to
g translates of the initial data.

e For step function initial data, at t = 2xr, r irrational, the solution (real
and imaginary parts) is a continuous curve with fractal dimension g
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|
Talbot effect
Berry et al, starting from 80s:

Linear Schrédinger on T

ius + U = 0, u(0,x) = g(x) e L3(T).

U(t X _ elfaxx Z e—ll’k IKX‘

k=—oc0

Observations/conjectures:

e Quantization: At t = 27r§, the solution is a linear combination of up to
g translates of the initial data.

e For step function initial data, at t = 2xr, r irrational, the solution (real
and imaginary parts) is a continuous curve with fractal dimension g

e The fractal dimension is % even if there is a nonlinear perturbation.
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e Quantization: Berry and Klein (Also M. Taylor): For t = 27r§

e g == "Gpqli)g(x — ZWL)'
q q
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e Quantization: Berry and Klein (Also M. Taylor): For t = 27r§

e g == "Gpqli)g(x — Zﬁi)'
q q

e Follows from the distributional identity:

1 o0

272 8XX —27rik 4 /kx —27rl/2 /lx iqjx
Fmi- LS e S S P o
k=—oc0 j=—00
q—1 2p —1 .
_ Y e 2] 25 x—2rd)
s 9 q
g-1 g-—1
1 _onil2P i
_ ! [Z 2miP§ 2m/q}5(x 27Ti)
q j=0 =0
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Talbot effect for linear KdV on the torus
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Evolved data at the given time for the initial data x|o -
Figure from Chen—Olver, Dispersion of discontinuous periodic waves
12, http://www.math.umn.edu/~olver
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Talbot effect for KdV on the torus

Evolved data for KdV on [, 7] with initial data x[g -
Figure from Chen—Olver, Dispersion of discontinuous periodic waves
12, http://www.math.umn.edu/~olver
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e Oskolkov '92, Kapitanski—Rodnianski ‘99, Rodnianski '00 proved
Berry’s conjectures for the linear Schrédinger on T.
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e Oskolkov '92, Kapitanski—Rodnianski ‘99, Rodnianski '00 proved
Berry’s conjectures for the linear Schrédinger on T.

¢ Rodnianski '00: For almost every t, the dimension of the graph of
linear Schrodinger is % for bounded variation data g provided that

gé H3 .
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e Oskolkov '92, Kapitanski—Rodnianski ‘99, Rodnianski '00 proved
Berry’s conjectures for the linear Schrédinger on T.

¢ Rodnianski '00: For almost every t, the dimension of the graph of
linear Schrodinger is % for bounded variation data g provided that

g ¢ H.

e E.—Tzirakis '13: Analogous statements for NLS on T.
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e Oskolkov '92, Kapitanski—Rodnianski ‘99, Rodnianski '00 proved
Berry’s conjectures for the linear Schrédinger on T.

¢ Rodnianski '00: For almost every t, the dimension of the graph of
linear Schrodinger is % for bounded variation data g provided that

g ¢ H.
e E.—Tzirakis '13: Analogous statements for NLS on T.

e Choussionis—E.—Tzirakis ’15: Dimension of the graph of linear KdV
and KdV evolution on T is in [5/4,7/4] for almost every t.

Erdogan (UIUC) Smoothing estimates for dispersive PDE 5/17/16 23/32



Vortex Filaments (Choussionis—E.-Tzirakis '15):

e Approximation of the dynamics of a vortex filament under the Euler
equations:

vt = vx X Yxx = kb, X arclength parameter, t time.

~(t,-) : arclength parametrized closed curve in R3
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Vortex Filaments (Choussionis—E.-Tzirakis '15):

e Approximation of the dynamics of a vortex filament under the Euler
equations:

vt = vx X Yxx = kb, X arclength parameter, t time.

~(t,-) : arclength parametrized closed curve in R3

e Jerrard—Smets ('11) and de la Hoz—Vega ('13) studied the evolution
of VF in the case when the initial data is a planar regular polygon.
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Vortex Filaments (Choussionis—E.-Tzirakis '15):

e Approximation of the dynamics of a vortex filament under the Euler
equations:

vt = vx X Yxx = kb, X arclength parameter, t time.

~(t,-) : arclength parametrized closed curve in R3

e Jerrard—Smets ('11) and de la Hoz—Vega ('13) studied the evolution
of VF in the case when the initial data is a planar regular polygon.

e Simulations for the rational and irrational times:
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Vortex filaments at rational times (initial data = square)
Figure from Jerrard and Smets, On the motion of a curve by its
binormal curvature, arXiv:1109.5483v1
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Stereographic projection of the unit tangent vector at an irrational time
(initial data = equilateral triangle)

Figure from de la Hoz and Vega, Vortex filament equation for a regular
polygon, arXiv:1304.5521v1
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¢ Vortex filament equation:

Yt = Yx X Yxx-
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¢ Vortex filament equation:

Yt = Yx X Yxx-

« Unit tangent vector u = ~, € S?. Differentiating the vortex filament
equation (VF) we get

Ut = U X Uyxx, Schrédinger Map Equation (SM).
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¢ Vortex filament equation:

Yt = Yx X Yxx-

« Unit tangent vector u = ~, € S?. Differentiating the vortex filament
equation (VF) we get

Ut = U X Uyxx, Schrédinger Map Equation (SM).

« Hashimoto transformation: g(x, t) = x(x, t)e' Jo 7" .o’
k: curvature. 7: torsion.
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¢ Vortex filament equation:

Yt = Yx X Yxx-

« Unit tangent vector u = ~, € S?. Differentiating the vortex filament
equation (VF) we get

Ut = U X Uyxx, Schrédinger Map Equation (SM).

« Hashimoto transformation: g(x, t) = x(x, t)e' Jo 7" .o’
k: curvature. 7: torsion.

q satisfies NLS:

igt+ g — A()g + |9IPg =0, A(t) eR.
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e VF in HS*1 level corresponds to SM in HS and NLS in H5~" levels.
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e VF in HS*1 level corresponds to SM in HS and NLS in H5~" levels.
e SMon T: Ding—Wang (98), Chang—Shatah—Uhlenbeck (00),

Nahmod-Shatah—Vega—Zeng (07), Rodnianski—Rubinstein—Staffilani
(09): GWP in H?(T)
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e VF in H5t1 level corresponds to SM in HS and NLS in H5~ " levels.
e SM on T: Ding—Wang (98), Chang—Shatah—Uhlenbeck (00),
Nahmod-Shatah—Vega—Zeng (07), Rodnianski—Rubinstein—Staffilani
(09): GWP in H2(T)

e Simulations above corresponds to SM with step function initial data
and to NLS with initial data a sum of dirac deltas.
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e VF in H5t1 level corresponds to SM in HS and NLS in H5~ " levels.
e SM on T: Ding—Wang (98), Chang—Shatah—Uhlenbeck (00),
Nahmod-Shatah—Vega—Zeng (07), Rodnianski—Rubinstein—Staffilani
(09): GWP in H2(T)

e Simulations above corresponds to SM with step function initial data
and to NLS with initial data a sum of dirac deltas.

« We have fractal solutions of NLS in Hz~ or in HS level, s € (1, 3).
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Following Chang-Shatah-Uhlenbeck, Nahmod-Shatah-Vega-Zeng we
obtain:
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Following Chang-Shatah-Uhlenbeck, Nahmod-Shatah-Vega-Zeng we
obtain:

e Global strong solutions of the SM for u(0,-) € H(T), s > g and
identity holonomy.
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Following Chang-Shatah-Uhlenbeck, Nahmod-Shatah-Vega-Zeng we
obtain:

e Global strong solutions of the SM for u(0,-) € H%(T), s > % and
identity holonomy.

¢ Talbot effect gives fractal curves that evolve for smoother initial
curves; u(0,-) € H5(T), s € (3, 7). In particular the components of the
curvature vector uy in the frame are fractal curves.
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Global attractors

Smoothing results can be extended to forced and weakly damped
equations. Forced and weakly damped KdV on T:

Ut + Uy +yU+Uux=f, teR, xeT,
u(x,0) = g(x) € L3(T) := {h e L3(T) : h(0) = 0},

v>0andfel2
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Global attractors

Smoothing results can be extended to forced and weakly damped
equations. Forced and weakly damped KdV on T:

Ut + Uy +yU+Uux=f, teR, xeT,
u(x,0) = g(x) € L3(T) := {h e L3(T) : h(0) = 0},

v>0andfel2
Fort> T = T(v,||gll,[If[l), we have |lu(t)[| < 2|f]|/~-

B(0,2||f||/v) € L3(T) is called an absorbing set.
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Definition

A Global Attractor for a semigroup {U(t)}+>0 on a Hilbert space H is a
compact set A C H which is invariant under the flow and which attracts
all solutions:

Forallg € H,d(U(t)g, A) — 0, as t — oco.
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Definition

A Global Attractor for a semigroup {U(t)}+>0 on a Hilbert space H is a
compact set A C H which is invariant under the flow and which attracts
all solutions:

Forallg € H,d(U(t)g, A) — 0, as t — oco.

e If U is asymptotically compact then the omega limit set of an
absorbing set B,

w(B) = |J uB,

s>0t>s

is a global attractor.
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Definition
A Global Attractor for a semigroup {U(t)}+>0 on a Hilbert space H is a

compact set A C H which is invariant under the flow and which attracts
all solutions:

Forall g € H,d(U(t)g, A) — 0, as t — oco.

e If U is asymptotically compact then the omega limit set of an
absorbing set B,

w(B) = |J uB,

s>0t>s

is a global attractor.

e Existence and regularity of the global attractor for forced damped
KdV: Ball, Ghidaglia, Goubet, Rosa, Tsugawa.
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Theorem (E., Tzirakis, ’13)
Fix s € (0,1). Consider the forced and weakly damped KdV equation
onT x R with u(x,0) = g(x) € L2. Then

g —t83

u(t) — e < C(s, v, llgll, I£1))-
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Theorem (E., Tzirakis, ’13)

Fix s € (0,1). Consider the forced and weakly damped KdV equation
onT x R with u(x,0) = g(x) € L2. Then

|u(t) — e e g

| s < C(s,7, 119l 1))

Gives a simple proof of the existence of the attractor in L2. Analogously
for the Zakharov system in the energy space H' x L% x H~'.
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