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Abstract12

The stochastic skeleton model is a simpli�ed model for the Madden-Julian oscil-13

lation (MJO) and intraseasonal-planetary variability in general involving coupling of14

planetary-scale dry dynamics, moisture, and a stochastic parametrization for the unre-15

solved details of synoptic-scale activity. The model captures the fundamental features16

of the MJO such as the intermittent growth and demise of MJO wave trains, the MJO17

propagation speed, peculiar dispersion relation, quadrupole vortex structure, etc. We18

analyze here the solutions of a stochastic skeleton model with an idealized seasonal19

cycle, namely a background warm pool state of heating/moistening displacing merid-20

ionally during the year. The present model considers both equatorial and o�-equatorial21
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components of the envelope of synoptic scale convective activity, which allows for a22

large diversity of meridionally symmetric and asymmetric intraseasonal events found23

in nature. These include examples of symmetric events with MJO quadrupole vor-24

tex structure, half-quadrupole events with o�-equatorial convective heating structure,25

as well as tilted events with convective heating structure oriented north-westward and26

associated northward propagation that is reminiscent of the summer monsoon intrasea-27

sonal oscillation. The model also reproduces qualitatively the meridional migration of28

intraseasonal variability during the year, that approximatively follows the meridional29

migration of the background warm pool.30

1 Introduction31

The dominant component of intraseasonal variability in the tropics is the 40 to 50 day intraseasonal32

oscillation, often called the Madden-Julian oscillation (MJO) after its discoverers (Madden and33

Julian, 1971; 1994). In the troposphere, the MJO is an equatorial planetary-scale wave, that is34

most active over the Indian and western Paci�c Oceans and propagates eastward at a speed of35

around 5ms−1. The planetary-scale circulation anomalies associated with the MJO signi�cantly36

a�ect monsoon development, intraseasonal predictability in midlatitudes, and the development of37

El Niño events in the Paci�c Ocean, which is one of the most important components of seasonal38

prediction.39

One fundamental and not fully understood characteristic of the MJO and the intraseasonal40

oscillation (ISO) in the tropics in general is its pronounced seasonality. The MJO signals migrate in41

latitude during the year, approximatively following the migration of warm sea surface temperatures,42

with for example a peak activity of zonal winds and precipitation located slightly south of the43

equator in boreal winter and north of the equator in boreal summer (Salby and Hendon, 1994;44

Zhang and Dong, 2004). The MJO is strongest during the boreal winter and spring seasons45

where it appears as a predominantly eastward propagating system of convection along (or sligthly46

south of) the equator. Noteworthy the MJO signals in boreal winter are related to the onset and47

breaks of the Australian monsoon (Wheeler and Hendon, 2004; Lau and Waliser, 2012 chapt 5).48
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In boreal summer, the ISO is of a di�erent character: the dominant intraseasonal oscillation, of49

period 30-60 days, shows a pronounced o�-equatorial component that is associated in particular50

with northward or north-eastward propagation of convection over the Indian Ocean and the Asian51

continent (Zhang, 2005; Kikuchi et al., 2011). This intraseasonal mode is sometimes referred to52

as the summer monsoon ISO, or boreal summer ISO, in order to di�erentiate it from the boreal53

winter MJO. Several studies interpret the northward propagation as resulting from the interaction54

between the eastward propagation of convection at the equator (e.g. the northern gyre of equatorial55

Rossby waves forced by equatorial convective heating) and the background mean state (Lau and56

Peng, 1990; Wang and Xie, 1997; Lawrence and Webster, 2002), though there is also observational57

and theoretical evidence that northward propagation can be independent (Webster, 1983; Wang58

and Rui, 1990; Jiang et al., 2004; Annamalai and Sperber, 2005). The summer monsoon ISO59

signals are strongly related to the onset and breaks of the South Asian and East Asian monsoon60

(Lau and Waliser, 2012 chapt 2, 3).61

In addition to such climatological features, the structure of individual intraseasonal events is62

often unique. For example, both equatorial and o�-equatorial convective heating coexist during63

intraseasonal events with characteristics and intensity that di�er from one event to another (Wang64

and Rui, 1990; Jones et al., 2004; Masunaga, 2007), including during MJO events (Tung et al.,65

2014a, b). Biello and Majda (2005, 2006) for example have analyzed in a multiscale model for66

the MJO the di�erences in planetary-scale circulation induced by equatorial or o�-equatorial con-67

vective heating of synoptic-scale. Individual intraseasonal events also show unique re�ned vertical68

structures as well as complex dynamic and convective features within their envelope. The MJO for69

example shows front-to-rear vertical tilts, westerly wind bursts, etc within its envelope (Kikuchi70

and Takayabu, 2004; Kiladis et al., 2005; Tian et al., 2006), while the summer monsoon ISO shows71

dynamic and convective features of a di�erent nature (Goswami et al., 2003; Straub and Kiladis,72

2003)73

Despite the primary importance of the MJO and the decades of research progress since its74

original discovery, no theory for the MJO has yet been generally accepted. Simple theories provide75

some useful insight on certain isolated aspects of the MJO, but they have been largely unsuccessful76
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in reproducing all of its fundamental features together (Zhang, 2005). Meanwhile, present-day77

simulations by general circulation models (GCMs) typically have poor representations of it, despite78

some recent improvements (Lin et al., 2006; Kim et al., 2009; Hung et al., 2013). A growing body79

of evidence suggests that this poor performance of both theories and simulations in general is80

due to the inadequate treatment of the organized structures of tropical convection (convectively-81

coupled waves, cloud-clusters...), that are de�ned on a vast range of spatiotemporal scales (synoptic,82

mesoscale...) and that generate the MJO as their planetary envelope (Hendon and Liebmann,83

1994; Moncrie� et al., 2007). For example, in current GCMs and models in general computing84

resources signi�cantly limit spatial grids (to ≈ 10 − 100 km), and therefore there are several85

important small scale moist processes that are unresolved or parametrized according to various86

recipes. Insight has been gained from the study of MJO-like waves in multicloud model simulations87

and in superparametrization computer simulations, which appear to capture many of the observed88

features of the MJO by accounting for coherent smaller-scale convective structures within the89

MJO envelope (e.g. Grabowski and Moncrie�, 2004; Majda et al., 2007; Khouider et al., 2011;90

Ajayamohan et al., 2013). Suitable stochastic parametrizations also appear to be good canditates91

to account for irregular and intermittent organized small scale moist processes while remaining92

computationally e�cient (Majda et al., 2008; Khouider et al., 2010; Stechmann and Neelin, 2011;93

Frenkel et al., 2012; Deng et al., 2014). As another example, the role of synoptic scale waves in94

producing key features of the MJO's planetary scale envelope has been elucidated in multiscale95

asymptotic models (Majda and Biello, 2004; Biello and Majda, 2005, 2006; Majda and Stechmann,96

2009a; Stechmann et al., 2013).97

While theory and simulation of the MJO remain di�cult challenges, they are guided by some98

generally accepted, fundamental features of the MJO on intraseasonal-planetary scales that have99

been identi�ed relatively clearly in observations (Hendon and Salby, 1994; Wheeler and Kiladis,100

1999; Zhang, 2005). These features are referred to here as the MJO's �skeleton� features:101

I. A slow eastward phase speed of roughly 5ms−1,102

II. A peculiar dispersion relation with dω/dk ≈ 0,103

III. A horizontal quadrupole structure,104
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IV. Intermittent generation of MJO events,105

V. Organization of MJO events into wave trains with growth and demise.106

Recently, Majda and Stechmann (2009b) introduced a minimal dynamical model, the skeleton107

model, that captures the MJO's intraseasonal features (I-III) together for the �rst time in a simple108

model. The model is a coupled nonlinear oscillator model for the MJO skeleton features as well109

as tropical intraseasonal variability in general. In particular, there is no instability mechanism110

at planetary scale, and the interaction with sub-planetary convective processes discussed above111

is accounted for, at least in a crude fashion. In a collection of numerical experiments, the non-112

linear skeleton model has been shown to simulate realistic MJO events with signi�cant variations113

in occurrence and strength, asymmetric east-west structures, as well as a preferred localization114

over the background state warm pool region (Majda and Stechmann, 2011). More recently, a115

stochastic version of the skeleton model has been developed that reproduces qualitatively features116

(IV-V) (Thual et al., 2014). The stochastic skeleton model reproduces the intermittent growth and117

demise of MJO wave trains found in nature, or in other words the occurence of series of successive118

MJO events, either two, three or sometimes more in a row (Matthews, 2008; Yoneyama et al., 2013).119

In the stochastic skeleton model, a simple stochastic parametrization allows for an intermittent120

evolution of the unresolved synoptic-scale convective/wave processes and their planetary envelope.121

This stochastic parametrization follows a similar strategy found in the related studies mentioned122

above (e.g. as reviewed in Majda et al., 2008).123

In the present article, we will examine the solutions of a stochastic skeleton model with seasonal124

cycle. While previous work on the skeleton model has focused essentially on the MJO, we focus125

here on the tropical intraseasonal variability in general, as discussed above. Two main features of126

the intraseasonal variability that are qualitatively reproduced by the model are:127

VI. Meridionally asymmetric intraseasonal events, and128

VII. A seasonal modulation of intraseasonal variability.129

Indeed, we will show that the stochastic skeleton model with seasonal cycle reproduces a large130

diversity of intraseasonal events found in nature, with for example some characteristics reminis-131
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cent of both the MJO and the summer monsoon ISO. This occurs despite the fact that important132

details such as land-sea contrast, shear, tilted vertical structure, and continental topography are133

not treated in the model. In addition, we will show that the model reproduces qualitatively the134

meridional migration of the intraseasonal variability during the year. In order to account for fea-135

tures (VI-VII), two important modi�cations are considered in the stochastic skeleton model with136

seasonal cycle. First, while in previous works with the skeleton model focusing on the MJO (Ma-137

jda and Stechmann, 2009b, 2011; Thual et al., 2014) a single equatorial component of convective138

heating was considered, here we consider additional o�-equatorial components of convective heat-139

ing in order to further produce meridionally asymmetric intraseasonal events beyond the MJO.140

Second, a simple seasonal cycle is included that consists of a background warm pool state of141

heating/moistening that migrates meridionally during the year.142

The article is organized as follows. In section 2 we recall the design and main features of the143

skeleton model, and present the stochastic skeleton model with seasonal cycle used here. In section144

3 we present the main features of the model solutions, including their zonal wavenumber-frequency145

power spectra and seasonal modulation, as well as several hovmoller diagrams. In section 4 we146

focus on three interesting types of intraseasonal events found in the model solutions and analyze147

their potential observational surrogates, their approximate structure and occurence through the148

year. Section 5 is a discussion with concluding remarks.149

2 Model Formulation150

2.1 Stochastic Skeleton Model151

The skeleton model has been proposed originally by Majda and Stechmann (2009b) (hereafter152

MS2009), and further analyzed in Majda and Stechmann (2011) (hereafter MS2011) and Thual153

et al. (2014) (hereafter TMS2014). It is a minimal non-linear oscillator model for the MJO and the154

intraseasonal-planetary variability in general. The design of the skeleton model, already presented155

in those previous publications, is recalled here for completeness.156

The fundamental assumption in the skeleton model is that the MJO involves a simple multi-157
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scale interaction between (i) planetary-scale dry dynamics, (ii) lower-level moisture q and (iii) the158

planetary-scale envelope of synoptic-scale convection/wave activity, a. The planetary envelope a in159

particular is a collective (i.e. integrated) representation of the convection/wave activity occurring160

at sub-planetary scale (i.e. at synoptic-scale and possibly at mesoscale), the details of which are161

unresolved. A key part of the q − a interaction is how moisture anomalies in�uence convection.162

Rather than a functional relationship a = a(q), it is assumed that q in�uences the tendency (i.e.163

the growth and decay rates) of the envelope of synoptic activity:164

∂ta = Γqa , (1)

where Γ > 0 is a constant of proportionality: positive (negative) low-level moisture anomalies165

create a tendency to enhance (decrease) the envelope of synoptic activity.166

The basis for Eq. (1) comes from a combination of observations, modeling, and theory. Gener-167

ally speaking, lower-tropospheric moisture is well-known to play a key role in regulating convection168

(Grabowski and Moncrie�, 2004; Moncrie�, 2004; Holloway and Neelin, 2009), and has been shown169

to lead the MJO's heating anomalies (Kikuchi and Takayabu, 2004; Kiladis et al., 2005; Tian et al.,170

2006), which suggests the relationship in Eq. (1). This relationship is further suggested by sim-171

pli�ed models for synoptic-scale convectively coupled waves showing that the growth rates of the172

convectively coupled waves depend on the wave's environment, such as the environmental moisture173

content (Khouider and Majda, 2006; Majda and Stechmann, 2009a; Stechmann et al., 2013). In174

particular, Stechmann et al. (2013) estimate the value of Γ from these growth rate variations.175

In the skeleton model, the q − a interaction parametrized in Eq. (1) is further combined176

with the linear primitive equations projected on the �rst vertical baroclinic mode. This reads, in177

non-dimensional units,178

∂tu− yv − ∂xθ = 0

yu− ∂yθ = 0

∂tθ − (∂xu+ ∂yv) = Ha− sθ

∂tq +Q(∂xu+ ∂yv) = −Ha+ sq

(2)

with periodic boundary conditions along the equatorial belt. The �rst three rows of Eq. (2) describe179
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the dry atmosphere dynamics, with equatorial long-wave scaling as allowed at planetary scale. The180

u and v are the zonal and meridional velocity, respectively, θ is the potential temperature and in181

addition p = −θ is the pressure. The fourth row describes the evolution of low-level moisture182

q. All variables are anomalies from a radiative-convective equilibrium, except a. In order to183

reconstruct the complete �elds having the structure of the �rst vertical baroclinic mode, one must184

use u(x, y, z, t) = u(x, y, t)
√

2cos(z), θ(x, y, z, t) = θ(x, y, t)
√

2sin(z), etc., with a slight abuse of185

notation. This model contains a minimal number of parameters: Q is the background vertical186

moisture gradient, Γ is a proportionality constant. The H is irrelevant to the dynamics (as can be187

seen by rescaling a) but allows us to de�ne a heating/drying rate Ha for the system in dimensional188

units. The sθ and sq are external sources of cooling and moistening, respectively, that need to189

be prescribed in the system (see hereafter). The skeleton model depicts the MJO as a neutrally-190

stable planetary wave. In particular, the linear solutions of the system of equations (1-2) (when191

a is truncated at the �rst Hermite function component, see hereafter) exhibit a MJO mode with192

essential observed features, namely a slow eastward phase speed of roughly 5ms−1, a peculiar193

dispersion relation with dω/dk ≈ 0 and a horizontal quadrupole structure (MS2009; MS2011).194

The stochastic skeleton model, introduced in TMS2014, is a modi�ed version of the skeleton195

model from Eq. (1-2) with a simple stochastic parametrization of the synoptic scale processes. The196

amplitude equation (1) is replaced by a stochastic birth/death process (the simplest continuous-197

time Markov process) that allows for intermittent changes in the envelope of synoptic activity (see198

chapter 7 of Gardiner, 1994; Lawler, 2006). Let a be a random variable taking discrete values199

a = ∆a η, where η is a positive integer. The probabilities of transiting from one state η to another200

over a time step ∆t read as follows:201

P{η(t+ ∆t) = η(t) + 1} = λ∆t+ o(∆t)

P{η(t+ ∆t) = η(t)− 1} = µ∆t+ o(∆t)

P{η(t+ ∆t) = η(t)} = 1− (λ+ µ)∆t+ o(∆t)

P{η(t+ ∆t) 6= η(t)− 1, η(t), η(t) + 1} = o(∆t) ,

(3)
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where λ and µ are the upward and downward rates of transition, respectively. They read:202

λ =


Γ|q|η + δη0 if q ≥ 0

δη0 if q < 0
and µ =


0 if q ≥ 0

Γ|q|η if q < 0
(4)

where δη0 is the kronecker delta operator. The above choice of the transition rates ensures that203

∂tE(a) = ΓE(qa) for ∆a small, where E denotes the statistical expected value, so that the q − a204

interaction described in Eq. (1) is recovered on average.205

This stochastic birth/death process allows us to account for the intermittent contribution of206

unresolved synoptic-scale details on the MJO. The synoptic-scale activity consists of a complex207

menagerie of convectively coupled equatorial waves, such as 2-day waves, convectively coupled208

Kelvin waves, etc (Kiladis et al., 2009). Some of these synoptic details are important to the209

MJO, as they can be both modulated by the planetary background state and contribute to it, for210

example through upscale convective momentum transport or enhanced surface heat �uxes (Majda211

and Biello, 2004; Biello and Majda, 2005, 2006; Moncrie� et al., 2007; Majda and Stechmann,212

2009a; Stechmann et al., 2013). With respect to the planetary processes depicted in the skeleton213

model, the contribution of those synoptic details appears most particularly to be highly irregular,214

intermittent, and with a low predictability (e.g. Dias et al., 2013), which is parametrized by Eq.215

(3). This stochastic parametrization follows the same prototype found in previous related studies216

(Majda et al., 2008). The methodology consists in coupling some simple stochastic triggers to217

the otherwise deterministic processes, according to some probability laws motivated by physical218

intuition gained (elsewhere) from observations and detailed numerical simulations. Most notably,219

the stochastic skeleton model has been shown to reproduce qualitatively the intermittent growth220

and demise of MJO wave trains found in nature, i.e. the occurence of series of successive MJO221

events, either two, three or sometimes more in a row (Matthews, 2008; Yoneyama et al., 2013;222

TMS2014).223
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2.2 Meridionally Extended Skeleton Model224

We now introduce a meridionally extended version of the stochastic skeleton model. Previous work225

on the skeleton model has focused essentially on the MJO dynamics, associated with an equatorial226

component of convective heating Ha (MS2009, MS2011, TMS2014). In order to produce intrasea-227

sonal events beyond the MJO, with either a meridionally symmetric or asymmetric structure, we228

include here additional o�-equatorial components of convective heating Ha in the skeleton model.229

The meridionally extended skeleton model is e�ciently solved using a pseudo-spectral method (i.e.230

using both spectral space and physical space) that is similar to the one from Majda and Khouider231

(2001), which is detailed below.232

First, we consider a projection of the skeleton model variables from Eq. (2) on a spectral space233

consisting of the �rst M meridional Hermite functions φm(y) (see e.g. Biello and Majda, 2006):234

a(x, y, t) =
M−1∑
m=0

Am(x, t)φm(y), with (5)

235

φm(y) =
Hme

−y2/2√
2mm!

√
π
, 0 ≤ m ≤M − 1, and with Hermite polynomials Hm(y) = (−1)mey

2 dm

dym
e−y

2

(6)

This spectral space allows us to easily solve the dry dynamics component of the skeleton236

model (�rst three rows of Eq. 2). A suitable change of variables for this is to introduce K and237

Rm, 1 ≤ m ≤ M − 2, that are the amplitudes of the �rst equatorial Kelvin and Rossby waves,238

respectively. Their evolution reads:239

∂tK + ∂xK = − 1√
2
S0 (7)

240

∂tRm −
∂xRm

2m+ 1
= −

2
√
m(m+ 1)

2m+ 1

(√
mSm+1 +

√
m+ 1Sm−1

)
(8)

with Sm = HAm−Sθm, 0 ≤ m ≤M − 1. The variables from Eq. (2) can then be reconstructed as:241

u(x, y, t) =
K√

2
φ0 +

M−2∑
m=1

Rm

4

[
φm+1√
m+ 1

− φm−1√
m

]
(9)
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θ(x, y, t) = − K√
2
φ0 −

M−2∑
m=1

Rm

4

[
φm+1√
m+ 1

+
φm−1√
m

]
(10)

242

v(x, y, t) =
S1√

2
φ0 +

M−2∑
m=1

[
∂xRm +

√
m+ 1Sm+1 −

√
mSm−1

] φm√
2(2m+ 1)

(11)

Second, we consider a physical space consisting of an ensemble of M zonal �stochastic strips�243

with meridional positions yl, −(M − 1)/2 ≤ l ≤ (M − 1)/2 given by the roots φM(yl) = 0 (with244

here M odd, though the method is also valid for M even). See Fig. 1 for the setup with M = 5.245

The values of the skeleton model variables on such stochastic strips reads:246

a(x, yl, t) = al(x, t) (12)

One advantage of using these special points in physical space is that the spectral components Am247

from Eq. (5) can be computed e�ciently as:248

Am ≈
(M−1)/2∑

l=−(M−1)/2

alφm(yl)Gl, with Gl =
1

M(φM−1(yl))2
, (13)

which follows from the Gauss-Hermite quadrature approximation (Majda and Khouider, 2001).249

This representation allows us to easily solve the moisture and stochastic component of the skeleton250

model (fourth row of Eq. 2 and Eq. 3). A suitable change of variables to achieve this is to introduce251

Z = q +Qθ, in order to solve for each zonal stochastic strip a local system of equations:252

∂tZl = (Q− 1)Hal + sql −Qsθl (14)

as well as the stochastic process from Eq. (3) for each al (or ηl).253

The spectral and physical space used in the present article are shown in Fig. 1. We consider254

here a meridional truncationM = 5 (i.e. 5 Hermites functions/zonal stochastic strips) that retains255

the main equatorial Kelvin and Rossby waves that are relevant for symmetric and asymmetric256

intraseasonal events (Gill, 1980; Biello and Majda 2005, 2006). This corresponds to one zonal257

stochastic strip at the equator and four strips o�-equator. The spectral components of heating258

A0, A1, A2 (with meridional pro�les φ0, φ1, φ2 shown in Fig. 1) may excite the equatorial Kelvin259
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and �rst three Rossby waves from Eq. (7-8). Note that in previous work with the skeleton model260

for the MJO only (MS2009, MS2011, and TMS2014) a meridional truncation M = 1 was used,261

corresponding to a single zonal stochastic strip at the equator with associated component A0262

exciting the Kelvin and �rst Rossby symmetric waves.263

2.3 Seasonal cycle warm pool264

In the present article, we consider a background warm pool state of the meridionally extended265

skeleton model from section 2.2 that is seasonally varying. The background warm pool state266

migrates meridionally with seasons, in qualitative agreement with observations (Zhang and Dong,267

2004). The sources of heating/moisture are balanced and read, in dimensional units (K.day−1):268

sθ = sq = (1− 0.6cos(2πx/L))exp(−(y − yC)2/2), with (15)
269

yC = Y sin(2πt/T ) (16)

where L is the equatorial belt length, T is the seasonal cycle period (one year), and Y = 900 km.270

The background warm pool state in Eq. (15) consists of a maximal region of heating/moistening271

that extends from x ≈ 10, 000 − 30, 000 km and that is centered around yc, and a cold pool272

elsewhere. In boreal spring/autumn (yc = 0) the background warm pool state is centered at the273

equator and its meridional pro�le matches the one of the Hermite function φ0 shown in Fig. 1274

(e.g. as in MS2011; TMS2014). The background warm pool displaces meridionally during the275

year, with its meridional center being yc = −Y in boreal winter, yC = 0 in boreal spring/autumn,276

and yc = Y in boreal summer. This meridional displacement is qualitatively consistent with the277

one found in observations. However, here for simplicity the warm pool displacement is symmetric278

with respect to the equator; in nature the warm pool displacement is greater in boreal summer279

(around 1000 km north) than in boreal winter (around 600km south, see e.g. Fig. 4 of Zhang and280

Dong, 2004). As a result, a direct comparison of the model solutions with observations must be281

considered carefully.282

The other reference parameters values used in this article are identical to TMS2014. They283
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read, in non-dimensional units: Q = 0.9, Γ = 1.66 (≈ 0.3K−1day−1), H = 0.22 (10Kday−1), with284

stochastic transition parameter ∆a = 0.001. Details on the numerical method used to compute285

the simulations can be found in appendix A of TMS2014. In the following sections of this article,286

simulation results are presented in dimensional units. The dimensional reference scales are x, y:287

1500 km, t: 8 hours, u: 50m.s−1, θ, q: 15 K (see TMS2014).288

3 Model Solutions289

In this article we analyze the dynamics of the stochastic skeleton model with seasonal cycle in a290

statistically equilibrated regime. This section presents the main features of the model solutions,291

namely their zonal wavenumber-frequency power spectra, seasonal modulation, as well as several292

hovmoller diagrams.293

3.1 Zonal wavenumber-frequency power spectra294

The stochastic skeleton model with seasonal cycle simulates a MJO-like signal that is the dominant295

signal at intraseasonal-planetary scale, consistent with observations (Wheeler and Kiladis, 1999).296

Figure 2 shows the zonal wavenumber-frequency power spectra of model variables averaged within297

1500km south/north as a function of the zonal wavenumber k (in 2π/40, 000 km) and frequency ω298

(in cpd). The MJO appears here as a power peak in the intraseasonal-planetary band (1 ≤ k ≤ 3299

and 1/90 ≤ ω ≤ 1/30 cpd), most prominent in u, q and Ha. This power peak roughly corresponds300

to the slow eastward phase speed of ω/k ≈ 5ms−1 with the peculiar relation dispersion dω/dk ≈ 0301

found in observations (Wheeler and Kiladis, 1999). Those results are consistent with the ones of302

TMS2014 (its Fig. 2 and 7), though the power spectra are here more blurred in comparison. We303

denote hereafter the band 1 ≤ k ≤ 3 and 1/90 ≤ ω ≤ 1/30 cpd as the MJO band, which will be304

used to �lter the model solutions in the next sections.305

The other features in Fig. 2 are weaker power peaks near the dispersion curves of a moist Rossby306

mode (around k ≈ −2 and ω ≈ 1/90 cpd) and of the dry uncoupled Kelvin and Rossby waves307

from Eq. (8) (see MS2009; TMS2014). We note that for an antisymmetric average (0 − 1500km308
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north minus 0− 1500km south) the main feature is a power peak near the dispersion curve of the309

uncoupled Rossby wave R2 (not shown).310

3.2 Seasonal modulation311

The intraseasonal variability in the stochastic skeleton model migrates meridionally during the312

year, approximatively following the meridional migration of the background warm pool. Figure 3313

shows the seasonal variations of intraseasonal activity over the warm pool region, as a function of314

meridional position y. This diagnostic is somewhat similar to the one of Zhang and Dong (2004,315

Fig. 4). Figure 3(f) will be described in details in section 4.5.316

This meridional migration of intraseasonal variability shares some similarities with the one317

observed in nature (Zhang and Dong, 2004), with overall an increased variability in the northern318

(southern) hemisphere in boreal summer (winter) as seen for all variables. The present model how-319

ever considers a qualitative truncation of the planetary-scale circulation to a few main components320

(see section 2), and as result the meridional displacement of intraseasonal variability is strongly321

dependent on the meridional shape of the �rst equatorial Kelvin and Rossby waves. This dis-322

placement is di�erent for each variable: the variable θ for example shows two strong o�-equatorial323

components that approximatively match the o�-equatorial gyres of the �rst symmetric Rossby324

wave structure (R1) from Eq. (8-11). It is useful here to remember that θ = −p for the surface325

pressure p with our crude �rst baroclinic vertical truncation. The variables u and Ha show strong326

equatorial components during the entire year that approximatively match the Kelvin wave struc-327

ture (K), while the variables v and q show strong o�-equatorial components that approximatively328

match the �rst antisymmetric Rossby wave structure (R2).329

3.3 y − t Hovmoller diagrams330

The stochastic skeleton model with seasonal cycle simulates a large diversity of intreaseasonal331

events, either meridionally symmetric or asymmetric, with a realistic intermittency. Figure 4(a-332

e) shows the y − t Hovmollers diagrams of the model variables, �ltered in the MJO band and333

considered in a meridional slice at the zonal center of the background warm pool (x = 20, 000 km).334
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Figure 4(f) shows the convective heating Ha at di�erent times in order to provide additional335

examples of intraseasonal events.336

A new feature of the stochastic skeleton model with seasonal cycle as compared to previous337

work with the skeleton model (MS2009; MS2011; TMS2014) is the simulation of a large diver-338

sity of meridionally symmetric and asymmetric intraseasonal events, beyond the MJO. As seen339

in Fig. 4 on all model variables the intraseasonal events show a great diversity in meridional340

structure, localization, strength and lifetime. In Fig. 4(e-f), there are examples of intraseasonal341

events (hereafter symmetric events) with equatorial convective heating Ha around time 72500342

days, 75600 days, 76600 days, 79500 days, and of intraseasonal events (hereafter half-quadrupole343

events) with o�-equatorial convective heating around time 74800 days, 77300 days, and 80100 days.344

Some intraseasonal events (hereafter tilted events) even exhibit apparent meridional propagations345

of convective heating, for example around time 73000 days, 73800 days, and 81700 days. The346

symmetric, half-quadrupole and tilted types of events are analyzed in further detail in the next347

section. In addition, the intraseasonal events in Fig. 4 are organized into intermittent wave trains348

with growth and demise, i.e. into series of successive intraseasonal events following a primary349

intraseasonal event, as seen in nature (Matthews, 2008; Yoneyama et al., 2013; TMS2014). This350

is an attractive feature of the stochastic skeleton model in generating intraseasonal variability.351

4 Three types of intraseasonal events352

Three interesting types of intraseasonal events are found in the solutions of the stochastic skeleton353

model with seasonal cycle: symmetric events, half-quadrupole events, and tilted events. In this354

section, we provide some carefully selected examples for each of those types of events and discuss355

their potential observational surrogates. We then analyze the approximate structures of the three356

types of event and their occurence in the model solutions.357
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4.1 Symmetric events358

Figure 5 shows successive snapshots for an example of a symmetric intraseasonal event (for variables359

�ltered in the MJO band). In Fig. 5, the symmetric event develops over the warm pool region360

x ≈ 10, 000 − 30, 000 km and propagates eastward at a speed of around 5ms−1. The symmetric361

event consists of an equatorial center of convective heating Ha, with leading moisture anomalies362

q and a surrounding quadrupole vortex structure in θ and the relative vorticity denoted as curl =363

∂xv − ∂yu.364

The symmetric type of event is representative of MJO composites in nature (Hendon and365

Salby, 1994). It also has the structure of the MJO mode from MS2009. In Fig. 5, note in addition366

that the divergence matches the structure of Ha, consistent with the weak temperature gradient367

approximation being applied at large scales in the tropics (Sobel et al., 2001; Majda and Klein,368

2003). This match is also found for the other types of intraseasonal events (see hereafter). Such369

approximation is relevant here to analyze a posteriori the simulation results, �ltered in the MJO370

band, but is however not relevant in the full model dynamics (see the discussion in the appendix of371

MS2011). Note also that the curl has a main contribution from −∂yu and very little contribution372

from ∂xv, as expected from the long-wave approximation (not shown).373

4.2 Half-quadrupole events374

Figure 6 shows an example of a half-quadrupole intraseasonal event. The half-quadrupole event375

consists of an o�-equatorial center of convective heating Ha, with leading o�-equatorial moisture376

anomalies q, and a surrounding vortex structure in θ and the curl that is most pronounced in the377

hemisphere of heating anomalies (i.e. a half-quadrupole). In particular, this event shows strong378

o�-equatorial v anomalies (e.g. as compared to the symmetric event from Fig. 5 ).379

The half-quadrupole type of event may be representative of some intraseasonal convective380

anomalies in nature that develop o�-equator over the western Paci�c region (Wang and Rui, 1990;381

Jones et al., 2004; Izumo et al., 2010; Tung et al., 2014a, b). However, in nature those intraseasonal382

convective anomalies often follow convective anomalies at the equator in the Indian Ocean, that383

bifurcate either northward (in boreal summer) or southward (in boreal winter) when reaching384
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the maritime continent (Wang and Rui, 1990; Jones et al., 2004). This peculiar behaviour found385

in nature is sometimes observed in the model solutions when a symmetric event transits to a386

half-quadrupole event when reaching the warm pool zonal center corresponding to the maritime387

continent in nature (not shown).388

The half-quadrupole event shown in Fig. 6 has maximum anomalies in the northern hemi-389

sphere. For clarity, we denote this type of event as a half-quadrupole north event. There are also390

examples in the model solutions of half-quadrupole events with maximum anomalies in the south-391

ern hemisphere (e.g. at simulation time 74800 days in Fig. 4), that we denote as half-quadrupole392

south events.393

4.3 Tilted events394

Figure 7 shows an example of a tilted intraseasonal event. The tilted event in Fig. 7 consists of395

a structure of convective heating Ha that is oriented north-westward, i.e. tilted, with a similarly396

tilted leading structure of moisture anomalies q and a tilted quadrupole structure in θ and the397

curl. This event shows in addition strong cross-equatorial v anomalies.398

The tilted type of event shows some characteristics that are similar to the ones of the summer399

monsoon ISO in nature. Due to its tilted structure, the eastward propagation of this type of400

event (at around 5ms−1) produces an apparent northward propagation of convective heating (at401

around 1.5ms−1) when viewed along a �xed meridional section, similar to Lawrence and Webster402

(2002). This tilted band of convective heating with apparent northward propagation is one of the403

salient features of the summer monsoon ISO in nature (Kikuchi et al., 2011), though northward404

propagation can be sometimes independent of eastward propagation (Webster, 1983; Wang and405

Rui, 1990; Jiang et al., 2004). In addition, the tilted type of event in the model solutions shows406

strong cross-equatorial v anomalies and a tilted quadrupole structure that is also found in nature407

(e.g. Lau and Waliser, 2012, chapt 2 �g 2.10; Lawrence 1999, �g 3.7).408

The tilted event shown in Fig. 7 is oriented north-westward, with maximal anomalies in the409

northern hemisphere. For clarity, we denote this type of event as a tilted north event. There are410

also examples of tilted events oriented south-westward with maximal anomalies in the southern411
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hemisphere in the model solutions (e.g. at simulation time 73000 days in Fig. 4), that we denote412

as tilted south events. Note that there are also examples in the model solutions of tilted events413

oriented north-westward (south-westward) in the southern (northern) hemisphere, that are not414

considered here (not shown).415

4.4 Approximate Structures of intraseasonal events416

Here we provide a simpli�ed description of the structure of the three type of intraseasonal events417

(symmetric, half-quadrupole and tilted events) found in the solutions of the stochastic skeleton418

model with seasonal cycle. The approximate structure of those events can be retrieved with good419

accuracy by considering the atmospheric response to prescribed heating structures Ha propagating420

eastward at constant speed, in a fashion similar to Chao (1987) (see also Biello and Majda, 2005,421

2006).422

We consider prescribed heating anomalies on the equatorial and �rst northward zonal stochastic423

strips of the skeleton model (cf Fig. 1 and Eq. 12). This reads, in non-dimensional units:424

Ha0 − sθ0 = HaEcos(kx− ωt)

Ha1 − sθ1 = HaNcos(kx− ωt− b)

Hal − sθl = 0, l = −2, −1, 2

(17)

where aE, aN , and b are prescribed parameters. For the truncation M = 5 adopted in the present425

article a0 is the planetary enveloppe of synoptic/convective activity on the zonal stochastic strip426

l = 0 located at the equator, and a1 is the planetary envelope of synoptic/convective activity on427

the zonal stochastic strip l = 1 located at around 1500 km north (see Fig. 1).428

The above prescribed heating anomalies are considered in the skeleton model from Eq. (2),429

where they replace the stochastic parametrization from Eq. (3). We assume steady-state solutions430

taken in a moving frame with speed which is approximatively the one of the MJO, cF = 5ms−1;431

this is obtained by applying the variable change ∂t = −cF∂x in Eq. (2). The approach is similar to432

the one of Chao (1987) (see also Biello and Majda, 2005, 2006); however here there is no frictional433

dissipation and the evolution of lower level moisture q is also considered.434
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Figure 8 (top) shows the prescribed heating and associated atmospheric response for a sym-435

metric event. For this event, we consider equatorial heating anomalies only: aE = 0.06 (such that436

Ha ≈ 0.6Kday−1 at the equator), aN = 0 and b = 0. We also choose a wavenumber k = 1 in Fig.437

8 for illustration. The atmospheric response is overall consistent with the one of the individual438

event from Fig. 5, and is in essence the MJO quadrupole vortex structure centered at the equator439

found in previous works (MS2009).440

Figure 8 (middle) shows the prescribed heating and atmospheric response for a half-quadrupole441

north event. For this event, we consider o�-equatorial convective heating only: aE = 0, aN = 0.04442

with no phase shift so b = 0. The atmospheric response, located in the northern hemisphere, is443

overall consistent with the one of the individual event from Fig. 6, with strong o�-equatorial θ,444

q and v anomalies. Note that a half-quadrupole south event would be retrieved by considering445

o�-equatorial heating on the southern strip l = −1 instead of the northern strip l = 1.446

Figure 8 (bottom) shows the prescribed heating and associated atmospheric response for a tilted447

north event. For this tilted event, we consider a combination of both equatorial and o�-equatorial448

convective heatings, that are taken out of phase in order to produce a tilted band of convective449

heating oriented north-westward in the northern hemisphere: aE = 0.04, aN = aE, with a phase450

shift b = −π/2. The atmospheric response is overall consistent with the one of the individual451

event from Fig. 7, with a tilted leading structure of moisture anomalies q, a tilted quadrupole452

structure in the curl and strong cross-equatorial v anomalies. Note that a tilted south event would453

be retrieved by considering o�-equatorial heating on the southern strip l = −1 instead of the454

northern strip l = 1.455

4.5 Indices of intraseasonal events456

In this subsection we derive indices that estimate the amplitude of the speci�c types of intraseasonal457

events (symmetric, half-quadrupole and tilted events) found in the solutions of the stochastic458

skeleton model with seasonal cycle. Those indices allow one to track the occurence of each type of459

event through the year. The model reproduces in particular a realistic alternance of the occurence460

of half-quadrupole and tilted events between boreal summer/winter, as well symmetric events461
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overall most prominent during the year.462

The de�nition of each index is motivated from the approximate structure of individual events463

presented in section 4.4. Each index is computed from the component of convective heating Ha464

over one or various zonal stochastic strips, �ltered in the MJO band. For symmetric events the465

index is Ha0, namely the Ha component on the zonal stochastic strip l = 0 located at the equator466

(see Fig. 1). For half-quadrupole north events the index is Ha1, while for half-quadrupole south467

events the index is Ha−1. For tilted north events the index is (Ha0 +Ha∗1)/2 , where a∗1 is the Ha468

component on the northern zonal stochastic strip l = 1 shifted eastward by 90 degrees for each469

wavenumber k = 1, 2, 3, in a fashion similar to Eq. (17) and Fig. 8. For tilted south events the470

index is similarly (Ha0 +Ha∗−1)/2.471

Figure 9 shows the longitude-time hovmoller diagrams of each index compared to a y − t472

Hovmoller diagram of Ha (identical to the one in Fig. 4e). This representation allows to track473

the occurence of each type of event in the simulations. As shown in Fig. 9, symmetric events are474

overall most prominent. The strong tilted events at simulation time 73000 days and 73800 days in475

particular are well captured by the associated indices, though a drawback of the present method476

is that they are also counted as symmetric and half-quadrupole events.477

The above indices also allow to diagnose the occurence of each type of intraseasonal event478

through the year. Figure 3(f) shows the occurence of each type of event, as a function of seasons.479

The occurence of each type of event is computed based on a threshold criteria: we compute for480

each index a threshold criteria that is equal to unity when the index magnitude from Fig. 9 is481

superior to a threshold value set here at 0.2Kday−1, and zero otherwise. The threshold criteria is482

then averaged over the warm pool region (x = 10, 000 to 30, 000 km) and over each day of the483

year, which is shown in Fig. 3(f).484

The occurence of each type of intraseasonal event shown in Fig. 3(f) is qualitatively consistent485

with the one found in nature. In particular, half-quadrupole north and tilted north events are486

most prominent in boreal summer as compared to boreal winter, while half-quadrupole south and487

tilted south events are most prominent in boreal winter as compared to boreal summer (Wang and488

Rui, 1990; Jones et al., 2004). Meanwhile, the symmetric events are most prominent through the489
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entire year as compared to the other types of events. This is consistent with observations where490

MJO events are most prominent through the year, except during boreal summer where summer491

monsoon ISO (i.e. tilted north) events should be most prominent (Lawrence and Webster, 2002;492

Kikuchi et al., 2011).493

5 Conclusions494

We have analyzed the dynamics of a stochastic skeleton model for the MJO and the intraseasonal-495

planetary variability in general with a seasonal cycle. It is a modi�ed version of a minimal dy-496

namical model, the skeleton model (Majda and Stechmann, 2009b, 2011; Thual et al., 2014). The497

skeleton model has been shown in previous work to capture together the MJO's salient features498

of (I) a slow eastward phase speed of roughly 5ms−1, (II) a peculiar dispersion relation with499

dω/dk ≈ 0, and (III) a horizontal quadrupole structure. Its stochastic version further includes500

a simple stochastic parametrization of the unresolved synoptic-scale convective/wave processes.501

Most notably, the stochastic skeleton model has been shown to reproduce qualitatively (IV) the502

intermittent generation of MJO events and (V) the organization of MJO events into wave trains503

with growth and demise, as in nature. In the present article, we further focus on the tropical504

intraseasonal variability in general simulated by the stochastic skeleton model. Two main features505

of the intraseasonal variability that are qualitatively reproduced by the model are:506

VI. Meridionally asymmetric intraseasonal events, and507

VII. A seasonal modulation of intraseasonal variability.508

In order to account for features (VI-VII), two important modi�cations have been considered in509

the stochastic skeleton model with seasonal cycle. First, while in previous works with the skeleton510

model focusing on the MJO (Majda and Stechmann, 2009b, 2011; Thual et al., 2014) a single511

equatorial component of convective heating was considered, here we have considered additional o�-512

equatorial components of convective heating in order to further produce meridionally asymmetric513

intraseasonal events beyond the MJO. Second, a simple seasonal cycle has been included that514
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consists in a background warm pool state of heating/moistening that migrates meridionally during515

the year.516

A new feature of the stochastic skeleton model with seasonal cycle, as compared to previous517

works with the skeleton model, is the simulation of a large diversity of meridionally symmetric and518

asymmetric intraseasonal-planetary events. Indeed, in nature intraseasonal events show a great519

diversity in horizontal structure, strength, lifetime and localization (Wang and Rui, 1990; Jones520

et al., 2004; Masunaga, 2007). For example, both equatorial and o�-equatorial convective heating521

coexist during intraseasonal events with characteristics and intensity that di�er from one event522

to another, including during MJO events (Tung et al., 2014a, b; Biello and Majda, 2005, 2006).523

The present stochastic skeleton model with seasonal cycle qualitatively reproduces this diversity of524

intraseasonal events. In addition, despite their diversity those intraseasonal events are organized525

into intermittent wave trains with growth and demise, i.e. into series of successive events following526

a primary intraseasonal event, as seen in nature (Matthews, 2008; Yoneyama et al., 2013; Thual527

et al., 2014). This is an attractive feature of the stochastic skeleton model with seasonal cycle in528

generating intraseasonal variability.529

While the stochastic skeleton model with seasonal cycle obviously lacks several key physical530

processes in order to account for the complete dynamics of the MJO and intraseasonal variability531

in general, e.g. topographic e�ects, land-sea contrast, a re�ned vertical structure, mean vertical532

shears, etc (Lau and Waliser, 2012 chapt 10, 11), it is interesting that some aspects of peculiar533

intraseasonal events found in nature are qualitatively recovered in the model solutions. Three inter-534

esting types of intraseasonal-planetary events found in the model solutions are symmetric events,535

half-quadrupole events, and tilted events. As regards observations, the symmetric events with536

quadrupole vortex structure are most representative of MJO composites (Hendon and Salby, 1994;537

Majda and Stechmann, 2009b). The half-quadrupole events, with o�-equatorial heating structure538

may be representative of some intraseasonal convective anomalies that develop o�-equator in the539

western Paci�c, though in nature those convective anomalies often follow convective anomalies at540

the equator in the Indian Ocean (Wang and Rui, 1990; Jones et al., 2004; Izumo et al., 2010; Tung541

et al., 2014a, b). Finally, the tilted events with a heating structure oriented north-westward and542
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strong cross-equatorial �ow share some characteristics with the summer monsoon intraseasonal543

oscillation: in particular, the eastward propagation of those events (at around 5ms−1) results in544

apparent northward propagations (at around 1.5ms−1) when viewed along a latitudinal section,545

similar to Lawrence and Webster (2002). While the three above types of events have an appealing546

theoretical basis and corresponding observational surrogates, we note that there are other types of547

intraseasonal events simulated by the stochastic skeleton model with seasonal cycle that have not548

been analyzed in detail here, and that may be of importance. This diversity of intraseasonal events549

could be further analyzed in future work. For example some events simulated by the present model550

may be characterized as being of a mixed type, e.g. as resulting from a combination of the three551

above types of events, or as transiting from one event type to another during their lifetime. This552

includes examples of intraseasonal events transiting from a symmetric event to a half-quadrupole553

event when reaching the warm pool center corresponding to the maritime continent in nature554

(Wang and Rui, 1990; Jones et al., 2004).555

The intraseasonal-planetary variability in nature migrates meridionally during the year, ap-556

proximatively following the migration of warm sea surface temperatures (Salby and Hendon, 1994;557

Zhang and Dong, 2004). This feature is qualitatively recovered by the stochastic skeleton model558

with seasonal cycle, despite the fact that the present model considers a qualitative truncation of559

the planetary-scale circulation to a few main components. For example, the meridional displace-560

ment is di�erent for each variable, which is related to the meridional shape of the few equatorial561

Kelvin and Rossby waves considered here (cf section 2). Nevertheless the model exhibits a strong562

o�-equatorial intraseasonal variability in both boreal summer and winter, with potential impli-563

cations for understanding its interactions with the Asian and Australian monsoon (Wheeler and564

Hendon, 2004; Lau and Waliser, 2012 chapt 2, 5). In addition, we have veri�ed that the occurence565

of the three above types of intraseasonal events during the year is qualititatively consistent with566

observations. For instance, tilted events with heating structure oriented north-westward and half-567

quadrupole events with northern o�-equatorial heating structure are more prominent in boreal568

summer as compared to the other seasons (Wang and Rui, 1990; Jones et al., 2004). Meanwhile,569

symmetric events are the most prominent type of event through the entire year, consistent with570
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observations where MJO events are most prominent through the year except during boreal summer571

where summer monsoon ISO (i.e. tilted north) events should be most prominent (Lawrence and572

Webster, 2002; Kikuchi et al., 2011).573

While the skeleton model appears to be a plausible representation for the essential mechanisms574

of the MJO and some aspects of intraseasonal variability in general, several issues need to be575

adressed as a perspective for future work. One important issue is to compare further the skeleton576

model solutions with their observational surrogates, qualitatively and also quantitatively. A more577

complete model should also account for more detailed sub-planetary processes within the envelope578

of intraseasonal events, including for example synoptic-scale convectively coupled waves and/or579

mesoscale convective systems (e.g. Moncrie� et al., 2007; Majda et al., 2007; Khouider et al.,580

2010; Frenkel et al., 2012).581
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Figure Captions:729

Figure 1: Model spectral and physical space and warm pool shape: Hermite functions φm, m =730

0, 1, 2 (lines) and zonal strips positions yl, −(M − 1)/2 ≤ l ≤ (M − 1)/2 (dots) for a truncation731

M = 5, as a function of y in 1000km.732

Figure 2: Zonal wavenumber-frequency power spectra: for (a) u (ms−1), (b) θ (K), (c) q733

(K), and (d)Ha (Kday−1), as a function of zonal wavenumber (in 2π/40000km) and frequency734

(in cpd). The contour levels are in the base 10-logarithm, for the dimensional variables averaged735

within 1500 km south/north. The black dashed lines mark the periods 90 and 30 days.736

Figure 3: Intraseasonal activity: for (a) u (m.s−1), (b) v (ms−1), (c) θ (K), (d) q (K), and (e)737

Ha (K.day−1), as a function of season (month of the year) and meridional position y (1000 km).738

The intraseasonal activity is computed as the standard deviation of signals �ltered in the MJO739

band (1 ≤ k ≤ 3 and 1/90 ≤ ω ≤ 1/30 cpd) averaged over the warm pool region (x = 10, 000 to740

30, 000 km). (f): Occurence of each type of intraseasonal event: for half-quadrupole south (blue),741

tilted south (green), symmetric (black), tilted north (magenta), and half-quadrupole north ( red)742

events, nondimensional and as a function of season (month of the year, x-axis).743

Figure 4: y − t Hovmoller diagrams: for (a) u (m.s−1), (b) v (m.s−1), (c) θ (K), (d) q (K),744

and (e) Ha (K.day−1), as a function of meridional position location y (in 1000 km) and simulation745

time (in 1000 days). (f) repeats the Hovmoller diagram for Ha at di�erent times. The variables746

are �ltered in the MJO band (1 ≤ k ≤ 3 and 1/90 ≤ ω ≤ 1/30 cpd), and considered at the warm747

pool zonal center (x = 20, 000 km). The meridional position yC of the warm pool center, varying748

with seasons, is overplotted (black line).749

Figure 5: x− y Snapshots for a symmetric intraseasonal event: for (a) u (ms−1), (b) v (ms−1),750

(c) θ (K), (d) q (K), (e) Ha (Kday−1), (f) divergence ∂xu+ ∂yv (m.s−1)(1000km)−1, and (g) curl751

∂xv− ∂yu (m.s−1)(1000km)−1, as a function of zonal position x (1000km) and meridional position752

y (1000km). Left label indicates simulation time for each snapshot (in days). The variables are753

�ltered in the MJO band (1 ≤ k ≤ 3 and 1/90 ≤ ω ≤ 1/30 cpd). Tick marks indicate the equator.754

Figure 6: Same as Fig. 5, but for the case of a half-quadrupole north event.755

Figure 7: Same as Fig. 5, but for the case of a tilted north event.756
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Figure 8: Atmospheric response to prescribed heating: for (a) u (ms−1), (b) v (ms−1), (c)757

θ (K), (d) q (K), (e) Ha (Kday−1), (f) divergence ∂xu + ∂yv (m.s−1)(1000km)−1, and (g) curl758

∂xv− ∂yu (m.s−1)(1000km)−1, as a function of zonal position x (1000km) and meridional position759

y (1000km). This is shown for (top) a symmetric event, (middle) a half-quadrupole north event,760

(bottom) a tilted north event.761

Figure 9: (a) y − t Hovmoller diagram: for Ha (Kday−1), as a function of meridional position762

location y (in 1000 km) and simulation time (in 1000 days), considered at the warm pool zonal763

center (x = 20, 000 km). (b-f): x−t Hovmoller diagrams: for the index of (b) half-quadrupole south764

(HQS), (c) tilted south (TS), (d) symmetric (SY), (e) tilted north (TN), and (f) half-quadrupole765

north (HQN) events, in Kday−1 and as a function of zonal position location x (in 1000 km) and766

simulation time (1000 days).767
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Figure 1: Model spectral and physical space and warm pool shape: Hermite functions φm, m =
0, 1, 2 (lines) and zonal strips positions yl, −(M − 1)/2 ≤ l ≤ (M − 1)/2 (dots) for a truncation
M = 5, as a function of y in 1000km.
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Figure 2: Zonal wavenumber-frequency power spectra: for (a) u (ms−1), (b) θ (K), (c) q (K), and
(d)Ha (Kday−1), as a function of zonal wavenumber (in 2π/40000km) and frequency (in cpd).
The contour levels are in the base 10-logarithm, for the dimensional variables averaged within
1500 km south/north. The black dashed lines mark the periods 90 and 30 days.
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Figure 3: Intraseasonal activity: for (a) u (m.s−1), (b) v (ms−1), (c) θ (K), (d) q (K), and (e)
Ha (K.day−1), as a function of season (month of the year) and meridional position y (1000 km).
The intraseasonal activity is computed as the standard deviation of signals �ltered in the MJO
band (1 ≤ k ≤ 3 and 1/90 ≤ ω ≤ 1/30 cpd) averaged over the warm pool region (x = 10, 000 to
30, 000 km). (f): Occurence of each type of intraseasonal event: for half-quadrupole south (blue),
tilted south (green), symmetric (black), tilted north (magenta), and half-quadrupole north (red)
events, nondimensional and as a function of season (month of the year, x-axis).
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Figure 4: y− t Hovmoller diagrams: for (a) u (m.s−1), (b) v (m.s−1), (c) θ (K), (d) q (K), and (e)
Ha (K.day−1), as a function of meridional position location y (in 1000 km) and simulation time
(in 1000 days). (f) repeats the Hovmoller diagram for Ha at di�erent times. The variables are
�ltered in the MJO band (1 ≤ k ≤ 3 and 1/90 ≤ ω ≤ 1/30 cpd), and considered at the warm pool
zonal center (x = 20, 000 km). The meridional position yC of the warm pool center, varying with
seasons, is overplotted (black line).
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Figure 5: x − y Snapshots for a symmetric intraseasonal event: for (a) u (ms−1), (b) v (ms−1),
(c) θ (K), (d) q (K), (e) Ha (Kday−1), (f) divergence ∂xu+ ∂yv (m.s−1)(1000km)−1, and (g) curl
∂xv− ∂yu (m.s−1)(1000km)−1, as a function of zonal position x (1000km) and meridional position
y (1000km). Left label indicates simulation time for each snapshot (in days). The variables are
�ltered in the MJO band (1 ≤ k ≤ 3 and 1/90 ≤ ω ≤ 1/30 cpd). Tick marks indicate the equator.
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Figure 6: Same as Fig. 5, but for the case of a half-quadrupole north event.
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Figure 7: Same as Fig. 5, but for the case of a tilted north event.
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Figure 8: Atmospheric response to prescribed heating: for (a) u (ms−1), (b) v (ms−1), (c) θ
(K), (d) q (K), (e) Ha (Kday−1), (f) divergence ∂xu + ∂yv (m.s−1)(1000km)−1, and (g) curl
∂xv− ∂yu (m.s−1)(1000km)−1, as a function of zonal position x (1000km) and meridional position
y (1000km). This is shown for (top) a symmetric event, (middle) a half-quadrupole north event,
(bottom) a tilted north event. .
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Figure 9: (a) y − t Hovmoller diagram: for Ha (Kday−1), as a function of meridional position
location y (in 1000 km) and simulation time (in 1000 days), considered at the warm pool zonal
center (x = 20, 000 km). (b-f): x−t Hovmoller diagrams: for the index of (b) half-quadrupole south
(HQS), (c) tilted south (TS), (d) symmetric (SY), (e) tilted north (TN), and (f) half-quadrupole
north (HQN) events, in Kday−1 and as a function of zonal position location x (in 1000 km) and
simulation time (1000 days).
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