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1 Materials and Methods

Three items of the Materials and Methods are described below: (i) the model for stationary wave patterns,
(ii) the observational data, and (iii) the observational data analysis methods. Following these three items is
a discussion of the current approach and a comparison with the methods of previous studies.

1.1 Model: stationary wave patterns

In this section, the derivations are outlined for the model equations for the stationary wave patterns, K(x)
and Rm(x) for m = 1, 2, 3, · · ·. Parts of the derivation are classical [Matsuno, 1966; Webster , 1972; Gill ,
1980], and parts are needed in order to describe the data analysis methods below. The main idea of the
derivation is to reduce the three-dimensional (x, y, z) equations to two-dimensional (x, y) equations and
finally to one-dimensional (x) equations, using appropriate basis functions in the vertical (z) and meridional
(y) coordinates [Biello and Majda, 2006; Majda and Stechmann, 2009; Stechmann and Majda, 2014].

The starting point is the set of linear long-wave equatorial primitive equations:

ut − yv + px = fu

yu+ py = 0

pz = θ

ux + vy + wz = 0

θt + w = fθ (S1)
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Here u, v, and w are the zonal, meridional, and vertical velocity anomalies, respectively; and p and θ
are the pressure and potential temperature, respectively. The zonal momentum source is fu, and the
potential temperature source is fθ. Due to the equatorial long-wave scaling, the time-tendency term vt of
the meridional wind is neglected. The equations have been nondimensionalized using the standard equatorial
reference scales [Stechmann et al., 2008; Majda and Stechmann, 2009; Stechmann and Majda, 2014]. To
obtain steady equations for the stationary wave patterns, the time tendency terms ut and θt will also be
dropped below.

To arrive at a two-dimensional form of Eq. S1, vertical basis functions can be used to separate Eq. S1
into an infinite set of shallow water systems for the baroclinic modes. Here, only the first baroclinic mode is
retained so that u(x, y, z, t) = u(x, y, t)

√
2 cos(z), etc., with a slight abuse of notation in the re-use of symbol

u. The resulting equations are

ut − yv − θx = fu

yu− θy = 0

θt − ux − vy = fθ (S2)

which resemble the Matsuno–Gill model [Matsuno, 1966; Gill , 1980] except Eq. S2 includes no damping.
Finally, to arrive at a one-dimensional form of Eq. S2, meridional basis functions can be used to separate

Eq. S2 into an infinite set of equations including the Kelvin wave K(x) and long-wave equatorial Rossby
waves R1(x), R2(x), R3(x), · · ·. The natural meridional basis functions are the parabolic cylinder functions:

φm(y) =
1

(m!
√
π 2m)1/2

Hm(y) e−y2/2, m = 0, 1, 2, · · · (S3)

where Hm(y) are the Hermite polynomials:

Hm(y) = (−1)me+y2 dm

dym
e−y2

. (S4)

For example, explicit formulas for the first few are

φ0(y) =
1

π1/4
e−y2/2 (S5)

φ1(y) =
1

π1/4

1√
2
(2y) e−y2/2 (S6)

φ2(y) =
1

π1/4

1

2
√
2
(4y2 − 2) e−y2/2 (S7)

The functions φm(y) form an orthonormal basis, and the variable u(x, y) can then be expanded as

u(x, y) =

∞
∑

m=0

um(x)φm(y) (S8)

where the quantities um(x) are obtained using the projection

um(x) =

∫

∞

−∞

u(x, y)φm(y) dy (S9)

Formulas analogous to Eqs. S8 and S9 also apply to v, θ, fu, fθ. Utilizing the projections in Eq. S9, the wave
amplitudes K(x) and Rm(x) are defined as

K =
1√
2
(u0 − θ0) (S10)

Rm =

√
m+ 1√

2
(um+1 − θm+1)−

√
m√
2
(um−1 + θm−1), m = 1, 2, 3, · · · (S11)
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where um and θm are the meridional projections from Eqs. S8 and S9. In addition, one can derive the
following steady equations for the stationary wave patterns K(x) and Rm(x):

dK

dx
=

1√
2
(fu

0 − fθ
0 ) (S12)

dRm

dx
= (2m+ 1)vm +

√
m+ 1√

2
(fu

m+1 − fθ
m+1) +

√
m√
2
(fu

m−1 + fθ
m−1),

m = 1, 2, 3, · · · (S13)

Note that the momentum source fu
0 is relabelled as Fmom and the heat source fθ

0 is relabelled as Fheat in the
main text for simplicity. Also note that meridional velocity vm enters into Eq. S13 in addition to the Rossby
wave amplitude Rm and the momentum and heat sources. Other formulations are also possible and Eq. S13
is used as a simple option. The variable vm is not a prognostic variable in the long-wave framework, and here
it will be specified from observations, along with estimates of the observed source terms, in order to predict
the wave amplitude Rm. The solutions of Eqs. S12–S13 are computed exactly using Fourier transforms.

Note that K and Rm (m = 1, 2, · · ·) denote the amplitudes of structures of Kelvin and Rossby waves;
but K and Rm do not inherently contain in their definitions Eqs. S10–S11 any information about the
propagation or frequencies of the structures. This latter information is specified in the equations of motion
for the evolution of the structure in time. For instance, the temporal evolution of the amplitude K(x, t) can
be derived from Eq. S2 and is discussed below in Eq. S21. In other words, one can interpret K and Rm

simply as new variables in a change of variables from “primitive variables” u, v, θ to “eigenmode variables”
for each particular eigenmode structure.

To recover u(x, y) from K(x) and Rm(x), m = 1, 2, 3, · · ·, the following formula is used:

u(x, y) =
1√
2

[

K(x)− 1

2
R1(x)

]

φ0(y) +
1√
2

[

− 1

2
√
2
R2(x)

]

φ1(y)

+

∞
∑

m=2

1

2
√
2

[

1√
m
Rm−1(x)−

1√
m+ 1

Rm+1(x)

]

φm(y) (S14)

where the series is truncated if only a finite number of Rossby wave amplitudes Rm are used.

1.2 Data

To identify observational surrogates of the variables in Eqs. S1, S2, and S9–S13, two data sources are used
here. First, as a surrogate for the heat source fθ(x, y), NOAA interpolated outgoing longwave radiation
(OLR) is used [Liebmann and Smith, 1996], along with the proportionality relationship in the main text.
Interpolated OLR data is provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their
Web site at http://www.esrl.noaa.gov/psd/. Second, NCEP/NCAR reanalysis data is used for all other
variables: wind, geopotential height, and sea surface temperature [Kalnay et al., 1996]. NCEP Reanal-
ysis data is provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at
http://www.esrl.noaa.gov/psd/. Both datasets have a horizontal spatial resolution of 2.5◦×2.5◦ and a daily
temporal resolution from 1 January 1979 to 31 December 2011.

To check the robustness of the results across different datasets, the NCEP/NCAR reanalysis data is
compared with the ECMWF reanalysis data in Fig. S4. The ECMWF ERA40 reanalysis data spans the
period of 1957–2002, and the ECMWF ERA–Interim reanalysis data spans the period of 1979–2013 [Uppala
et al., 2005]. In the recent 30-year period from 1980–2009, in Fig. S4, the NCEP/NCAR and ECMWF
reanalyses show very similar patterns of K(x) and R1(x), which lends confidence to the robustness of these
reanalysis stationary wave patterns.

Also, while the reanalysis data has sometimes been refered to here as “observational” for simplicity,
it is actually a combined product of observational data and model dynamics [Kalnay et al., 1996; Uppala
et al., 2005]. Furthermore, satellite radiance data is assimilated to estimate temperature profiles, which
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means the OLR and reanalysis data may not be completely independent data sources. To test the potential
impact of satellite data on the reanalysis data, the earlier period of 1962–1968 is examined in Fig. S4; in this
period, the reanalyses assimilate ample radiosonde data and no satellite data. While the Kelvin amplitude
displays some noticeable differences, the general pattern is similar, and the Rossby amplitudes are all quite
similar. Differences between the 1962–68 and 1980–2009 reanalysis product data could also be due to actual
differences in the climate state during these two periods. In sum, this data comparison suggests that the
large-scale patterns are relatively robust features of the mean climate state.

1.3 Methods: observational data analysis

In this section, a procedure is described to identify the wave amplitudesK(x) and Rm(x), m = 1, 2, 3, · · · from
observational data. This procedure was recently introduced and described in detail elsewhere [Stechmann

and Majda, 2014]. Here an overview of the procedure is described for the present focus on the Walker
circulation, as opposed to the procedure’s original focus of the Madden–Julian oscillation, which requires
additional steps beyond what is needed here.

The method involves two steps that follow the path from Eq. S1 to Eq. S2 to Eqs. S12–S13: a vertical
mode truncation to move from 3D (x, y, z) to 2D (x, y), and then a meridional mode truncation to move to 1D
(x). The first step distinguishes the overturning component of tropical circulations, which is characterized by
opposing east–west winds in the lower troposphere (850 hPa) and upper troposphere (200 hPa). In the second
step, the method furthermore breaks down the overturning circulation into its individual wave components,
such as the Kelvin wave amplitude K(x) and the equatorial Rossby wave amplitudes Rm(x). From these
two steps, this method allows a more direct comparison of observations and theory than previously possible.

First, to define the first baroclinic mode variables u(x, y), v(x, y), and θ(x, y) from (S2), a simple method
is used here. The method utilizes data from only two pressure levels, 850 and 200 hPa, in order to capture
the essence of the first baroclinic mode structure:

u(x, y) =
U850(x, y)−U200(x, y)

2
√
2

(S15)

v(x, y) =
V850(x, y)−V200(x, y)

2
√
2

(S16)

θ(x, y) = −Z850(x, y)− Z200(x, y)

2
√
2

(S17)

where Z is geopotential height and is related to potential temperature via the hydrostatic balance equation.
This formulation is a crude, Boussinesq-like representation of the vertical modes that can be derived from
the primitive equations or the anelastic equations [Kasahara, 1976; Kasahara and Puri , 1981; Fulton and

Schubert , 1985]. The equations have been nondimensionalized using the standard equatorial reference scales
[Stechmann et al., 2008; Majda and Stechmann, 2009; Stechmann and Majda, 2014]. By taking the difference
between the data at 850 and 200 hPa, this method isolates the overturning component of tropical circulations
from the barotropic component.

Second, to define the equatorial wave amplitudes K(x) and Rm(x), the definitions in (S10)–(S11) utilize
projections of u(x, y) and θ(x, y) onto meridional basis functions. The projection in (S9) is performed
discretely as a Riemann sum. While the theoretical description above applies to an equatorial β-plane with
−∞ < y < +∞, the data analysis must use latitude on a sphere. To relate latitude and meridional length,
a simple correspondence is used here: 1◦ latitude ≈ 110 km.

The pattern correlation is used here to compare observed and modeled data; for a comparison of two
functions f(x) and g(x), it is defined as

PC(f, g) =
1

L

∫ L

0
f(x)g(x) dx

[

1

L

∫ L

0
|f(x)|2 dx

]1/2 [
1

L

∫ L

0
|g(x)|2 dx

]1/2
(S18)

and it takes values in the range of -1 to 1.
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1.4 Comparison with methods of previous studies

At the end of section 3.1 of the main text, it was noted that the approach here differs from previous common
approaches in several ways. In this section, many aspects are discussed in further detail, including several
subtleties:

– Damping and its role as a surrogate

– The k = 0 mode, damping, and a mathematical subtlety

– Interpretation of steady undamped wave patterns

– Distinguishing the first baroclinic mode

– Distinguishing the equatorial wave types

– Diabatic heating rate estimates and their zonal variations

Damping and its role as a surrogate

Since damping is not included in the models used here, whereas it is normally included in Matsuno–Gill-type
models, we now describe some justifications for including or not including damping.

In terms of physical processes, the forcing terms fu and fθ in Eq. S2 should represent (among other
things) momentum forcing, such as convective momentum transport, and heat sources and sinks, such as
radiative heating and cooling. If accurate observational estimates are known, then one could simply prescribe
the functions fu(x, y, t) and fθ(x, y, t) using these observational estimates. However, accurate observational
estimates have traditionally not been available, which heightens the appeal of another option: to use a model
for fu and fθ.

Several options exist for modeling these processes. As a comprehensive option, for instance, one could
use a radiative transfer algorithm. Such algorithms are quite complex, in contrast to the dynamical core of
Matsuno–Gill-type models, which suggests the consideration of simpler models of radiative transfer. A very
simple option is to model radiative forcing using a damping term—i.e., Newtonian cooling. Such a choice
requires justification, perhaps based on physical principles or based on a simplification of the equations for
comprehensive radiative transfer. In any case, damping is a modeling option.

Returning now to the original motivation, the goal is to represent the forcing terms fu and fθ in Eq. S2,
and two main options exist: (i) prescribe them using observational estimates, or (ii) model them. (Or
perhaps a third option is to use a combination of the two.) The present paper tests the following hypothesis:
In modeling the Walker circulation, the forcing terms can be prescribed from observational estimates alone,
using fu ≈ 0 and fθ ∝ OLR. Using this approach, excellent agreement is found between the undamped
model and the observed Walker circulation.

This does not necessarily mean that Rayleigh friction and Newtonian cooling should never be used. For
the present application, however, they do not appear to be needed.

The k = 0 mode, damping, and a mathematical subtlety

An important element of the present model is that it does not include the k = 0 mode (also called the zonally
uniform or zonally symmetric component). The k = 0 mode introduces a mathematical subtlety involving
damping, and this subtlety does not seem to be well known.

The mathematical subtlety involves two points. First, the undamped model (in a steady state) in Eq. S2
has a solution only if fu and fθ satisfy certain consistency conditions. This has been pointed out by
Majda and Klein [2003]. Specifically, it is the zonally uniform components, fu and fθ, that must satisfy
certain consistency conditions. Second, the forcing introduced by Gill [1980] does not satisfy the consistency
conditions.

What is the consequence of using forcing terms fu and fθ that do not satisfy the consistency conditions?
One consequence is that the weak damping limit causes the zonally uniform circulation to become very
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strong—in fact, infinitely strong. To see the consequences in a simple setting, consider the steady, forced
Kelvin wave in Eq. S12 with damping added:

dK

dx
=

1√
2
(fu

0 − fθ
0 )−

1

τ
K, (S19)

which assumes equal momentum and thermal damping rates for simplicity. The solution for the zonally
uniform component K̄ is then given by

K̄ = τ · f
u
0 − fθ

0√
2

. (S20)

If damping is weak (i.e., τ is large), then K̄ can be very large. In fact, K̄ becomes infinite in the limit as
τ → ∞. In contrast, the zonally varying component of K(x) remains finite as τ is increased. Consequently,
if damping is weak, the zonally uniform component of the circulation can become the dominant feature of
the flow.

Such consequences have been seen in some previous studies [Wu et al., 2001], and they could be avoided
in several ways. As one option, one could apply sufficiently strong damping to achieve a zonally uniform
circulation of a reasonable magnitude; this option would also impose strong damping upon the zonally varying
cicrulation. As another option, one could choose forcing functions that satisfy the consistency conditions,
unlike the forcing of Gill [1980]. For instance, in the case of the Kelvin wave example in Eqs. S19–S20, the

consistency condition is fu
0 = fθ

0 . As a third option, one could choose not to model the zonally uniform
component of the circulation. In other words, one could satisfy the consistency conditions in a trivial way
by choosing forcing functions that satisfy fu = fθ = 0. This option avoids all of the subtle issues described
above, and it is the approach used in the present paper.

Interpretation of steady undamped wave patterns

The concept of a “steady wave pattern” may seem somewhat counterintuitive, since waves oscillate and
propagate. Two interpretations are now described to clarify the meaning here. The steady wave patterns
could be interpreted as either (i) the temporal average of an unsteady wave equation, or (ii) the steady state
that would be achieved in a damped model in the limit that the damping rate tends to zero.

The first potential interpretation is that a steady wave pattern is a temporal average of the unsteady
undamped equation for Kelvin waves, which is

∂K

∂t
+

∂K

∂x
= fK , (S21)

where the forcing (fu
0 − fθ

0 )/
√
2 has been denoted by fK to ease notation. A temporal average of this

equation from t = 0 to t = T leads to

K(x, T )−K(x, 0)

T
+ ∂x〈K〉 = 〈fK〉, (S22)

where 〈f〉 denotes the time average: 〈f〉 = 1

T

∫ T

0
f(x, t) dt. For large T , this equation becomes

∂x〈K〉 ≈ 〈fK〉, (S23)

which is essentially the same as Eq. 6 from the main text, and which corresponds to an undamped “steady
state.” While this is not a true deterministic steady state, it is a statistical steady state in the sense that
the time-averaged variables will satisfy this relationship. Through the temporal average, the influence of
propagating Kelvin waves is averaged out, leaving only the steady Kelvin wave pattern described in the main
text.

The second interpretation is that a steady (undamped) wave pattern is the steady state that would be
achieved in a damped model in the limit that the damping rate tends to zero. The damped version of Eq. S21
is given by

∂K

∂t
+

∂K

∂x
= −1

τ
K + fK , (S24)
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where initial condition K(x, 0) could be specified. The solution in Fourier space is found by assuming the
expansion K(x, t) =

∑

k K̂k(t) exp(ikx), which leads to

dK̂k

dt
= −(ik + τ−1)K̂k + f̂K

k . (S25)

This is a linear ordinary differential equation that can be solved exactly for K̂k(t) at any time t, from which
K(x, t) can be obtained by an inverse Fourier transform. A steady state solution is then obtained by taking
the limit as t → ∞; it is given by

K̂k =
f̂K
k

ik + τ−1
. (S26)

In the limit of weak damping (i.e., as τ−1 → 0),

K̂k → f̂K
k

ik
as τ−1 → 0. (S27)

This is precisely the Fourier transform of Eq. 6 of the main text, which can hence be interpreted as the
steady state that would be achieved in a damped model, in the limit that the damping rate tends to zero.
This is a regular limit in the setup used here, although in other cases the limit can potentially be subtle,
since certain consistency conditions must be satisfied by the forcing in the undamped limit, as pointed out
by Majda and Klein [2003]. The subtlety arises only for the zonally uniform component (k = 0 mode), since
a potential singularity can arise in this limit if k = 0 and τ−1 → 0. In the present paper, this subtlety is not
an issue, since the zonally uniform component is not considered.

Finally, we note that the notion of a “steady wave” is also commonly used for circulation patterns outside
the tropics. For example, see Chapter 6 of James [1995] on barotropic steady waves forced by topography.
Other terminology is also sometimes used interchangeably, such as “steady eddies” or “stationary waves.”

Distinguishing the first baroclinic mode

In the results of the present paper, a new observational data analysis method has been used [Stechmann and

Majda, 2014]. One important feature of the method is that it distinguishes the overturning component of
tropical circulations—i.e., the first vertical baroclinic mode. The first baroclinic mode is characterized by
opposing zonal winds in the lower troposphere (850 hPa) and upper troposphere (200 hPa), as indicated in
the schematic diagram in Fig. 1a. It is this vertical mode that is typically represented in simple models of
the Walker circulation, as in the present paper. Consequently, if the first baroclinic mode can be isolated in
observational data (as is attempted in the new observational data analysis method), it should provide the
most direct comparison between model and observations.

In contrast, it is traditional to analyze observational data at a single pressure level, such as 850 hPa,
in which case the fluctuations are caused by a superposition of numerous vertical modes (such as other
baroclinic modes and the barotropic mode). Hence one cannot expect to see excellent agreement between a
first-baroclinic-mode model and observations at a single pressure level.

Some have expressed concern about the use of vertical internal modes in modeling the tropical atmosphere
(e.g., see [Lindzen, 2003] and references therein). On the other hand, Chumakova et al. [2013] have presented
a theoretical argument to justify the use of vertical modes. The results of the present paper are perhaps a
posteriori evidence of the utility of the vertical mode perspective.

Distinguishing the equatorial wave types

As another feature, the methods here break down the overturning circulation into its individual wave com-
ponents, such as the Kelvin wave amplitude K(x) and the equatorial Rossby waves, Rm(x). In so doing, it
does not consider the momentum forcing fu and diabatic heating fθ separately. Instead, they are considered
together through the quantities fu ± fθ, as seen in Eqs. S12–S13. In so doing, the strengths of fu and fθ

are considered relative to each other, and fu is assumed to be small not in an absolute sense but in relation
to the strong diabatic heating variations, fθ.
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Diabatic heating rate estimates and their zonal variations

Two aspects of the diabatic heating are treated differently here than in many previous studies. First, in
estimating a relationship between OLR and diabatic heating, the k = 0 mode of OLR has been removed.
This is in contrast to previous estimates of such a relationship [Christy , 1991; Yanai and Tomita, 1998].
Second, diabatic heating variations are considered here across the global tropics, rather than a local diabatic
heat source as popularized by Gill [1980].
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2 Supplementary Figures
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Figure S1: (a) Same as Figure 1c, which is undamped, repeated here for ease of comparison. (b) Same
as Figure 1c, except with model damping time scale of 5 days. (b) Same as Figure 1c, except with model
damping time scale of 1 day. Damped solutions are computed using Eqn. S19.
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Figure S2: (a) The zonal winds of Rossby wave R2 as observed in NCEP/NCAR reanalysis data, averaged
from 1980-2009. (b) The amplitude of the observed (solid blue line) and model-predicted (dashed red line)
R2 averaged from 1980-2009, and also averaged seasonally for the (c) MAM, (d) JJA, (e) SON, and (f) DJF
seasons.
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Figure S3: (a) The zonal winds of Rossby wave R3 as observed in NCEP/NCAR reanalysis data, averaged
from 1980-2009. (b) The amplitude of the observed (solid blue line) and model-predicted (dashed red line)
R3 averaged from 1980-2009, and also averaged seasonally for the (c) MAM, (d) JJA, (e) SON, and (f) DJF
seasons.
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Figure S4: (a) Comparison of Kelvin amplitude K(x) for different reanalysis datasets and time periods:
NCEP/NCAR 1980–2009 (red), ECMWF 1980–2009 (magenta), NCEP/NCAR 1962–1968 (blue), ECMWF
1962–1968 (black). (b) Same as (a) except for Rossby wave amplitude R1(x).

13


