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ABSTRACT

The Madden–Julian oscillation (MJO) is the dominant mode of variability in the tropical atmosphere on

intraseasonal time scales and planetary spatial scales. Despite the primary importance of the MJO and the

decades of research progress since its original discovery, a generally accepted theory for its essential mecha-

nisms has remained elusive. In recent work by two of the authors, a minimal dynamical model has been

proposed that recovers robustly the most fundamental MJO features of (i) a slow eastward speed of roughly

5m s21, (ii) a peculiar dispersion relation with dv/dk ’ 0, and (iii) a horizontal quadrupole vortex structure.

This model, the skeletonmodel, depicts theMJO as a neutrally stable atmospheric wave that involves a simple

multiscale interaction between planetary dry dynamics, planetary lower-tropospheric moisture, and the

planetary envelope of synoptic-scale activity. In this article, it is shown that the skeleton model can further

account for (iv) the intermittent generation of MJO events and (v) the organization of MJO events into wave

trains with growth and demise, as seen in nature. The goal is achieved by developing a simple stochastic

parameterization for the unresolved details of synoptic-scale activity, which is coupled to otherwise de-

terministic processes in the skeleton model. In particular, the intermittent initiation, propagation, and shut

down ofMJOwave trains in the skeleton model occur through these stochastic effects. This includes examples

with a background warm pool where some initial MJO-like disturbances propagate through thewestern region

but stall at the peak of background convection/heating corresponding to the Maritime Continent in nature.

1. Introduction

The dominant component of intraseasonal variability in

the tropics is the 40–50-day tropical intraseasonal oscil-

lation, often called the Madden–Julian oscillation (MJO)

after its discoverers (Madden and Julian 1971, 1994). In

the troposphere, theMJO is an equatorial planetary-scale

wave that begins as a standing wave in the Indian Ocean

and propagates eastward across the western Pacific ocean

at a speed of around 5ms21. The planetary-scale circu-

lation anomalies associated with the MJO significantly

affect monsoon development, intraseasonal predictability

in midlatitudes, and the development of El Ni~no events in

the Pacific Ocean, which is one of the most important

components of seasonal prediction.

Despite the primary importance of the MJO and the

decades of research progress since its original discovery,

no theory for the MJO has yet been generally accepted,

and the problem of explaining the MJO has been called

the search for the ‘‘holy grail’’ of tropical atmospheric

dynamics (Raymond 2001). Simple theories provide some

useful insight on certain isolated aspects of the MJO, but

they have been largely unsuccessful in reproducing all of

its fundamental features together (Zhang 2005). Mean-

while, present-day simulations by general circulation

models (GCMs) typically have poor representations of

it (Lin et al. 2006; Kim et al. 2009). A growing body of

evidence suggests that this poor performance of both

theories and simulations in general is due to the in-

adequate treatment of the organized hierarchy of tropical

processes as a whole (e.g., Hendon and Liebmann 1994;

Zhang 2005;Moncrieff et al. 2007; Lau andWaliser 2012).

This hierarchy involves interactions between organized

structures of tropical convection (convectively coupled
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waves, cloud clusters, etc.) that are defined on a vast range

of spatiotemporal scales (synoptic, mesoscale, etc.) and

that generate the MJO as their planetary envelope.

This organized hierarchy of tropical processes is the

focus of various observational initiatives and modeling

studies. The challenges to deal with are twofold. First,

there is a general lack of theoretical understanding of

this hierarchy and of its relation to the MJO. For in-

stance, insight has been gained from the study of MJO-

like waves in multicloud model simulations and in

superparameterization computer simulations, which

appear to capture many of the observed features of

the MJO by accounting for smaller-scale convective

structures within the MJO envelope (Grabowski 2001;

Grabowski and Moncrieff 2004; Moncrieff 2004; Majda

et al. 2007; Khouider and Majda 2007). In fact, the

multicloud model coupled to a state-of-the-art GCM

with coarse resolution has been shown to produce an

MJO with realistic structure in idealized simulations

(Khouider et al. 2011). As another example, the role of

synoptic-scale waves in producing key features of the

MJO’s planetary-scale envelope has been elucidated in

multiscale asymptotic models (Majda and Biello 2004;

Biello and Majda 2005; Majda and Stechmann 2009a;

Stechmann et al. 2013). Second, a consequent limitation

of current GCMs and models in general that simulate

the MJO is the resolution of small-scale moist processes.

In these models computing resources significantly limit

spatial resolution (to approximately 10–100km), and

there are therefore several important small scales that are

unresolved or parameterized according to various rec-

ipes. As regards tropical convection, unresolved pro-

cesses at smaller scales such as deep convective clouds

show some particular features in space and time, such as

high irregularity, high intermittency, and low predict-

ability. Some good candidates to account for those pro-

cesses while remaining computationally efficient appear

to be suitable stochastic parameterizations (Majda et al.

2008; Palmer 2012). Generally speaking, these models

consist of coupling some simple stochastic triggers (e.g.,

birth–death, spin–flip, coarse-grained lattice models, etc.)

to the otherwise deterministic processes, according to

some probability laws motivated by physical intuition

gained (elsewhere) from observations and detailed nu-

merical simulations (Gardiner 1994; Katsoulakis et al.

2003; Lawler 2006). This methodology has been success-

ful in parameterizing with more realism some essential

processes of tropical variability in a broad range of ap-

plications (Majda and Khouider 2002; Khouider et al.

2003; Majda and Stechmann 2008; Khouider et al. 2010;

Stechmann and Neelin 2011; Frenkel et al. 2012, 2013). A

particular focus of the present article is the relevance of

such methodology to the MJO.

While theory and simulation of the MJO remain

difficult challenges, they are guided by some generally

accepted, fundamental features of the MJO on intra-

seasonal planetary scales that have been identified rel-

atively clearly in observations (Hendon and Salby 1994;

Wheeler and Kiladis 1999; Zhang 2005). These features

are referred to here as the MJO’s ‘‘skeleton’’ features

(Majda and Stechmann 2009b, hereafter MS2009):

(I) a slow eastward phase speed of roughly 5m s21,

(II) a peculiar dispersion relation with dv/dk ’ 0, and

(III) a horizontal quadrupole structure.

Recently, MS2009 introduced a minimal dynamical

model—the skeleton model—that captures the MJO’s

intraseasonal features (I)–(III) together for the first time

in a simple model. The model is a nonlinear oscillator

model for the MJO skeleton features and the skeleton

features of tropical intraseasonal variability in general.

It depicts the MJO as a neutrally stable atmospheric

wave that involves a simple multiscale interaction be-

tween (i) planetary-scale, dry dynamics; (ii) planetary-

scale, lower-tropospheric moisture; and (iii) the planetary

envelope of synoptic-scale convection/wave activity. In

particular, there is no instability mechanism at planetary

scale, and the interaction with subplanetary processes

discussed above is accounted for, at least in a crude

fashion [see, alternatively, Wang and Liu (2011) and Liu

and Wang (2012)].

While the features (I)–(III) are the salient intraseasonal

planetary features of MJO composites, individual MJO

events often have unique features beyond the MJO’s

skeleton. These features are referred to here as the

MJO’s ‘‘muscle’’ features (MS2009). They include, for

example, refined zonal and vertical structures as well as

complex dynamic and convective features within the

MJO envelope (e.g., front-to-rear vertical tilts, west-

erly wind bursts), with characteristics and intensity that

differ from one MJO event to another (Kikuchi and

Takayabu 2004; Kiladis et al. 2005; Tian et al. 2006;

Kiladis et al. 2009). Majda and Stechmann (2011, here-

after MS2011) have shown that the skeleton model, de-

spite its minimal design, can account qualitatively for

certain of these MJO’s muscle features in suitable set-

tings. In a collection of numerical experiments, the skel-

eton model has been shown to simulateMJO events with

significant variations in occurrence and strength,

asymmetric east–west structures, as well as a pre-

ferred localization over the background-state warm

pool region.

In the present article, the goal is to account qualita-

tively for more realistic MJO’s muscle features with the

skeleton model. Two particular features of interest that

we will recover are
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(IV) the intermittent generation of MJO events, and

(V) the organization of MJO events into wave trains

with growth and demise.

These features, though essential to our understanding of

the MJO, remain quite elusive. There is for example an

ongoing discussion on assessing to what extent the MJO

events are either generated as resulting from the internal

variability of certain tropical processes or as a secondary

response to independently existing extratropical forc-

ings (Zhang 2005; Lau and Waliser 2012). A related

question is why this generation is highly intermittent,

with sometimes some clearly identified precursors and

sometimes few or none (Matthews 2008; Straub 2013).

In addition, the MJO events as observed in nature tend

to organize into wave trains—that is, into series of suc-

cessive MJO events, either two, three, or sometimes

more in a row (Matthews 2008; Yoneyama et al. 2013).

There is a general lack of understanding of the pro-

cesses controlling the growth and demise of those wave

trains.

Here, we will show that features (IV) and (V) can be

accounted for only from the internal variability of a few

essential tropical processes such as the ones depicted in

the skeleton model. To achieve this goal, we will embed

within the skeleton model a simple yet suitable stochastic

parameterization—namely, a birth–death process (the

simplest continuous-time Markov process)—that will al-

low for an intermittent evolution of the planetary enve-

lope of synoptic activity (Gardiner 1994; Lawler 2006).

This stochastic parameterization follows the same pro-

totype found in the related studies mentioned above [e.g.,

as reviewed inMajda et al. (2008)]. However, while those

studies usually focus on parameterizing unresolved me-

soscale processes (the ones unresolved in GCMs), the

stochastic parameterization proposed here is intended

at the unresolved synoptic processes in the skeleton

model. Synoptic-scale processes are a complexmenagerie

of convectively coupled equatorial waves, such as 2-day

waves and convectively coupled Kelvin waves, with high

irregularity and intermittency (Kiladis et al. 2009). Some

of these synoptic details (but not all) are important to the

MJO, as they can be both modulated by the planetary

background state and contribute to it—for example,

through upscale convective momentum transport or en-

hanced surface heat fluxes (Majda and Biello 2004; Biello

andMajda 2005; Majda and Stechmann 2009a; Stechmann

et al. 2013; Dias et al. 2013).

In the present article, we will document to what extent

this ‘‘stochastic skeleton model’’ with minimal design

and stochastic parameterization accounts for features

(I)–(III) and (IV)–(V) in suitable simulation settings. We

will consider two simulations in statistically equilibrated

regime: one with a homogeneous background state and

one with a background state representative of the equa-

torial warm pool.

The article is organized as follows. In section 2 we

recall the design and main features of the skeleton

model and present the stochastic version used here. In

section 3 we present the solutions of the stochastic

skeleton model for a homogeneous background state. In

section 4 we present the solutions in different settings

with a background state representative of the equatorial

warm pool. Section 5 is a discussion with concluding

remarks. In appendixAwe detail the numerical method,

and in appendix Bwe briefly summarize some additional

sensitivity tests that show the robustness of results to

changes in model parameters.

2. Summary of the skeleton model

a. Nonlinear skeleton model

The skeleton model was originally proposed in MS2009

and further analyzed inMS2011. It is a minimal nonlinear-

oscillator model that depicts theMJO as a neutrally stable

wave. The fundamental assumption in the skeletonmodel

is that the MJO involves a simple multiscale interaction

between (i) planetary-scale, dry dynamics; (ii) planetary-

scale, lower-tropospheric moisture; and (iii) the planetary

envelope of synoptic-scale convection/wave activity. The

last quantities (ii) and (iii) in particular are represented

by the variables q (lower-tropospheric moisture anoma-

lies) and a (amplitude of the envelope of synoptic activ-

ity), respectively. Note that both quantities are defined at

the planetary scale: the planetary envelope a in particular

is a collective (i.e., integrated) representation of the

convection/wave activity occurring at the synoptic scale,

the details of which are unresolved. A key part of the q–

a interaction is how moisture anomalies influence con-

vection. Rather than a functional relationship a5 a(q), it

is assumed that q influences the tendency (i.e., the growth

and decay rates) of the envelope of synoptic activity. The

simplest design that embodies this idea is the following

nonlinear amplitude equation:

›ta5Gqa , (1)

where G . 0 is a constant of proportionality: positive

(negative) low-level moisture anomalies create a ten-

dency to enhance (decrease) the envelope of synoptic

activity.

The basis for Eq. (1) comes from a combination of

observations, modeling, and theory. Generally speak-

ing, it is well known that tropospheric moisture content

plays a key role in regulating convection (Grabowski
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and Moncrieff 2004; Moncrieff 2004; Holloway and Neelin

2009). In observations, specifically on intraseasonal plan-

etary scales, several studies have shown that the lower

troposphere tends to moisten during the suppressed con-

vection phase of the MJO and that lower-tropospheric

moisture leads the MJO’s heating anomaly, which sug-

gests the relationship in Eq. (1) (Kikuchi and Takayabu

2004;Kiladis et al. 2005; Tian et al. 2006). This relationship

is further suggested by simplified models for synoptic-

scale convectively coupled waves showing that the growth

rates of the convectively coupled waves depend on the

wave’s environment, such as the environmental moisture

content (Khouider andMajda 2006;Majda and Stechmann

2009a; Stechmann et al. 2013). Stechmann et al. (2013)

provide a theoretical estimate of G from these growth-rate

variations.

In the skeleton model, the q–a interaction parameter-

ized inEq. (1) is further combinedwith the linear primitive

equations. This reads, in nondimensional units,

›tu2 yy52›xp

yu52›yp

052›zp1 u

›xu1 ›yy1 ›zw5 0

›tu1w5Ha2 su

›tq2Qw52Ha1 sq

›ta5Gqa , (2)

with periodic boundary conditions along the equatorial

belt. The five first rows of Eq. (2) describe the dry at-

mosphere dynamics, with equatorial long-wave scaling

as allowed at planetary scale. The terms u, y, and w are

the zonal, meridional, and vertical velocity, respectively,

and p and u are the pressure and potential temperature,

respectively. The sixth row describes the evolution of

low-level moisture q, and the seventh row is the non-

linear amplitude equation for a described previously.

All variables are anomalies from a radiative–convective

equilibrium, except a. The interactions between those

various components is through the envelope of synoptic

activity a, which is assumed to act at planetary scale as

a balanced source of both heating and drying. This

model contains a minimal number of parameters: Q is

the background vertical moisture gradient and G is

a proportionality constant. The parameter H is irrele-

vant to the dynamics (as can be seen by rescaling a) but

defines a heating/drying rate Ha for the system in di-

mensional units. The su and sq are external sources of

cooling and moistening, respectively, that need to be

prescribed in the system (see hereafter).

To obtain the skeleton model in its simplest form, it

is necessary to truncate the system from Eq. (1) to the

first vertical and meridional structures. For this flow

trapped within the equatorial troposphere the relevant

structures are the first vertical baroclinic mode and

the first meridional Hermite function (Majda 2003).

First, we project and truncate at the first baroclinic mode,

such that u(x, y, z, t)5 u(x, y, t)
ffiffiffi
2

p
cos(z), u(x, y, z, t)5

u(x, y, t)
ffiffiffi
2

p
sin(z), etc., with a slight abuse of notation.

The skeleton model now reads

›tu2 yy2 ›xu5 0

yu2 ›yu5 0

›tu2 (›xu1 ›yy)5Ha2 su

›tq1Q(›xu1 ›yy)52Ha1 sq

›ta5Gqa , (3)

where the dry dynamics component is now a time-

dependent and nondissipative version of the Matsuno–

Gill model (Matsuno 1966; Gill 1980). Second, we

project and truncate at the first Hermite function, such

that a(x, y, t) 5 A(x, t)f0, q 5 Qf0, s
q 5 Sqf0, and su 5

Suf0, where f0(y)5
ffiffiffi
2

p
(4p)21/4 exp(2y2/2). A suitable

change of variables for the dry dynamics component is

to introduce K and R, which are the amplitudes of the

equatorial Kelvin wave and of the equatorial Rossby

first symmetric wave, respectively. Indeed, those equa-

torial waves are the only ones excited by the meridional

heating structures on f0, and are easily solved. The

skeleton model now reads

›tK1 ›xK5 (Su2HA)/2

›tR2 ›xR/35 (Su2HA)/3

›tQ1Q(›xK2 ›xR/3)5 (HA2 Sq)(Q/62 1)

›tA5 (Gg)QA, (4)

with variablesK,R,Q, andA. The g’ 0.6 is a cross term

resulting from the meridional projection of the non-

linear amplitude equation. The variables of the dry dy-

namics component can be reconstructed a posteriori

using

u5 (K2R)f01Rf2/
ffiffiffi
2

p

y5 (4›xR2HA)f1/3
ffiffiffi
2

p

u52(K1R)f02Rf2/
ffiffiffi
2

p
, (5)

where the next Hermite functions read f1(y) 5
2y(4p)21/4 exp(2y2/2) and f2(y)5 (2y22 1)(4p)21/4 exp

(2y2/2). The components f1 and f2 are irrelevant to the
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dynamics, yet they are necessary to retrieve the quadru-

pole structure of the MJO (see Fig. 3 of MS2009). Note

that there are slight differences in notation with respect

to MS2009 and MS2011, whereA stands for anomalies,

the cross term g is absorbed into G, and the amplitudes

K and R are chosen differently (as
ffiffiffi
2

p
K and 2

ffiffiffi
2

p
R in

comparison).

We recall briefly the main properties of the skeleton

model for the MJO, and the reader is referred to

MS2009 and MS2011 for further details. The skeleton

model is designed following two important principles

of energy conservation. For balanced external sources

of cooling and moistening (su 5 sq), the system in

Eq. (3) conserves a vertically integrated moist static

energy

›t(u1 q)2 (12Q)(›xu1 ›yy)5 0, (6)

and further conserves a total positive energy (as there

are no dissipative processes)

›t

�
1

2
u21

1

2
u21

1

2

Q

12Q

�
u1

q

Q

�2

1
H

GQ
a2

su

GQ
log(a)

�

2 ›x(uu)2 ›y(yu)5 0.

(7)

The linear waves of the skeleton model are shown in

Fig. 1, as computed from the reference parameter values

used in this article (see hereafter). They are four eigen-

modes that are, in order of decreasing phase speed, the dry

Kelvin mode (’55ms21), the MJOmode (’5ms21), the

moist Rossby mode (’23ms21), and the dry Rossby

mode (’220ms21). All four of the linear modes are

neutrally stable. TheMJOmode in particular captures the

fundamental features of the observed MJO such as a slow

eastward phase speed and an oscillation frequency that is

roughly constant. As seen on the eigenmode component

amplitudes, the MJO mode consists of coupled inter-

actions between the equatorial waves K and R (dominant

at small wavenumbers) and the moisture and synoptic

activity components Q and A (dominant at large wave-

numbers). At small wavenumbers in particular, the phys-

ical structure of theMJOmode is a horizontal quadrupole

vortex structure, as seen in nature (not shown; see Fig. 3 of

MS2009).

b. Stochastic skeleton model

We now introduce the stochastic skeleton model,

which is a modified version of the skeleton model with a

simple stochastic parameterization of the synoptic-scale

processes. In the skeleton model, the MJO results

from a simple multiscale interaction between (i) the

planetary-scale dynamics and (ii) moisture and (iii) the

planetary envelope of synoptic activity (see discussion

above). The details of synoptic activity are, however,

unresolved. They consist of a complex menagerie of

convectively coupled equatorial waves, such as 2-day

waves and convectively coupled Kelvin waves. (Kiladis

et al. 2009). Some of these synoptic details (but not all)

are important to the MJO, as they can be both modu-

lated by the planetary background state and contribute

to it—for example, through upscale convective momen-

tum transport or enhanced surface heat fluxes (Majda

and Biello 2004; Biello and Majda 2005; Majda and

Stechmann 2009a; Stechmann et al. 2013). With respect

to the planetary processes depicted in the skeleton

model, the contribution of those synoptic details ap-

pears most particularly to be highly irregular, inter-

mittent, and with a low predictability. To account for

this intermittent contribution while keeping the mini-

mal design of the skeleton model (i.e., without solving

entirely the synoptic details), one suitable strategy is to

develop a stochastic parameterization of the synoptic-

scale processes.

For such a stochastic parameterization, a simple yet

nontrivial design is to implement a stochastic birth–

death process (the simplest continuous-time Markov

process) controlling the evolution of the envelope of

synoptic activity a [see chapter 7 of Gardiner (1994) and

Lawler (2006)]. Let a be a random variable taking dis-

crete values a 5 Dah, where h is a nonnegative integer.

The birth–death process allows for intermittent transi-

tions between states h, accounting here for intermittent

changes in the envelope of synoptic activity. The prob-

abilities of transiting from one state h to another over

a time interval Dt read as follows:

Pfh(t1Dt)5h(t)1 1g5 lDt1 o(Dt)

Pfh(t1Dt)5h(t)2 1g5mDt1 o(Dt)

Pfh(t1Dt)5h(t)g5 12 (l1m)Dt1 o(Dt)

Pfh(t1Dt) 6¼ h(t)2 1,h(t),h(t)1 1g5 o(Dt) , (8)

where l and m are the upward and downward rates of

transition, respectively. The envelope of synoptic ac-

tivity can intermittently increase at rate l or decrease at

rate m. This can alternatively be expressed in the form of

a master equation

›tP(h)5 [l(h2 1)P(h2 1)2 l(h)P(h)]

1 [m(h1 1)P(h1 1)2m(h)P(h)] , (9)
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where P(h) is the probability of state h [not to be

mistaken with the conditional probabilities in Eq. (8)].

There are various possible ways to choose m and l.

Here, the design principle is that the dynamics of the

skeleton model presented previously must be recovered

on average. In the asymptotic limit of small transitions

Da, the mean-field equation associated to Eq. (9) must

read

›tE(a)5GE(qa) , (10)

where E denotes the statistical expected value. One

simple and practical choice of the transition rates that

satisfies this design principle is as follows:

l5

(
Gjqjh1dh0 if q$0

dh0 if q,0
and

m5

(
0 if q$0

Gjqjh if q,0
. (11)

Note that l andm depend here on the system variables h

and q, which is characteristic of a multiplicative noise.

The Kronecker delta operator dh0 ensures that l5 1 when

h5 0 such that there is no finite-time extinction, and is null

otherwise. The associated mean-field equation reads

›tE(a)5DaE(l1m)5GE(qa)1DaE(dh0) , (12)

FIG. 1. Summary of the skeleton model linear stability: (a) phase speed v/k (ms21), (b) frequency v (cpd), and (c)

component amplitudes of the eigenvectorXm(k)5 [K,R,Q,A], as a function of the zonal wavenumber k (2p/40000km).

The black circles mark the integer wavenumbers satisfying periodic boundary conditions. This is repeated for each

eigenmode, from top to bottom in order of decreasing phase speed: (a),(b),(c) dry Kelvin mode, (d),(e),(f) MJOmode,

(h),(i),(j) moist Rossby mode, and (k),(l),(m) dry Rossby mode.
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which is identical to the desired mean-field equation

[Eq. (10)] in the asymptotic limit of Da small.

This stochastic parameterization follows the same

prototype found in previous related studies (Majda

et al. 2008). Themethodology consists in coupling some

simple stochastic triggers (e.g., birth–death, spin–flip,

and coarse-grained lattice models) to the otherwise

deterministic processes, according to some probability

laws motivated by physical intuition gained (else-

where) from observations and detailed numerical simu-

lations (Gardiner 1994; Katsoulakis et al. 2003; Lawler

2006). The methodology has been successful in parame-

terizing with more realism some essential processes of

tropical variability for which high irregularity, high in-

termittency, and/or low predictability is involved. This

includes applications for the treatment of convective in-

hibition (Majda and Khouider 2002; Khouider et al.

2003), of convective momentum transport (Majda and

Stechmann 2008), of the transition from congestus to

cumulus to stratiform clouds (Khouider et al. 2010), of

the transition to strong convection (Stechmann and

Neelin 2011), or with a realistic Walker-type circulation

(Frenkel et al. 2012, 2013). Note that while those studies

usually focus on parameterizing unresolved mesoscale

processes (which are the ones unresolved inGCMs), here

we parameterize the unresolved synoptic processes in the

skeleton model.

In this article, we analyze the dynamics of the sto-

chastic skeleton model in a statistically equilibrated

regime. Appendix A details the numerical method

used to compute the simulations. The reference pa-

rameters values used in this article read, in non-

dimensional units,Q5 0:9, G5 1.66 (’0.3 K21 day21),

and H5 0:22 (10K day21), with Da 5 0.001. We will

consider two experiments that differ by their back-

ground states: that is, by su and sq. For the experiment

described in section 3, those external sources are

constant and zonally homogeneous, with values su 5
sq 5 0.022 (1K day21) at the equator (where we recall

that su 5 Suf0 and sq 5 Sqf0). For the experiment

described in section 4, those external sources vary zon-

ally to be representative of a background warm pool

state, with values su 5 sq 5 0.022[1 2 0.6 cos(2px/L)] at

the equator and where L is the equatorial belt length.

Such parameter values are consistent with the range of

values used in MS2009 and MS2011. In appendix B, we

briefly summarize some additional sensitivity tests that

show the robustness of results to changes in model pa-

rameters. In the following sections of this article, sim-

ulation results are presented in dimensional units. The

dimensional reference scales are x, y5 1500 km, t5 8 h,

u5 50m s21, and u, q5 15K [see Table 1 of Stechmann

et al. (2008)].

3. The stochastic skeleton model with
a homogeneous background

In this section, numerical solutions are presented

with a homogeneous background state, as represented

by the constant and zonally homogeneous external

sources of cooling and moistening su 5 sq. We analyze

the simulations output in a statistically equilibrated

regime.

a. Power spectra with a homogeneous background

The stochastic skeleton model simulates a MJO-like

signal that is the dominant signal at intraseasonal plan-

etary scale, consistent with observations (Wheeler and

Kiladis 1999). Figure 2 shows the power spectra of the

variables as a function of the zonal wavenumber k (in

2p/40 000 km) and frequency v (cpd). TheMJO appears

here as a sharp power peak in the intraseasonal plane-

tary band (1 # k # 5 and 1/90 # v # 1/30 cpd), most

prominent in u, q, and Ha. This power peak roughly

corresponds to the slow eastward phase speed of v/k ’
5m s21 with the peculiar relation dispersion dv/dk ’ 0

found in observations.

ThisMJO signal results from the internal variability of

the stochastic skeleton model: the main generation

mechanism is that the MJO mode from linear stability

(see Fig. 1) is excited by the stochastic effects. Indeed,

the MJO power peak in Fig. 2 approximately matches

the dispersion curve of this MJO mode. In addition, it is

slightly more prominent in u at wavenumber 1 and in q

and Ha at wavenumber 5, consistent with the MJO-

mode eigenvector component amplitudes shown in Fig. 1.

Because of the stochastic effects and nonlinear in-

teractions, there are, however, some notable differences

with the linear solutions. First, the MJO power peak is at

slightly lower frequency than the MJO-mode dispersion

curve. Second, it also excites weaker power peaks at the

double and triple of its frequency (approximately 0.04

and’0.06 cpd, respectively), which likely results from the

nonlinear cross term qa in Eq. (1) or (10).

The other feature at intraseasonal planetary scale is

the power peak near the dispersion curve of the moist

Rossby mode from linear stability. This signal is, how-

ever, weaker than the MJO signal, as can be seen for

example by comparing eastward power (average within

1 # k # 3, 1/90 # v # 1/30 cpd) and westward power

(average within 23 # k # 21, 1/90 # v # 1/30 cpd)

[following, e.g., Zhang and Hendon (1997) and Lin et al.

(2006)]. The ratio of eastward–westward power is 3 for

u, 5.5 for q, and 2.8 forHa, indicating dominant eastward

propagations, though it is 0.1 for u. Note, however, that u

is weakly associated to the MJO signal in the skeleton

model, consistent for examplewith the weak temperature
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gradient approximation in the tropics (see the appendix

of MS2011; Sobel et al. 2001). There are also power

peaks at high frequencies ($0.08 cpd), most prominent

in u and q, thatmatchwell the dispersion curves of the dry

Kelvin and dry Rossby modes from linear stability (not

shown). Finally, recall that various processes found in

nature are missing owing to the minimal design of the

skeleton model—for example, the synoptic-scale con-

vectively coupled Kelvin waves that would appear as a

power peak around v/k’ 15ms21 (Wheeler and Kiladis

1999; Kiladis et al. 2009).

b. MJO variability with a homogeneous background

Figure 3 shows the Hovm€oller diagrams of the model

variables at the equator as well as a data projection eMJO

that evaluates the MJO intensity by comparison with

other waves from the linear solutions (seeMS2011). The

data projection, eMJO(x, t), is obtained by filtering all

signals to the intraseasonal planetary band (1 # k # 3,

1/90#v# 1/30 cpd), then computing the complex scalar

product eMJO(k, t)5XmX
T
s for each wavenumber k and

time t from the MJO mode eigenvector Xm(k) from

FIG. 2. Zonal wavenumber–frequency power spectra (with homogeneous background): for (a) u (m s21), (b) u (K),

(c) q (K), and (d)Ha (Kday21) taken at the equator, as a function of zonal wavenumber (2p/40 000km) and frequency

(cpd). The contour levels are in the base-10 logarithm for the dimensional variables taken at the equator. The black circles

mark the dispersion curves from linear stability as in Fig. 1. The black dashed lines mark the periods 90 and 30 days.
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FIG. 3. Hovm€oller diagrams (with homogeneous background): for (a) u (m s21), (b) u (K), (c) q (K), and (d)Ha (Kday21) at the equator,

as well as (e) eMJO, as a function of zonal location x (1000 km) and time (days from a reference time at 38 200 days).
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linear stability (see Fig. 1) and the corresponding zonal

Fourier series of signals Xs(k, t), and then applying the

inverse zonal Fourier transform to eMJO(k, t), with

a slight abuse of notation. This representation, along

with the other Hovm€oller diagrams shown in Fig. 3, al-

lows us to identify clearly the MJO variability despite

the noisy signals. In Fig. 3 there are also some additional

large- and small-scale propagating structures that are

best revealed by comparison with other linear solutions

(dry Kelvin, dry Rossby, or moist Rossby mode), but

those structures do not appear to be directly related to

the MJO variability (not shown).

On average, the simulated MJO events propagate

eastward with a phase speed of around 5–15m s21 and

a roughly constant frequency, consistent with the com-

posite MJO features found in observations. Note that

the MJO events are most prominent in u at large scale

and couple to q and Ha through a range of smaller

scales, consistent with the power spectra shown in Fig. 2.

The effect of the stochastic fluctuations is to create

a realistic intermittency in the simulated MJO. As seen

in Fig. 3, the MJO events are irregular and intermittent,

with a great diversity in strength, structure, lifetime, and

localization. This is an attractive feature of the present

stochastic skeletonmodel in generatingMJO variability.

In addition, the MJO events are organized into wave

trains with growth and demise—that is, into series of

successive MJO events following a primary MJO event,

as seen in nature (Matthews 2008; Yoneyama et al.

2013). One series typically consists of a succession of

either two, three, or four MJO events in a row. In Fig. 3,

there is for example a series of four events during the

time interval 100–250 days, a series of three events during

the time interval 300–450 days, and a series of four events

during the time interval 700–900 days. The primary MJO

event of a series is sometimes related to a previous series,

and sometimes has no particular precursor conditions,

suggesting that it is spontaneously generated (Matthews

2008). In addition, each series can be either most prom-

inent at wavenumber 1, wavenumber 2, or both (Hendon

and Salby 1994; Wheeler and Kiladis 1999).

Figure 4 shows the details of a selected MJO wave

train. The MJO propagations with phase speed around

5–15ms21 are clearly visible on u, q, Ha, and eMJO. It ap-

pears visually that theMJO is an envelope of synoptic-scale

structures, as seen by the smaller-scale bursts along the

FIG. 4. Hovm€oller diagrams (with homogeneous background), zoomed on the time interval 70–270 days from Fig. 3: for (a) u (m s21),

(b) u (K), (c) q (K), and (d)Ha (Kday21) at the equator, as well as (e) eMJO, as a function of zonal location x (1000 km) and time t (days

from a reference time at 38 200 days).
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tracks of propagation. This adds to the realism of the

simulated MJO, even though the bursts result in part

from the superposition of additional small-scale propa-

gations. Note that the oscillations onHa are particularly

asymmetric, with sharp and localized maxima; this is

expected from the nonlinear nature of Eq. (1) or (10) in

the skeleton model.

c. Interannual variations of the MJO with
a homogeneous background

Figure 5a shows the magnitude of eMJO (smoothed

over zonal position and time) over a long time interval of

10 000 days. This representation allows us to identify the

low-frequency growth and demise of the envelope of

each MJO wave train while somewhat filtering out the

intraseasonal oscillations associated to individual MJO

events. For comparison, the time interval shown in Fig. 3

is from 38 200 to 39 200 days.

As seen in Fig. 5a, there are marked interannual

variations of the MJO that consist of an intermittent

alternation between active and inactive low-frequency

phases of MJO activity (Hendon et al. 1999). The active

low-frequency phases correspond to time intervals with

MJO wave trains having a strong intensity (i.e., a strong

envelope magnitude), while the inactive low-frequency

phases correspond to time intervals with MJO wave

trains having a weak intensity (there is, however, always

an MJO activity, even weak). There is, for example,

a pronounced inactive phase over the time interval

36 000–37 000 days, followed by an active phase over the

time interval 37 000–38 000 days. This low-frequency

modulation of theMJO activity results from the internal

variability of the skeleton model alone; indeed, the

skeleton model here has no prescribed external sources

of low-frequency modulation such as a seasonal cycle or

El Ni~no variability (Hendon et al. 1999; Zhang 2005).

The representation in Fig. 5a also allows us to highlight

the overall features of the MJO wave trains, as seen on

the evolution of their envelopes. The MJO wave trains

show overall slow growth and demise, however, with

a great diversity in lifetime and intensity. They can be

most prominent at wavenumber 1, wavenumber 2, or

both. Overall, they propagate slowly eastward, while

there is visual evidence of some nonpropagating standing

components (Zhang and Hendon 1997). In addition, they

have no preferred starting location, which is consistent

with the background state being zonally homogeneous.

4. The stochastic skeleton model with a warm pool

While the previous section illustrated dynamics with

a homogeneous background state, this section illustrates

the effect of a background state representative of the

FIG. 5. Interannual variations of theMJO:Hovm€oller diagram of

the magnitude of eMJO, as a function of zonal location x (1000 km)

and time t (1000 days from the simulation beginning). This is for

(a) the simulation with a homogeneous background state and

(b) the simulationwith a background warm pool state. The data are

smoothed five times with a 3000 km 3 20 day box kernel.

FEBRUARY 2014 THUAL ET AL . 707



equatorial warm pool in nature (see also MS2011). The

associated su and sq are shown in Fig. 6. The warm pool

region is centered from x ’ 10 000 to 30 000 km. As in

the previous section, we analyze the simulation’s output

in a statistically equilibrated regime. For such a regime,

the statistical means match the background radiative–

convective equilibrium and there is increased convective

activity over the warm pool region as seen on the stan-

dard deviations of q and Ha (not shown).

Figures 7–9 repeat all the diagnostics from previous

section with the background warm pool state, while the

interannual variations of the MJO activity are shown in

Fig. 5b. Overall, the main features of the stochastic

skeleton model remain very consistent with the ones

presented in previous section for a homogeneous back-

ground state, and so they will be described only briefly.

The main specific feature with the background warm

pool state is that MJO events remain confined to the

warm pool region, which is more realistic.

a. Power spectra with a warm pool

Figure 7 shows the power spectra of the variables for

the simulation with background warm pool state (note

that the statistical means have been removed prior to

this diagnostic). The dispersion curves from linear sta-

bility shown in Fig. 7 correspond to a homogeneous

background state in order to make easier comparison

with Fig. 2.

The MJO-like signal is the dominant signal at

intraseasonal-planetary scale, which is consistent with

observations (Wheeler and Kiladis 1999). As compared

to Fig. 2 with a homogeneous background state, there is

here a slightly increased power at the wavenumbers21

and 1, which is consistent with the zonal scale of the

background warm pool state. In addition, the power

spectra are slightly more blurred, which is likely due

to the presence in the skeleton model of two regions

(inside and outside the warm pool) with different

properties. The ratios of eastward-to-westward power

remain similar: they are here around 2.5 for u; 4.5 for q;

2.5 forHa, indicating dominant eastward propagations;

and 0.1 for u.

b. MJO variability with a warm pool

Figure 8 shows the Hovm€oller diagrams of the vari-

ables as well as eMJO that evaluates the MJO intensity

for the simulation with background warm pool state.

On average, the MJO events propagate eastward with

a phase speed of around 5–15m s21 and a roughly con-

stant frequency, which is consistent with observations.

The effect of the stochastic fluctuations is to create

a realistic intermittency in the simulated MJO with,

furthermore, an organization intoMJOwave trains with

growth and demise (Matthews 2008; Yoneyama et al.

2013). As compared to Fig. 3 with a homogeneous

background state, the MJO events are here confined to

the warm pool region, which is more realistic, and they

are overall more prominent at wavenumber 1, which is

consistent with the zonal scale of the background warm

pool state (similar features were also found in MS2011).

Most of the MJO events propagate through the entire

warm pool region (from x ’ 10 000 to 30 000 km), as

seen, for example, during the time interval 800–950 days.

However, some of the MJO events propagate through

the western warm pool region but stall at the warm pool

center corresponding to the Maritime Continent in na-

ture (x 5 20 000 km), as seen for example during the

time interval 100–250 days (Wang and Rui 1990; Zhang

and Hendon 1997).

Figure 9 shows the details of a selected MJO wave

train for the simulation with background warm pool

state. The MJO propagations with phase speeds around

5–15m s21 are clearly visible for u, q,Ha, and eMJO. This

MJO wave train is confined to the warm pool region,

though the MJO event at time interval 780–820 days

stalls at the warm pool center.

c. Interannual variations of the MJO
with a warm pool

Figure 5b shows the interannual variations of the

MJO (i.e., the magnitude of eMJO) for the simulation

with background warm pool state. For comparison, the

time interval shown in Fig. 8 is from 18 800 to 19 800

days.

FIG. 6. Zonal shape of the background warm pool state: su 5 sq

(Kday21) at the equator as a function of zonal location x (1000km).
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There are marked interannual variations of the MJO

that consist of an intermittent alternation between ac-

tive and inactive low-frequency phases of MJO activity

(Hendon et al. 1999). As compared to Fig. 5a with

a homogeneous background state, the MJO activity in

Fig. 5b is confined to the warm pool region, which is

more realistic. The alternation between active and in-

active low-frequency phases of MJO activity is also

faster in comparison. As seen in Fig. 5b, some MJO

wave trains occupy the entire warm pool region (from

x ’ 10 000 to 30 000 km), as seen for example at time

15 000 days, while some occupy only the western half

(from x ’ 10 000 to 20 000 km), as seen for example

during the time interval 11 000–12 000 days. SomeMJO

wave trains occasionally even develop outside the warm

pool region.

FIG. 7. Zonal wavenumber–frequency power spectra (with warm pool): for (a) u (m s21), (b) u (K), (c) q (K), and

(d)Ha (Kday21), as a function of zonal wavenumber (2p/40 000 km) and frequency (cpd). The contour levels are in

the base-10 logarithm for the dimensional variables taken at the equator. The black circlesmark the dispersion curves

from linear stability as in Fig. 1. The black dashed lines mark the periods 90 and 30 days.
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FIG. 8. Hovm€oller diagrams (with warm pool): for (a) u (m s21), (b) u (K), (c) q (K), and (d) Ha (Kday21) at the equator, as well as

(e) eMJO, as a function of zonal location x (1000 km) and time t (days from a reference time at 18 800 days).
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5. Discussion and conclusions

We have analyzed the dynamics of a stochastic skel-

eton model for the MJO. It is a modified version of

a minimal dynamical model—the skeleton model—that

has been presented in previous work by two of the au-

thors (MS2009; MS2011). The skeleton model has been

shown in previous work to capture together the MJO’s

salient features of (I) a slow eastward phase speed of

roughly 5m s21, (II) a peculiar dispersion relation with

dv/dk ’ 0, and (III) a horizontal quadrupole structure.

In addition to those features, the stochastic skeleton

model accounts for some realistic MJO features as seen

in nature, such as

(IV) the intermittent generation of MJO events and

(V) the organization of MJO events into wave trains

with growth and demise.

We have achieved these results by developing a simple

stochastic birth–death process for the envelope of

synoptic-scale activity, which is coupled to otherwise

deterministic processes in the skeleton model. The fea-

tures (I)–(V) have been recovered in simulations with

either a homogeneous background state or a background

state representative of the equatorial warmpool and have

been shown to be robust to main parameter changes.

There is an ongoing discussion on assessing to what

extent the MJO events are generated either as resulting

from the internal variability of certain tropical processes

or as a secondary response to independently existing

extratropical forcings (Zhang 2005; Lau and Waliser

2012). We contribute to this discussion by showing that

the intermittent generation of MJO events can be

accounted for from only the internal variability of a few

essential tropical processes such as the ones depicted in

the skeleton model. Here, the simulated MJO events are

generated spontaneously as resulting from the interaction

between the stochastic changes in the level of synoptic

activity and the otherwise deterministic planetary pro-

cesses. Furthermore, this generation is operating with no

planetary-scale instability; hence, there is also no ‘‘scale

selection’’ in the sense of linear instabilities. In fact, as

seen in nature, a range of planetary scales is active:

wavenumbers 1 and 2 appear prominently for zonal wind,

and slightly smaller scales are also prominent for the

convective activity. On average, the characteristics of the

simulatedMJOevents are in fair agreement with the ones

of the linear solutions of the skeleton model, but because

FIG. 9. Hovm€oller diagrams with (warm pool), zoomed on the time interval 770–970 days from Fig. 8: for (a) u (m s21), (b) u (K),

(c) q (K), and (d) Ha (Kday21) at the equator, as well as (e) eMJO, as a function of zonal location x (1000km) and time t (days from

a reference time at 18 800 days).
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of their intermittent generation process, they further

show a great diversity in strength, structure, lifetime, and

localization.

The stochastic skeleton model presented here simu-

lates MJO events that are organized into wave trains

with growth and demise: that is, into series of successive

MJO events, either two, three, or sometimes more in

a row. This feature is qualitatively consistent with the

observational record in which around 60% of MJO

events immediately follow a previous event (Matthews

2008). During the recent Cooperative Indian Ocean

Experiment on Intraseasonal Variability in the Year

2011/Dynamics of the MJO (CINDY/DYNAMO) field

campaign, for example, three successive MJO events

were observed followed by a pause and an isolated

fourth MJO event (Yoneyama et al. 2013; Zhang et al.

2013). In addition, this organization ofMJO events into

wave trains results in interannual variations of theMJO

in the skeleton model, which consist of an intermittent

alternation between active and inactive low-frequency

phases with enhanced or diminished MJO activity, re-

spectively (Hendon et al. 1999). This low-frequency

modulation of the MJO activity results from the in-

ternal variability of the skeleton model alone: indeed,

the skeleton model here has no prescribed external

sources of low-frequency modulation such as a sea-

sonal cycle or El Ni~no variability (Hendon et al. 1999;

Zhang 2005). For a representative background state of

convection/heating, the MJO wave trains are prefer-

entially confined to the region corresponding to the

equatorial warm pool in nature. In particular, some

MJO-like disturbances propagate through the western

warm pool region but stall at the peak of background

convection/heating activity corresponding to the Mar-

itime Continent in nature (Wang and Rui 1990; Zhang

and Hendon 1997). As a perspective for future work,

the simulation results hint at various plausible mecha-

nisms for the growth and demise of the MJOwave trains.

They may be controlled, for example, by dispersive pro-

cesses (but not by dissipation), by the stochastic effects, or

by the energy transfers from/to the other linear modes of

the skeleton model (i.e., the dry Kelvin, dry Rossby, and

moist Rossby modes).

While the stochastic skeleton model appears to be

a plausible representation of the MJO essential mech-

anisms, notably with features (I)–(IV) summarized

above, several issues need to be addressed as a per-

spective for future work. First, one important issue is to

find an appropriate observational surrogate for the en-

velope of synoptic-scale wave activity. Second, owing

to its minimal design, the model does not account for

several finer details of the MJO’s ‘‘muscle.’’ These de-

tails include, for example, refined zonal and vertical

structures as well as complex dynamic and convective

features within the MJO envelope (e.g., front-to-rear

vertical tilts, the vertical structure of westerly wind

bursts), the characteristics and intensity of which differ

from oneMJO event to another (Kikuchi and Takayabu

2004; Kiladis et al. 2005; Tian et al. 2006; Kiladis et al.

2009). A more complete model should account for more

detailed subplanetary processes within the MJO’s en-

velope, including, for example, synoptic-scale con-

vectively coupled waves and/or mesoscale convective

systems. This may be achieved, for example, by building

suitable stochastic parameterizations—such as the one

proposed in the present article—that account for more

details of the synoptic and/or mesoscale variability (e.g.,

Khouider et al. 2010; Frenkel et al. 2012, 2013).
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APPENDIX A

Numerical Method

This appendix details the numerical method used to

compute the simulations. The stochastic skeleton model

is the vertically and meridionally truncated system of

variables K, R, Q, and A from Eq. (4), where the non-

linear amplitude equation is replaced by the stochastic

birth–death process from Eq. (9). In practice, however,

we solve amore suitable system of variablesK,R,Z, and

a, where we introduce the new variable Z5 q1Qu. To

remain consistent with the notations from both sections

2a and 2b, consider here that the variables q, u, and

a (and Z) are defined in a zonal strip along the equator,

with q 5 q(x, 0, t), u 5 u(x, 0, t), and a 5 a(x, 0, t).

Therefore, we have q 5 Qf0(0), u 5 2(K 1 R)f0(0),

and a 5 Af0(0) for consistency with Eqs. (4). In addi-

tion, we recall that a5 Dah for consistency with Eq. (9).

All model variables K, R, Z, and a are random vari-

ables, and we solve for the evolution of one model

realization. The spatial and temporal resolution is iden-

tical toMS2011, with a spatial stepDx of 625km spanning

the equatorial belt (40 000km) and a time step DT of

around 1.7 h. We use a splitting method to update the

system over each time step DT. First,Z and a in the zonal

strip are held fixed and we solve for the evolution of K

and R exactly using zonal Fourier series [cf. first and

second rows of Eq. (4)]. Second, K and R are held fixed
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and we solve for the evolution of Z and a together. For

this, we solve a local system of equations:

›tZ5 (12Q)(sq 2Ha)

a(t1 t)5 a(t)1 jDa . (A1)

The first row of Eq. (A1) can be deduced by combining

the third and fourth rows of Eq. (3) or, alternatively, the

first three rows of Eq. (4). The second row of Eq. (A1)

ensues when solving one realization of the master

Eq. (9) (see below). Here, Eq. (A1) is solved over each

DT as a series of consecutive transitions over smaller and

irregular time steps t. The last consecutive transition in

particular usually finishes after the end of DT and is

therefore approximately omitted in order to retrieve

Z(t 1 DT) and a(t 1 DT).
The second row of Eq. (A1) ensues when solving

one realization of the master Eq. (9) with the Gillespie

algorithm (Gillespie 1975, 1977). This consists of

updating a sequentially according to the random vari-

ables t and j. Here, t $ 0 is the random time interval

between two consecutive transitions, with a cumulative

distribution function P(t) 5 exp[2(l 1 m)t] that cor-

responds to a Poisson distribution. This depends on the

transition rates l and m given earlier in Eq. (11). In

addition, j is the transition direction, and it takes the

discrete values f21, 1g according to the cumulative

distribution function P(j)5 fm/(l1 m), l/(l1 m)g. For
the transitions rates given in Eq. (11), j 5 1 if q$ 0 and

j 5 21 if q , 0 (though j 5 1 unconditionally if q 5 0),

which is consistent with Eq. (1). In other words, themain

stochastic effect in the second row of Eq. (A1) is that the

growth–decay of the envelope of synoptic activity a can

be randomly enhanced or diminished as compared to the

otherwise deterministic Eq. (1).

In this article we analyze the dynamics of the sto-

chastic skeleton model in a statistically equilibrated re-

gime. The statistically equilibrated regime is reached

after around 10 000 days of simulations after an initial

FIG. B1. Sensitivity to Da: zonal wavenumber–frequency power spectra of u, for (a) Da 5 1025, (b) Da 5 1024, and (c) Da 5 1023, as

a function of zonal wavenumber (2p/40 000 km) and frequency (cpd), for simulations with a homogeneous background state. (d),(e),(f) As

in (a),(b),(c), respectively, but for simulations with background warm pool state. Figure setup is as in Figs. 2 and 7.
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growth in oscillation amplitude. The simulations are

initiated from the radiative–convective equilibrium state

plus an initial perturbation, as in MS2011. Because of the

stochastic effects, the choice of the initial perturbation has

no impact on the statistically equilibrated regime, yet this

allows us to ‘‘start’’ the stochastic fluctuations because it

sets l 6¼ 0 and m 6¼ 0. This model is inexpensive compu-

tationally: 1000 days of simulation take around 2min of

computer time on a typical laptop computer.

APPENDIX B

Sensitivity to Parameters

The main features of the stochastic skeleton model

are overall robust to parameter changes, as shown here

with a few sensitivity tests (see also section 2b for the

reference values). While the previous sections illus-

trated dynamics with stochastic transition parameter

Da5 1023, we have also analyzed additional simulations

with Da5 1024 and Da5 1025. The robustness of results

is briefly illustrated in Fig. B1, which shows the power

spectra of u. For all simulations, the MJO signal is the

dominant signal at intraseasonal planetary scale and it

appears as a sharp power peak slightly under the dis-

persion curve of theMJOmode from linear stability. For

the simulations with background warm pool state there is

furthermore a slightly increased power at wavenumbers

21 and 1. Those results are consistent with the ones from

previous sections. We have also found overall consistent

results in additional simulations with an intermediate

warm pool strength and in simulations with modified

parameter G/2 or 2G as in MS2009 (not shown).
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