
Weighted inequalities for oscillatory integrals

Jonathan Bennett

U. Birmingham

19 May 2016

Conference in honour of Michael Christ, Madison 2016

Supported by ERC grant 307617.



Plan

Part 1: Inequalities with general weights.

(Recent work with David Beltran.)

Part 2: Some inequalities with specific weights.

(Recent work with Neal Bez, Susana Gutierrez, Taryn Flock and Marina Iliopoulou.)

Jonathan Bennett (U. Birmingham) Weighted inequalities for oscillatory integrals 19 May 2016 2 / 24



Plan

Part 1: Inequalities with general weights.

(Recent work with David Beltran.)

Part 2: Some inequalities with specific weights.

(Recent work with Neal Bez, Susana Gutierrez, Taryn Flock and Marina Iliopoulou.)

Jonathan Bennett (U. Birmingham) Weighted inequalities for oscillatory integrals 19 May 2016 2 / 24



General-weighted inequalities: the broad setting

Object: Given an operator T , identify a meaningful “geometrically-defined” operator M
for which ∫

|Tf |2w .
∫
|f |2Mw (†)

holds for all weight functions w . (A classical question raised by many – see, for example,
C. Fefferman and Stein 1971, or A. Córdoba and C. Fefferman 1976.)

Very much like a pointwise estimate – a local norm estimate at all scales: for example,
taking w = χB(x,r) we have ∫

B(x,r)

|Tf |2 .
∫
|f |2MχB(x,r)...

(Recalls pointwise estimates via g -functions, sharp maximal functions etc.)

Interested in finding M with

(1) purely geometric character, and

(2) optimal bounds, in the sense that the resulting inequality

‖T‖p−q . ‖M‖1/2
(q/2)′−(p/2)′ is optimal in p, q ≥ 2.

A variety of well-known results in the realm of Calderón–Zygmund theory, involving the
Hardy–Littlewood maximal operator (Fefferman–Stein 1971, Córdoba–Fefferman 1976,
Wilson 1985, Pérez 1995...)
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Classical examples pertain to the classical Calderón–Zygmund theory

– the operators T
are either

positive – such as the Hardy–Littlewood maximal function or fractional integrals,

or cancellative but with critical homogeneity (in terms of kernel integrability) – such
as the Hilbert transform.

Can anything sensible be said about operators of the form

Tf (x) =

∫
e iΦ(x,y)a(x , y)f (y)dy ?

– that is, with kernels that are oscillatory?

Important examples:

The Fourier extension operator

Tg(x) = ĝdσ(x) :=

∫
Sd−1

e ix·ξg(ξ)dσ(ξ) ?

The disc multiplier
T̂f (ξ) = χB(0,1)(ξ)f̂ (ξ) ?

Here Tf = K ∗ f , where

K(x) := F−1(χB(0,1))(x) =
cJd/2(2π|x |)
|x | d2

= c
e2πi|x| + e−2πi|x| + o(1)

|x | d+1
2

– something far from integrable for d ≥ 2.
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Tg(x) = ĝdσ(x) :=

∫
Sd−1

e ix·ξg(ξ)dσ(ξ) ?

The disc multiplier
T̂f (ξ) = χB(0,1)(ξ)f̂ (ξ) ?

Here Tf = K ∗ f , where

K(x) := F−1(χB(0,1))(x) =
cJd/2(2π|x |)
|x | d2

= c
e2πi|x| + e−2πi|x| + o(1)

|x | d+1
2

– something far from integrable for d ≥ 2.

Jonathan Bennett (U. Birmingham) Weighted inequalities for oscillatory integrals 19 May 2016 4 / 24



Classical examples pertain to the classical Calderón–Zygmund theory – the operators T
are either

positive – such as the Hardy–Littlewood maximal function or fractional integrals,

or cancellative but with critical homogeneity (in terms of kernel integrability) – such
as the Hilbert transform.

Can anything sensible be said about operators of the form

Tf (x) =

∫
e iΦ(x,y)a(x , y)f (y)dy ?

– that is, with kernels that are oscillatory?

Important examples:

The Fourier extension operator

Tg(x) = ĝdσ(x) :=
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What might M look like in general oscillatory contexts?

Given an oscillatory integral operator

Tf (x) =

∫
e iΦ(x,y)a(x , y)f (y)dy ,

how might we go about identifying a controlling maximal operator M?

Using sublevel set operators a la Carbery–Christ–Wright maybe?

Let

Sf (x) =

∫
{y :|Φ(x,y)|≤1}

a(x , y)f (y)dy ,

or, more generally,

Sψ,φf (x) =

∫
{y :|Φ(x,y)−ψ(x)−φ(y)|≤1}

a(x , y)f (y)dy

for measurable functions φ, ψ, and look for its controlling maximal functions...

Complicated ... but in some specific contexts this reveals highly non-local maximal
operators, sometimes involving tubes or wide approach regions.
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Conjectural example 1: the Fourier extension operator

Recall Stein’s restriction conjecture:

‖ĝdσ‖Lq(Rn) . ‖g‖Lp(Sd−1);
1
q
< d−1

2d
, 1
q
≤ d−1

d+1
1
p′ .

A virtually equivalent formulation at the (missing) endpoint:

‖ĝdσ‖
L

2d
d−1 (B(0,R))

.ε Rε‖g‖
L

2d
d−1 (Sd−1)

; ε > 0,R � 1.

One might hope for an inequality of the form∫
B(0,1)

|ĝdσ(Rξ)|2w(ξ)dξ .
1

Rd−1

∫
Sd−1

|g |2MRw ,

where MR is some variant of the Kakeya maximal operator

KRw(ω) := sup
T ||ω

1

|T |

∫
T

w ;

here the supremum is taken over all R−1-tubes T in B(0, 1) ⊆ Rd with direction ω.
If true then

‖ĝdσ‖
L

2d
d−1 (Sd−1)→L

2d
d−1 (B(0,R))

. ‖MR‖1/2

Ld (Rd )→Ld (Sd−1)
;

i.e. “Kakeya” =⇒ Restriction!
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‖ĝdσ‖

L
2d

d−1 (Sd−1)→L
2d

d−1 (B(0,R))
. ‖MR‖1/2

Ld (Rd )→Ld (Sd−1)
;

i.e. “Kakeya” =⇒ Restriction!

Jonathan Bennett (U. Birmingham) Weighted inequalities for oscillatory integrals 19 May 2016 6 / 24



Conjectural example 1: the Fourier extension operator

Recall Stein’s restriction conjecture:
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Some partial results for the extension operator

A simple example:

Theorem (Barceló–B–Carbery 2008; d = 2, sacrificing optimality)∫
B(0,1)

|ĝdσ(Rξ)|2w(ξ)dξ .
log R

R

∫
S1

|g(ω)|2(KR−1/2 (NR−1/2 w)2)1/2. (1)

Remark: We have ‖(KR−1/2 (NR−1/2 w)2)1/2‖4 . (log R)1/2‖w‖4 by the Kakeya/Nikodym
maximal theorem in the plane. As a result (1) implies that

‖ĝdσ‖L8/3(B(0,R)) .ε R1/4+ε‖g‖L8/3(S1),

which is sharp in the power of R; we’d of course like to be on L4!

Uses a Whitney decomposition and the bilinear extension estimate in the plane (as in
Erdogan 2005) – an argument that fails to exploit Córdoba’s L4 orthogonality, but does
at least extend to higher dimensions.

Let’s see another conjectural example...
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Theorem (Barceló–B–Carbery 2008; d = 2, sacrificing optimality)∫
B(0,1)
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Conjectural example 2: the disc multiplier

In the Proceedings of the 1978 Williamstown Conference on Harmonic Analysis, Stein
asked whether (†), i.e. ∫

Rd

|Tf |2w .
∫
Rd

|f |2Mw ,

might hold when T is the disc multiplier

T̂f (ξ) = χB(0,1)(ξ)f̂ (ξ),

and M is some variant of the universal maximal operator

Nw(x) := sup
T3x

1

|T |

∫
T

w ;

here the supremum is taken over arbitrary rectangles/tubes in Rd containing x .

Some progress: Carbery 1984, Christ 1985, Carbery–Romera–Soria 1991, Carbery–Seeger
2000, Lee–Rogers–Seeger 2012, plus many related works...

Recall that Tf = K ∗ f where

K(x) := F−1(χB(0,1))(x) =
cJd/2(2π|x |)
|x | d2

= c
e2πi|x| + e−2πi|x| + o(1)

|x | d+1
2

.

Here the kernel is oscillatory, but the multiplier is not - this is a rather special situation
for oscillatory convolution kernels...
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Oscillatory kernels and oscillatory multipliers: duality of phases

Stein (1993), Page 358:

The Fourier transform of e iΦ(x)a(x) is essentially of the form e−iΨ(ξ)a∗(ξ),
where the pair (Φ,Ψ) are “dual” to each other

For example, −|x |p/p and |ξ|p
′
/p′ are dual phases, where 1

p
+ 1

p′ = 1 and p ∈ (1,∞).

Of course this is highly unstable as p → 1; recall that

χ̂B(0,1)(ξ) =
cJd/2(2π|ξ|)
|ξ| d2

= c
e2πi|ξ| + e−2πi|ξ| + o(1)

|ξ| d+1
2

.

Point: oscillatory convolution kernels and oscillatory multipliers are, to an extent, the
same thing.

Let us shift perspective to oscillatory Fourier multipliers (sacrificing the disc multiplier of
course)...
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The Fourier multiplier angle

Notation: For a multiplier m we define the operator Tm by T̂mf (ξ) = m(ξ)f̂ (ξ).

Goal: Identify classes of oscillatory Fourier multipliers m and maximal averaging
operators M for which ∫

|Tmf |2w ≤ C

∫
|f |2Mw . (†)

A classical (non-oscillatory) result of this type:

Theorem (∼Wilson 1980s)

If m : Rn → C is a Mikhlin multiplier, i.e.

|∂γm(ξ)| . |ξ|−γ for all |γ| ≤ d/2 + 1,

or more generally, a Hörmander–Mikhlin multiplier, i.e.

sup
j
‖mΨ(2j ·)‖Hs <∞ for some s > d/2,

then ∫
|Tmf |2w

∫
|f |2Mpowerw .

(Here M is the Hardy–Littlewood maximal operator and M2 = M ◦M.)
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A proof using Stein’s g -function method

For a Hörmander–Mikhlin multiplier m, we have

g(Tmf )(x) . g∗λ(f )(x)

where

g(f )(x) :=
(∫
|x−y|≤t

|f ∗ φt(y)|2 dy

td
dt

t

)1/2

,

and

g∗λ(f )(x) =
(∫ ∞

0

∫
Rd

|f ∗ φt(y)|2
(

1 +
|x − y |

t

)−dλ dy

td
dt

t

)1/2

with λ > 1. Here φt(x) = t−dφ(x/t) is a suitable approximate identity with
∫
φ = 0.

Theorem now follows from classical weighted L2 inequalities for g and g∗λ :∫
|Tmf |2w .

∫
g(Tmf )2Mpowerw .

∫
g∗λ(f )2Mpowerw

∫
|f |2Mpowerw .

As we shall see, Stein’s g -function approach continues to be effective for certain classes
of highly oscillatory multipliers (and thus kernels)...
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Some well-known oscillatory multipliers

A natural weakening of the Mikhlin condition |∂γm(ξ)| . |ξ|−|γ| allowing more singular
multipliers was considered by Miyachi in the 1980s.

Let α, β ∈ R be given and suppose m is supported on {|ξ|α ≥ 1} and satisfies

|∂γm(ξ)| . |ξ|−β+|γ|(α−1) (2)

for every multiindex γ with |γ| ≤ [ d
2

] + 1.

Examples:

m(ξ) = mα,β(ξ) := |ξ|−βe i|ξ|α , studied by Hirschman, Stein, Wainger, Fefferman,
Miyachi...

If K(x) = e i|x|3 then m = K̂ satisfies (2) with α = 3/2 and β = d/4.

It will be helpful to formulate a Hörmander-style weakening of Miyachi’s condition...
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A Miyachi–Hörmander condition

Definition (α-subdyadic ball)

Let α ∈ R. A (euclidean) ball B ⊆ Rd is α-subdyadic if dist(B, 0)α ≥ 1 and

diam(B) ∼ dist(B, 0)1−α.

The Miyachi condition
|∂γm(ξ)| . |ξ|−β+|γ|(α−1)

of course makes no explicit reference to the subdyadic balls.

However, it may be weakened to the Hörmander-style condition:

|B|−1/2‖mΨB‖Ḣσ . dist(B, 0)−β+(α−1)σ

for some s > d/2 and all 0 ≤ σ ≤ s; here ΨB is a normalised bump function adapted to
B.

These bounds are assumed to be uniform over all α-subdyadic balls.

Jonathan Bennett (U. Birmingham) Weighted inequalities for oscillatory integrals 19 May 2016 13 / 24
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The controlling maximal functions

Theorem (Beltran–B 2015)

Let α, β ∈ R. Suppose that m : Rd → C is supported in {|ξ|α ≥ 1} and satisfies

|∂γm(ξ)| . |ξ|−β+|γ|(α−1)

for all |γ| ≤ [ d
2

] + 1 (or the weaker Hörmander alternative). Then∫
Rd

|Tmf (x)|2w(x)dx .
∫
Rd

|f (x)|2M4Mα,βM4w(x)dx ,

where

Mα,βw(x) = sup
(y,r)∈Γα(x)

1

|B(y , r)|1−2β/d

∫
B(y,r)

w

and Γα(x) := {(y , r) ∈ Rd × R+ : 0 < rα ≤ 1, |y − x | ≤ r 1−α}.

Remark: Mα,β is closely related to a Nikodym-like maximal function –

Mα,βw(x) & Nα,βw(x) := sup
0<rα≤1

sup
T3x

r 2β

|T |

∫
T

|f |,

where the supremum over tubes T in Rd of width r and length r 1−α, containing x .
(See also Nagel–Stein 1985, B–Carbery–Soria–Vargas 2006, B–Harrison 2012, B 2014.)
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Oscillatory kernels

Stationary phase leads to statements on the kernel side.

Example:

Corollary

Given a > 0, a 6= 1 and b ≥ d(1− a
2
), consider the kernels Ka,b : Rd → C given by

Ka,b(x) =
e i|x|a

(1 + |x |)b .

Then ∫
Rd

|Ka,b ∗ f |2w .
∫
Rd

|f |2M4Mα,βM4w ,

where α = a
a−1

and β = da/2−d+b
a−1

.

Remarks:

Missing point a = 1 corresponds to the disc multiplier and Stein’s conjecture.

Controlling maximal operators optimal with regard to Lp − Lq bounds.

Jonathan Bennett (U. Birmingham) Weighted inequalities for oscillatory integrals 19 May 2016 15 / 24



Oscillatory kernels

Stationary phase leads to statements on the kernel side.

Example:

Corollary

Given a > 0, a 6= 1 and b ≥ d(1− a
2
), consider the kernels Ka,b : Rd → C given by

Ka,b(x) =
e i|x|a

(1 + |x |)b .

Then ∫
Rd

|Ka,b ∗ f |2w .
∫
Rd

|f |2M4Mα,βM4w ,

where α = a
a−1

and β = da/2−d+b
a−1

.

Remarks:

Missing point a = 1 corresponds to the disc multiplier and Stein’s conjecture.

Controlling maximal operators optimal with regard to Lp − Lq bounds.

Jonathan Bennett (U. Birmingham) Weighted inequalities for oscillatory integrals 19 May 2016 15 / 24



Oscillatory kernels

Stationary phase leads to statements on the kernel side.

Example:

Corollary

Given a > 0, a 6= 1 and b ≥ d(1− a
2
), consider the kernels Ka,b : Rd → C given by

Ka,b(x) =
e i|x|a

(1 + |x |)b .

Then ∫
Rd

|Ka,b ∗ f |2w .
∫
Rd

|f |2M4Mα,βM4w ,

where α = a
a−1

and β = da/2−d+b
a−1

.

Remarks:

Missing point a = 1 corresponds to the disc multiplier and Stein’s conjecture.

Controlling maximal operators optimal with regard to Lp − Lq bounds.

Jonathan Bennett (U. Birmingham) Weighted inequalities for oscillatory integrals 19 May 2016 15 / 24



Oscillatory kernels

Stationary phase leads to statements on the kernel side.

Example:

Corollary

Given a > 0, a 6= 1 and b ≥ d(1− a
2
), consider the kernels Ka,b : Rd → C given by

Ka,b(x) =
e i|x|a

(1 + |x |)b .

Then ∫
Rd

|Ka,b ∗ f |2w .
∫
Rd

|f |2M4Mα,βM4w ,

where α = a
a−1

and β = da/2−d+b
a−1

.

Remarks:

Missing point a = 1 corresponds to the disc multiplier and Stein’s conjecture.

Controlling maximal operators optimal with regard to Lp − Lq bounds.

Jonathan Bennett (U. Birmingham) Weighted inequalities for oscillatory integrals 19 May 2016 15 / 24



Oscillatory kernels

Stationary phase leads to statements on the kernel side.

Example:

Corollary

Given a > 0, a 6= 1 and b ≥ d(1− a
2
), consider the kernels Ka,b : Rd → C given by

Ka,b(x) =
e i|x|a

(1 + |x |)b .

Then ∫
Rd

|Ka,b ∗ f |2w .
∫
Rd

|f |2M4Mα,βM4w ,

where α = a
a−1

and β = da/2−d+b
a−1

.

Remarks:

Missing point a = 1 corresponds to the disc multiplier and Stein’s conjecture.

Controlling maximal operators optimal with regard to Lp − Lq bounds.

Jonathan Bennett (U. Birmingham) Weighted inequalities for oscillatory integrals 19 May 2016 15 / 24



A PDE angle

Applying our results to the specific multipliers mα,β(ξ) := |ξ|−βe i|ξ|α leads to...

Corollary∫
Rd

|e is(−∆)α/2

f (x)|2w(x)dx .
∫
Rd

|(−∆)β/2f (x)|2M4Ms
α,βM4w(x)dx

where

Ms
α,βw(x) = sup

(y,r)∈Λs
α(x)

1

|B(y , r)|1−2β/d

∫
B(y,r)

w

and
Λs
α(x) := {(y , r) ∈ Rd × R+ : |y − x | ≤ sr 1−α}.

Remarks:

Power weights becomes Pitt’s inequality (or Hardy’s inequality).

A local energy estimate capturing dispersive effects (Λs
α(x) increasing in s).
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Pointwise estimates via g -functions

For α, β ∈ R we define the square function

gα,β(f )(x) =
(∫

Γα(x)

|f ∗ φt(y)|2 dy

t(1−α)d+2β

dt

t

)1/2

,

where, as before,

Γα(x) := {(y , t) ∈ Rd × R+ : 0 < tα ≤ 1, |y − x | ≤ t1−α}.

We also define

g∗α,β,λ(f )(x) =
(∫

Rd×R+

|f ∗ φt(y)|2(1 + tα−1|x − y |)−dλ dy

t(1−α)d+2β

dt

t

)1/2

.

Note that g0,0 = g and g∗0,0,λ = g∗λ – the classical g -functions.

Theorem (Pointwise estimate (Beltran–B 2015))

If a multiplier m satisfies
|∂γm(ξ)| . |ξ|−β+|γ|(α−1)

for every multiindex γ with |γ| ≤ [ d
2

] + 1 (or the Hörmander alternative), then for some
λ > 1 we have

gα,β(Tmf )(x) . g∗α,0,λ(f )(x).
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On the proof

Key ingredient. Together, gα,β and g∗α,β,λ decouple/recouple α-subdyadic frequency
decompositions.

Lemma (Decoupling/recoupling)

If B is a collection of balls in Rd such that

diam(B) ∼ dist(B, 0)1−α for all B ∈ B, and

{ψ̂B}B∈B is a regular partition of unity adapted to B,

then

gα,β
(∑
B∈B

f ∗ ψB

)
(x)2 .

∑
B∈B

g∗α,β,λ(f ∗ ψB)(x)2 . g∗α,β,λ

(∑
B∈B

f ∗ ψB

)
(x)2;

(For this reason we refer to gα,β as a subdyadic square function.)

Given the lemma it suffices to prove that

g∗α,β,λ(Tm(f ∗ ψB))(x) . g∗α,0,λ(f ∗ ψB)(x)

uniformly over balls B such that diam(B) ∼ dist(B, 0)1−α.

This localised estimate can be proved very much as in the classical case α = β = 0.
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Bounds on the square functions

In order to deduce the weighted inequalities for the Miyachi–Hörmander multipliers, we
need forward and reverse weighted inequalities for g∗α,β,λ and gα,β respectively.

Theorem (Reverse estimate)∫
Rd

|f (x)|2w(x)dx .
∫
Rd

gα,β(f )(x)2Mα,βM4w(x)dx

for any weight w, where (we recall),

Mα,βw(x) = sup
(y,r)∈Γα(x)

1

|B(y , r)|1−2β/d

∫
B(y,r)

w .

Closely related to the duality between Carleson measures and nontangential maximal
operators.

Optimality. Optimal Lebesgue bounds for Mα,β imply optimal lower bounds of the form

‖f ‖Lp(Rd ) . ‖gα,β(f )‖Lq(Rd ), certain p, q ≥ 2.
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Weighted maximal multiplier inequalities - a question

Recall the weighted Schrödinger inequality:

Corollary∫
Rd

|e is(−∆)α/2

f (x)|2w(x)dx .
∫
Rd

|(−∆)β/2f (x)|2M4Ms
α,βM4w(x)dx

where

Ms
α,βw(x) = sup

(y,r)∈Λs
α(x)

1

|B(y , r)|1−2β/d

∫
B(y,r)

w

and
Λs
α(x) := {(y , r) ∈ Rd × R+ : |y − x | ≤ sr 1−α}.

Since the regions Λs
α(x) are increasing in s, we have

sup
0≤s≤1

∫
Rd

|e is(−∆)α/2

f |2w .
∫
Rd

|(−∆)β/2f |2M2Mα,βM4w ,

where Mα,β = M1
α,β . Obvious question: Might this be strengthened to∫

Rd

sup
0≤s≤1

|e is(−∆)α/2

f |2w .
∫
Rd

|(−∆)β/2f |2M2Mα,βM4w ,

at least for certain α, β?
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Part 2: Some inequalities with specific weights.

Although the general weighted questions for g 7→ ĝdσ seem difficult, there are certain
specific weights for which a quite thorough understanding is available...
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Weights (or densities) on spheres

Theorem (B–Carbery–Soria–Vargas 2006)∫
S1

|ĝdσ(Rξ)|2dµ(ξ) .
1

R

∫
S1

|g |2MRµ

for all measures µ supported on S1, where

MRµ(ω) := sup
T ||ω

µ(T )

α(T )
;

here the supremum is taken over all tubes T in R2 with dimensions α× α2R, with
R−2/3 ≤ α ≤ R−1/2, parallel to ω.

Key point:

g 7→ ĝdσ(R·)
∣∣∣
S1

= e iR cos(·) ∗ g

– a convolution operator on S1...

No higher-dimensional version of theorem known, although the optimal range of Lp(S2)
estimates for

g 7→ ĝdσ(R·)
∣∣∣
S2

is known (B–Seeger 2009.)
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Weights (or densities) on other varieties

Let X denote the X-ray transform in the plane, i.e.

Xf (`) :=

∫
`

f ,

where ` belongs to the manifold L of lines in R2.

Theorem (B–Bez–Flock–Gutiérrez–Iliopoulou 2016)

If u solves i∂tu = ∆u with initial datum f ∈ L2(R2) then

‖X (|u|2)‖L3
t,`

(R×L) ≤ C‖f ‖2
L2(R2),

with equality if and only if f is an isotropic centred gaussian.

Proof in non-sharp form:

‖X (|u|2)‖L3
t,`

. ‖|u|2‖
L3
t L

3/2
x

= ‖u‖L6
t L

3
x
. ‖f ‖2

2,

by the L3/2 → L3 bound for X (Oberlin–Stein) and the L2 → L6
t L3

x Strichartz estimate.
Unlikely to give the sharp form as gaussians are not extremisers for the X-ray estimate
(Christ).
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Proof. The required inequality ‖X (|u|2)‖L3
t,`

(R×L) ≤ C‖f ‖2
L2(R2) reduces to the

“weighted” extension inequality∫
R6

|ĝdσ(x)|2δ(ρ(x))dx ≤ C‖g‖2
L2(S5), (3)

where

ρ(x) := det

(
1 1 1
x1 x2 x3

)
.

Since ∫
R6

|ĝdσ|2δ ◦ ρ =

∫
S5

|g(ω)|2[(δ̂ ◦ ρ) ∗ dσ(ω)]dσ(ω)

− 1

2

∫
S5

∫
S5

|g(ω)− g(ω′)|2δ̂ ◦ ρ(ω − ω′)dσ(ω)dσ(ω′),

matters reduce to the nonnegativity of δ̂ ◦ ρ and the fact that the function

(δ̂ ◦ ρ) ∗ dσ

is (an explicitly computable) constant. Clearly (3) holds with equality if g is constant –
generating the claimed gaussian extremisers. Uniqueness of gaussian extremisers follows
by a routine analysis of functional equations...

Thanks for listening!
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