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SM1. Saturation Water Vapor as a Function of Temperature. The vari-
ables of the PQG system are derived and presented in the paper with the assumption
that the saturation water vapor qvs is merely a function of height, i.e., qvs = qvs(z).
One may additionally, for physical reasons, want the saturation water vapor qvs to
be different in the saturated and unsaturated regions. Namely, we may wish to allow
higher temperature regions to hold more water vapor than lower temperature regions
before saturation [SM1] to control the total amount of water in each region. This,
however, requires a slight re-interpretation of the saturated buoyancy variable bs from
that presented in (6). As shown below, once the saturated buoyancy is suitably up-
dated, all conclusions and results of the current paper remain essentially unchanged.

For specificity, we consider the case where qvs is a linear function of the potential
temperature \theta :

(SM1) qvs = qvs,0 + qvs,1\theta ,

where qvs,0 and qvs,1 are constants. For a saturation water vapor of the form (SM1),
the definition of the saturated buoyancy (6) is no longer strictly correct as this buoy-
ancy no longer satisfies the evolution equation (2c). Explicitly, the saturated buoy-
ancy's extension into the unsaturated region is no longer correct and must therefore
be modified. To remedy this matter, we return to the conservation of equivalent po-
tential temperature equation [SM2, eq. 22b] and re-construct the saturated buoyancy
from this point of view. Namely, the equivalent potential temperature satisfies

(SM2)
DH\theta e
Dt

+ w
d\~\theta e
dz

= 0

throughout the domain in the PQG system and this serves as our basis for defining the
saturated buoyancy. To construct the saturated buoyancy we note that the definition
of the equivalent potential temperature \theta e = \theta + Lv

cp
qv gives

(SM3)

\theta e =

\Biggl\{ 
\theta + Lv

cp
qv = c1\theta +

Lv

cp
(qv  - qvs) +

Lv

cp
qvs,0 for qt < qvs (unsaturated)

\theta + Lv

cp
qvs = c1\theta +

Lv

cp
qvs,0 for qt \geq qvs (saturated)

,

where c1 = 1+ Lv

cp
qvs,1. Thus, from the linearity of the evolution equation (SM2), the

quantity \theta e  - Lv

cp
qvs,0 also satisfies (SM2) and

(SM4) bs =
g

\theta 0

1

c1

\biggl( 
\theta e  - 

Lv

cp
qvs,0

\biggr) 
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gives the natural definition of the saturated buoyancy from the fact that bs = g\theta /\theta 0
in the saturated side; compare equation (SM4) with the right-hand equation in (1c).
Therefore, we define the saturated buoyancy to be

(SM5) bs =
g

\theta 0

\biggl( 
\theta +Hu

Lv

cp

1

c1
(qt  - qvs)

\biggr) 
,

where this saturated buoyancy (SM5) satisfies the evolution equation

(SM6) c1
DHbs
Dt

+N2
sw = 0.

Lastly, we note that this modification to the PQG system does not change our
results since this transformation merely changes the parameter choices already within
the system. Namely, the system remains unchanged if we scale the the saturated
buoyancy by c1 and replace the term 1/N2

s wherever it multiplies the temperature by
c1/N

2
s . Concretely, the jump system (14b) is transformed as follows: in A\omega replace

1/N2
s with c1/N

2
s and in \bfitc replace [[Bs]] with c1[[Bs]]. For example, the horizontal

front speed, written in (19) with the potential temperature substituted away, is now

(SM7) \sigma H = V  - VT
\alpha z

\alpha 

\biggl( 
1

1 + C\alpha ,1[[qv  - qvs]]/[[qr]]

\biggr) 
,

where C\alpha ,1 = (\alpha 2N2
u + f2)/(\alpha 2N2

s + c1f
2). Notice that in this case only the constant

C\alpha is replaced with C\alpha ,1.

SM2. Relative Front Speed \omega = 0. In this section we discuss the possibility
of the front moving at the kinematic front speed \sigma H = V . This case corresponds to
the free horizontal advection of the frontal plane. As before, the row reduced matrix
(15) allows us to ascertain the following properties of the front system (14a).

SM2.1. Free Variables. The front system (14a) has 2 or 3 degrees of freedom
depending on the value of the non-negative rainfall speed VT . For positive rainfall
speeds the system has 2 degrees of freedom. In particular, if VT > 0, then the
rainwater jump satisfies [[Qr]] = 0. So, notice that this case of the front speed is only
realized, for non-trivial rainfall speeds, when [[Qr]] = 0. That is, the rainwater in the
saturated region is exactly at saturation point. Otherwise, if VT = 0, an additional
degree of freedom is allowed in the system since one of the pivot columns of (15) is
lost.

SM2.2. Conditions for Non-Trivial Solution. If [[Qr]] = 0, [[Qv - Qvs]] = 0,
and any third jump variable of \bfitc is identically zero, e.g., [[\Theta ]] = 0, then the front
system (14a) only allows for the trivial solution.

SM2.3. Bound on the Temperature or Velocity. There is no relation be-
tween the temperature jump and water vapor as in (16b). Consequently, there is no
accompanying condition on the sign of the temperature jump [[\Theta ]]---the saturated
side may be warm or cold---or bound for the along-front velocity difference or the
magnitude of the velocity difference. Moreover, note that the moisture variables only
arise in the definition of the buoyancy variables. So, the relative vorticity Z, vertical
velocity W , and temperature [[\Theta ]] may be determined independently of moisture.
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SM2.4. Bound on Vertical Velocity and Relative Vorticity. The vertical
velocity satisfies W = 0. This implies that the vertical velocity is no longer singular
at the interface and is in fact identically zero throughout the domain. The relative
vorticity Z is given by equation (25). No inequality on the sign of the relative vorticity
Z is possible, however.

SM2.5. Comments on the Potential Vorticity. Unlike in Remark 5.3, PV
defined from the saturated buoyancy, \scrP s = Z  - \alpha zf [[Bs]], may indeed be singular at
the front interface. This noticeable difference arises from the fact that \omega = 0 does not
give rise to a jump condition relating water vapor and temperature as in (16b).

SM3. Relative Front Speed \omega =  - VT\alpha z/\alpha . Here, we discuss the possibility
of the front moving at the speed \sigma H = V  - VT\alpha z/\alpha . We assume here that VT \not = 0 since
allowing VT = 0 would produce the case \omega = 0, which was discussed in Section SM2.
In this case, the row reduced matrix (15) allows for the following brief observations
of the front system (14a).

SM3.1. Free Variables. The linear system (15) requires that all jump variables
except [[Bu]] and [[Qr]] be identically zero. That is, Z = 0, W = 0, [[Bs]] = 0,
[[U ]] = 0, [[V ]] = 0, [[Qv  - Qvs]] = 0, and [[\Theta ]] = 0. The front system (14a) has 1
degree of freedom. Notice then that this case of the front speed is only realized when
the water vapor is exactly at saturation point. The rainwater mixing ratio, on the
other hand, may be freely chosen.

SM3.2. Conditions for Non-Trivial Solution. The front system (14a) has
only the trivial solution if [[Qr]] = 0.

SM4. Front with Saturated Region Overlaying Unsaturated Region.
The propagation of the PQG front solution for \alpha z =  - 1 is similar to that when
\alpha z = 1, discussed in Section 6.1 and Section SM5. Therefore, we primarily focus on
the differences arising from the change in \alpha z. When \alpha z =  - 1, the horizontal front
speed is bounded by:

(SM8) V \leq \sigma H \leq V +
VT

\alpha 
.

Then, for a front in which the saturated/cold region overlays the unsaturated/warm
region, it follows that:

\bullet If V \geq 0, then only cold fronts may develop.
\bullet If  - VT /\alpha < V < 0, then the solution may be a cold, warm, or stationary

front.
\bullet If V \leq  - VT /\alpha , then only warm fronts may develop.

A stationary front arises only when the front speed is identically zero (\sigma H = 0).
Therefore, the across-front velocity must be the same sign as \alpha z, to counter balance
the rainfall term in equation (19). Namely, for \alpha z =  - 1, the across-front velocity
must point into the saturated/cold region. As before, a zero across-front velocity
V = 0 will not give rise to a stationary front.

The properties of the along-front velocity, vertical velocity, and relative vorticity
are nearly identical to those in Section 5.2. The bound (18) has the following impli-
cation for the along-front velocity difference. For \alpha z =  - 1, the along-front velocity U
satisfies f [[U ]] > 0, or Us > Uu in the northern hemisphere and Uu > Us in the south-
ern hemisphere. That is, the along-front velocity experiences a negative (positive)
shear across the front in the northern (southern) hemisphere.



SM4 A. N. WETZEL, L. M. SMITH, AND S. N. STECHMANN

Lastly, the vertical velocity given by (23) satisfies the inequalityW < 0 if \alpha z =  - 1.
So, only a downward vertical velocity constant is allowed at the front interface. In
addition, (25) with [[\Theta ]] < 0 gives the condition fZ < 0 if \alpha z =  - 1 for the relative
vorticity.

SM5. Further Discussion on the Effect of Mean Wind on Fronts. Here
we provide additional details and extend the discussion of Section 6.1. Recall that in
this case we assume that the unsaturated/warm region overlays the saturated/cold
region; \alpha z = 1. We begin by continuing the discussion on the effect that the mean
wind has on the types of fronts which may develop.

For there to be a cold front (\sigma H > 0) it is necessary that the across-front velocity
of the system satisfy V > 0. Namely, the across-front velocity must be directed into
the unsaturated/warm region. In a physical sense, for a front with a cold poleward
side, V > 0 implies that the across-front velocity must be equatorward for a cold
front to arise. The condition V > 0 does not, however, exclusively give rise to cold
fronts in this setup since 0 < V < VT /\alpha also allows for warm and stationary fronts.
Notably, however, no cold front is possible in the current setup if the across-front
velocity points toward the saturated/cold region, V < 0, since the rainfall term of
(19) is negative definite.

Similarly, it follows from inequality (27) that for there to be a warm front (\sigma H < 0)
it is sufficient that the kinematic speed satisfy V < 0. Namely, the across-front
velocity is directed into the saturated/cold region. Considering the case of a front
with a cold poleward side, a poleward across-front velocity guarantees a warm front.
Indeed, warm fronts may form if the velocity is either poleward or equatorward; the
equatorward velocity, however, must not be too large.

Stationary fronts are obtained when the front speed is identically zero (\sigma H = 0).
In this setup, this implies that the rainfall and kinematic speed terms in (19) balance
exactly. For this to occur, it is necessary for the across-front velocity to be the same
sign as \alpha z to counter balance the strictly negative rainfall term. Namely, since \alpha z = 1,
the across-front velocity must point into the unsaturated/warm region for a stationary
front to arise. The kinematic front speed V , moreover, must not be so large that the
rainfall term cannot balance it. Considering that the across-front velocity V may be
small in comparison to the value of the rainfall VT /\alpha , stationary fronts in this setup
may require a suitably small jump in rainwater.

The along-front velocity, vertical velocity, and relative vorticity are determined
independently from the across-front velocity. Their properties remain essentially un-
changed from those discussed in the example of Section 5.1. So, we only briefly discuss
these variables below for a generic front geometry.

The along-front velocity difference may be understood by means of the bound
(18). Considering that \alpha z = 1, the along-front velocity U satisfies f [[U ]] < 0, or
Us < Uu in the northern hemisphere and Uu < Us in the southern hemisphere. These
conditions about the along-front velocity may be interpreted simply as requiring a pos-
itive (negative) velocity shear across the front in the northern (southern) hemisphere.
Moreover, by (18), this velocity difference is allowed to be larger if the corresponding
temperature and water vapor jump is large enough. In contrast, notice that the only
constraint on the across-front velocity difference is continuity, i.e., [[V ]] = 0.

Lastly, since \alpha z\omega < 0, the vertical velocity given by (23) satisfies the inequality
W > 0 if \alpha z = 1. That is, only an upward vertical velocity constant is allowed at the
interface. In addition, since \alpha z = 1, equation (25) with [[\Theta ]] < 0 gives the condition
fZ > 0 if \alpha z = 1. Thus, admissible fronts require positive relative vorticity in the
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northern hemisphere and negative relative vorticity in the southern hemisphere at the
front interface. Again, we summarize the observations on the velocities of the last
two paragraphs, for U = 0, in pictorial form in Figure SM1.

z

S

Vs Vu

xy

Uu

Us

W

Fig. SM1. Sketch of physical fronts in the northern hemisphere for U = 0; the front interface is
labeled \scrS and separates the saturated (light blue) and unsaturated (clear) sides. The vertical velocity
constant W must be positive on the front interface and zero elsewhere. The across-front velocity
may be positive or negative, but must point in the same direction on both sides.

SM6. On the Possibility of Discontinuous Fronts with No Phase Change.
In this section we consider the possibility of a front in the PQG system (2a)--(2c) with
relations (4a)--(4c) and (6) between two regions of the same phase. That is, we discuss
the possibility of frontal solutions when the regions on each side of the front \scrS are
both unsaturated or both saturated only. In principle, since no phase change takes
place, this case is analogous to the study of frontal solutions of the QG equations.

SM6.1. Unsaturated Jump. In the case when both sides of \scrS are unsatu-
rated, we obtain a set of jump conditions similar to (12a)--(12g). Since there is no
jump in phase, we proceed with the understanding that the symbol [[\varphi ]] represents
the difference of the variable \varphi between the two sides of \scrS . Indeed, most jump equa-
tions remain unchanged, since moisture only arises in our model in the buoyancy
and buoyancy evolution equations. Moreover, since we are only considering unsat-
urated dynamics, we only need to consider the unsaturated buoyancy Bu. Namely,
the evolution equation for the saturated buoyancy Bs does not contribute additional
information in the unsaturated case so we do not consider this variable.

The original jump conditions (12a) and (12c)--(12e) remain unchanged in this sce-
nario as they are independent of moisture. Jump condition (12f) for the unsaturated
buoyancy, however, is changed due to our different phase change assumptions and
becomes

(SM9) [[Bu]] =
1

N2
u

[[\Theta ]] .

Importantly, the jump condition (12b) arising from the evolution of saturated buoy-
ancy remains unchanged except for the fact that the rainwater term is dropped. Ad-
ditionally, jump condition (12g) remains identical. Since both jump equations for
the saturated buoyancy do not impose additional restrictions to the frontal jump but
merely add an additional unknown quantity with each new equation, we may safely
ignore these two jump equations.
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Therefore, this scenario gives rise to the linear system A\omega \bfitc = 0, as in (14a), with

(SM10) A\omega =

\left[        

\omega f \alpha z

\alpha 0 0 0 0
1 0 0 1 0 0
0 1 \omega 0 0 0
0 0 0 f \alpha z

\alpha 0  - 1
0 0 0 0 1 0
0 0 1 0 0  - 1

N2
u

\right]        and \bfitc =

\left[        
\alpha  - 1Z
\alpha  - 1W
[[Bu]]
[[U ]]
[[V ]]
[[\Theta ]]

\right]        .

We may row reduce the matrix A\omega to obtain

(SM11) A\omega \sim 

\left[          

1 0 0 0 0 \alpha 
f\alpha z

0 1 0 0 0  - \omega \alpha 2

f2\alpha 2
z

0 0 1 0 0  - 1
N2

u

0 0 0 1 0  - \alpha 
f\alpha z

0 0 0 0 1 0

0 0 0 0 0 \omega 
\Bigl( 

\alpha 2

f2\alpha 2
z
+ 1

N2
u

\Bigr) 

\right]          
.

As before, row reduced (SM11) clearly shows that the rank of A\omega is dependent on the
value of \omega .

In the case that \omega \not = 0, we may note that only the trivial jump \bfitc = 0 is possible.
Therefore, the solution cannot move with a speed different from the kinematic front
speed (pure advection) if there is no phase change.

In the case \omega = 0, it is indeed possible to have a frontal solution. Notice, however,
that the vertical velocity is then forced to be identically zero throughout the domain
and the motion of the discontinuity corresponds to pure horizontal advection.

Now, if in addition to \omega = 0, we require for the PV to be bounded, only the trivial
jump solution is possible. First, requiring a bounded PV implies

(SM12) \scrP u = Z  - \alpha zf [[Bu]] = 0.

Then, using (SM10)--(SM11) allows us to rewrite

(SM13) \scrP u =  - f\alpha z

\biggl( 
\alpha 2

f2
+

1

N2
u

\biggr) 
[[\Theta ]] = 0.

Equation (SM13) shows that a bounded PV requires [[\Theta ]] = 0 and the jump matrix
then only allows the trivial solution. So, broadly speaking, either a singular PV or a
phase change is required across the front for the solutions to be non-trivial.

SM6.2. Saturated jump. We proceed in a similar manner as the previous
section. In the case when both sides of \scrS are saturated, we only need to consider the
saturated buoyancy Bs. Jump conditions (12a)--(12e) remain mostly unchanged, as
in the unsaturated case, with moisture terms being dropped. Jump condition (12g)
is then

(SM14) [[Bs]] =

\biggl[ \biggl[ 
\Theta 

N2
s

\biggr] \biggr] 
.
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Again, we may write the linear matrix system A\omega \bfitc = 0 with

(SM15) A\omega =

\left[        

\omega f \alpha z

\alpha 0 0 0 0
1 0 0 1 0 0
0 1 \omega 0 0 0
0 0 0 f \alpha z

\alpha 0  - 1
0 0 0 0 1 0
0 0 1 0 0  - 1

N2
s

\right]        and \bfitc =

\left[        
\alpha  - 1Z
\alpha  - 1W
[[Bs]]
[[U ]]
[[V ]]
[[\Theta ]]

\right]        .

Note that (SM15) is identical to the system (SM10) we obtained in the unsat-
urated case if we replace N2

s , Bs with N2
u , Bu, respectively. Therefore, the same

broad conclusions apply to this system. Namely, \omega \not = 0 allows for only the trivial
jump \bfitc = 0. In the case \omega = 0, we may have non-trivial solutions unless the PV is
bounded; \scrP s = Z  - \alpha zf [[Bs]] = 0 in this case.

SM7. Jump Conditions in Large Rainfall Speed Limit. The PQG equa-
tions (2a)--(2c) used in this paper are derived under the assumption that rainfall speed
is of the same order as the characteristic vertical velocity. For this reason, modifica-
tions arising from the large rainfall speed limit are of some interest. In this section,
we discuss how the jump conditions that arise from the PQG system using the ansatz
(10c)--(10d) are modified in the case that rainfall is considered asymptotically large
in comparison to the vertical velocity. We do not include a careful asymptotic justi-
fication for the leading order balances and resulting equations discussed below, but
refer the interested reader to [SM2] for a systematic derivation of the PQG equations
with large rainfall speed.

Much of the structure of our current PQG system remains unchanged in the large
rainfall speed limit. In practical terms, the large rainfall speed limit essentially entails
replacing the evolution equation (2b) for the unsaturated buoyancy, which arises from
a leading order balance of zero vertical velocity, with a leading order balance between
the vertical velocity and the rainfall speed. Namely, equation (2b) is replaced by the
equation

(SM16) w
d\~qt
dz

= VT
\partial qr
\partial z

.

which becomes

(SM17) W = \gamma \alpha z
VT

N2
u

[[Qr]]

for the ansatz (10c)--(10d), where d\~qt/dz is the gradient of background total water and

\gamma = N2
u/

\Bigl( 
gLv

\theta 0cp

d\~qt
dz

\Bigr) 
. Therefore, our system of jump equations is essentially unchanged

and we proceed to only highlight the key differences.
In complete analogy to the work in the Section 4, we may write a linear system

for the jump variables in terms of the front geometry. This system, with constraints
(14d) imposed by the moisture, takes the form

(SM18a) A\omega \bfitc = 0,
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where
(SM18b)

A\omega =

\left[            

\omega f \alpha z

\alpha 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0
0 1 0 0 0 0  - \gamma VT

\alpha z

\alpha 0 0
0 1 0 \omega 0 0 0 0 0
0 0 0 0 f \alpha z

\alpha 0 0 0  - 1
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0  - 1

N2
u

0 0 0 1 0 0 0  - 1  - 1
N2

s

\right]            
, \bfitc =

\left[              

\alpha  - 1Z
\alpha  - 1W
[[Bu]]
[[Bs]]
[[U ]]
[[V ]]

1
N2

u
[[Qr]]

1
N2

s
[[Qv  - Qvs]]

[[\Theta ]]

\right]              
.

The 8\times 9 matrix A\omega may be row reduced to echelon form as:

(SM19) A\omega \sim 

\left[               

1 0 0 0 0 0 0 0 \alpha 
f\alpha z

0 1 0 0 0 0 0 0  - \omega \alpha 2

f2\alpha 2
z

0 0 1 0 0 0 1 0  - 1
N2

u

0 0 0 1 0 0 0  - 1  - 1
N2

s

0 0 0 0 1 0 0 0  - \alpha 
f\alpha z

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 \gamma VT
\alpha z

\alpha 0  - \omega \alpha 2

f2\alpha 2
z

0 0 0 0 0 0 0 \omega \omega 
\Bigl( 

\alpha 2

f2\alpha 2
z
+ 1

N2
s

\Bigr) 

\right]               
.

Note that the row reduced system (SM19) is nearly identical to our original system
(15) obtained for rainfall speed comparable to the vertical velocity. Comparing these
two systems, only the equation relating the rainwater with the temperature jump is
different. That is, the only equation that is different is that which gives the front
speed of the system.

The equation for the rainwater and temperature that replaces (16a) is now

(SM20) \gamma VT
\alpha z

\alpha 

f2

N2
u

[[Qr]] - \omega \alpha 2[[\Theta ]] = 0.

Solving explicitly for the front speed and using the equation for the water vapor,
which is identical to (16b), we find in analogy to the front speed (19) that in the large
rainfall speed limit the horizontal front speed is

(SM21) \sigma H = V  - \gamma VT
\alpha z

\alpha 

\biggl( 
\alpha 2N2

s + f2

\alpha 2N2
u

\biggr) 
[[qr]]

[[qv  - qvs]]
.

Note interestingly that in this case the horizontal front speed \sigma H = \sigma /\alpha is only
bounded above or below by the kinematic front speed V and is not bounded in any
form by the rainfall speed, in contrast to (20). Namely, either

(SM22) V < \sigma H or \sigma H < V

depending on the sign of \alpha z. So, the front speed in the large rainfall speed limit is
now unbounded.
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