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Abstract In the tropical atmosphere, waves can couple with water vapor and convection to form
large-scale coherent structures called convectively coupled waves (CCWs). The effects of water vapor
and convection lead to CCW–mean flow interactions that are different from traditional wave–mean flow
interactions in many ways. CCW–mean flow interactions are studied here in two types of models: a
multiscale model that represents CCW structures in two spatial dimensions directly above the Earth’s
equator, and an amplitude model in the form of ordinary differential equations for the CCW and
mean flow amplitudes. The amplitude equations are shown to capture the qualitative behavior of the
spatially resolved model, including nonlinear oscillations and a Hopf bifurcation as the climatological
background wind is varied. Furthermore, an even simpler set of amplitude equations can also capture
some of the essential oscillatory behavior, and it is shown to be equivalent to the Duffing oscillator. The
basic interaction mechanisms are that the mean flow’s vertical shear determines the preferred propa-
gation direction of the CCW, and the CCWs can drive changes in the mean shear through convective
momentum transport, with energy transfer that is sometimes upscale and sometimes downscale. In ad-
dition to CCW–mean flow interactions, also discussed are CCW–water vapor interactions, which form
the basis of the Madden–Julian Oscillation (MJO) skeleton model of the first two authors. The key
parameter of the MJO skeleton model is estimated theoretically and is in agreement with previously
conjectured values.
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1 Introduction

Wave interactions and wave–mean flow interactions have a long history in fluid dynamics and in
atmospheric fluid dynamics in particular [35,1,8,2,7]. In the atmosphere, the traditional setting for
wave–mean flow interactions is in the stratosphere and the midlatitude troposphere. In this paper, by
contrast, we consider waves in the different setting of the troposphere, in the tropics, where the waves
can couple with water vapor and convection to form large-scale coherent structures called convectively
coupled waves (CCWs), among many types of propagating convective features. Furthermore, in this
setting, it is not only the mean flow that is important but also the mean moist thermodyanamic state.
Hence, this is a setting for convectively coupled wave–environment interactions, among a wide variety
of interactions between convection, waves, and their background environment.

In the tropical troposphere, clouds and convection are organized across many different scales, and
the largest scales can be loosely partitioned into three groups. Individual cloud systems appear on
scales of roughly 200 km and 0.5 days, and they are commonly called “mesoscale convective systems”
(MCS) [14]. Several MCS, in turn, can sometimes be organized within a larger-scale wave envelope
with scales of roughly 2000 km and 5 days; these propagating envelopes are called CCWs [20], and their
structure is illustrated schematically in figure 1. Moreover, several CCWs can sometimes be organized
within an even larger-scale wave envelope with scales of roughly 20 000 km and 50 days; the most
prominent example of this is the Madden–Julian Oscillation (MJO) [22,49].

Many aspects of MCS and MCS–environment interactions have been studied previously. It is well-
known that MCS can affect the larger-scale fields of momentum, temperature, and moisture in which
they exist [47,23,13,24], and the energy transfers are sometimes upscale and sometimes downscale.
It is also well-known that the larger-scale environment influences the MCS that form within it [33,
3,25]. Nevertheless, many details of MCS–environment interactions are still being studied [15]. A
complex form of MCS–environment interactions is the way in which many MCS become grouped
together to form a CCW [34,32,10,17,38,42]. As illustrated schematically in figure 1, many processes
are believed to play a role, including interactions of convection, gravity waves, wind shear, and moist
thermodynamics.

On larger scales, CCWs are arguably more recently observed and less understood than MCS.
CCW properties have been identified in several observational studies [40,41,45,46,20], but CCW–
environment interactions have been studied very little, although some studies have analyzed observa-
tions of CCWs in different seasons or hemispheres [45,36,48]. A complex form of CCW–environment
interactions is the way in which CCWs interact with larger-scale structures such as the MJO, in which
the CCWs are often embedded.

In fact, one important motivation for understanding CCW–environment interactions is for better
understanding the MJO, which is a planetary-scale envelope of sub-planetary-scale convection including
CCWs [34,12,9]. Despite the importance of the MJO, computer general circulation models (GCMs)
typically have poor representations of it [26,21], and there is still no generally accepted theory for its
fundamental physical mechanisms. Nevertheless, some recent non-traditional GCM approaches appear
to capture many of the observed features of the MJO by accounting for the smaller-scale convective
features within the MJO envelope [4,19]. In addition, [30,31] recently introduced a minimal model for
the MJO’s “skeleton” in which CCW–water vapor interactions are part of the proposed fundamental
mechanism, and the model recovers the key features of the observed MJO skeleton. Furthermore,
CCW–mean flow interactions appear to account for additional features of the MJO – its “muscle” –
beyond the features of its “skeleton” [28,5,29], and the energy transfer from convective momentum
transport (CMT) is sometimes upscale (i.e., from small scales to larger scales) and sometimes downscale
(i.e., from large scales to smaller scales).

However, the nature of the energy transfers between CCWs and their environment is not understood
very well: Under what circumstances are the energy transfers upscale, and under what circumstances
are they downscale? To study this question from a theoretical standpoint, a model is needed that
includes the evolution of CCWs, the evolution of the environment, and their interactions. In [30,
31], the MJO skeleton model includes interactions of CCWs with environmental water vapor, and it
reproduces the fundamental features of the MJO on planetary and intraseasonal scales. However, the
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Fig. 1 Schematic diagram of a convectively coupled wave and the cloud systems embedded within it. Anvil-
shaped cloud systems propagate eastward or westward depending on the low-level vertical shear in the back-
ground wind [25], and new cloud systems form repeatedly on one preferred side of preexisting cloud systems
[34,10,42], with the preferred side determined by the background shear [38]. The result is a propagating wave
train of cloud systems.

MJO skeleton model does not include CMT and its direct effect on environmental wind shear. In [29],
a model is designed and studied for CMT and interactions between CCWs and environmental wind
shear. In other words, it is a model for CCW–mean flow interaction. It takes the form of a multiscale
model involving nonlinear partial differential equations (PDEs) including source terms with nonlinear
switches. A further question beyond those results is, Can a simpler model be designed for CCW–mean
flow interactions, to describe the interactions in a more transparent fashion, thereby shedding further
light on the issue of upscale versus downscale energy transfer?
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One purpose of the present paper is to further study the CCW–mean flow interactions of [29],
including using amplitude equations as a simplified ordinary differential equation (ODE) model for
the interactions, as has been done in other fluid dynamics settings [8,11,6,37]. The dynamics of the
CCW–mean flow interactions of [29] include interesting nonlinear oscillations and a Hopf bifurcation,
and it will be shown that simple amplitude ODEs can capture this dynamical behavior. While a
systematic asymptotic derivation of the amplitude ODEs is not given (due to the complicated form
of the nonlinearities in the governing equations), the form of the amplitude ODEs are motivated by
systematic derivations in other scientific settings [6]. In addition to CCW–mean flow interactions, a
second purpose of the present paper is to investigate CCW–water vapor interactions, which serves
to further justify the use of an amplitude equation in the MJO skeleton model of [30,31], beyond
the phenomenological motivation given previously, and to provide a theoretical estimate for the key
parameter of the model.

Finally, we note that the term CMT, convective momentum transport, is used here in a general
sense to refer to momentum transport by any type of convection on any scale, including CCWs, which
are manifestations of convection on synoptic scales. This is in contrast to the traditional, and more
restrictive, use of the term to refer to momentum transport on only the scales of individual clouds or
mesoscale convective systems [43,44]. Given the general meaning of the word “convective,” it seems
appropriate to use the term CMT to refer to momentum transport due to convection on any scale;
perhaps a more restrictive term, such as cumulus momentum transport, would best describe momentum
transport on the particular scales of individual clouds or mesoscale convective systems.

The paper is organized as follows. In section 2 the focus is CCW–mean flow interaction, and in
section 3 it is CCW–water vapor interaction. Section 4 provides a concluding discussion.

2 CCW–mean flow interactions

As described above, momentum interactions are often studied as part of either wave–environment or
convection–environment interaction, as either wave–mean flow interactions or convective momentum
transport. The topic of CCW–mean flow interactions involves some aspects of both. In subsections
2.1–2.3, we study the effect of the mean flow on CCWs, the effect of CCWs on the mean flow, and
finally the two-way interactions between CCWs and the mean flow.

2.1 Effect of mean flow on CCWs

To investigate CCW dynamics, we use the multicloud model of [17,18], which is a spatially variable
PDE model for CCWs that captures many important features such as their propagation speeds and
tilted vertical structures. The mathematical form of the model is

∂tu+A(u)∂xu = S(u) (1)

where u(x, t) is a vector of model variables, u = (u1, θ1, u2, θ2, θeb, q,Hs)
T . The model variables are

uj , the zonal velocity in the jth baroclinic mode; θj , the potential temperature in the jth baroclinic
mode; θeb, the equivalent potential temperature of the boundary layer; q, the vertically integrated
water vapor; and Hs, the stratiform heating rate. The matrix A(u) includes the effects of nonlinear
advection and pressure gradients, and S(u) is a nonlinear interactive source term with combinations
of polynomial nonlinearities and nonlinear switches. The detailed form of these equations is shown in
the appendix.

Using the velocity modes uj(x, t), the two-dimensional zonal velocity u(x, z, t) is recovered as a
sum of the contributions from all of the vertical modes:

u(x, z, t) = u0(x, t) +

∞
∑

j=1

uj(x, t)
√
2 cos(jz) (2)

where the troposphere extends from z = 0 to π in the nondimensional units shown in (2), which
corresponds to z = 0 to 16 km in dimensional units. The vertically uniform mode j = 0 is the barotropic
mode, and the other modes are the baroclinic modes. Plots of the vertical structure associated with
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Fig. 2 Vertical structures of different baroclinic modes and baroclinic mode combinations.

some of the vertical baroclinic modes are shown in figure 2. In order to include a balance between
simplicity and important physical effects, the original multicloud model includes only u1 and u2 as
dynamical variables. The effect of u3 will also be considered here as either a constant background shear
Ū3 or as a slowly evolving mean shear Ū3(T ), where T = ǫ2t is a slow time scale.

Figure 3 shows the behavior of the multicloud model (1) in the presence of three different mean
shears Ū(z). These are nonlinear simulations on a 6000-km-wide domain with periodic boundary condi-
tions in the horizontal. The first column shows the case of zero mean shear. In this case, there are linear
instabilities over a finite band of wavenumbers, the unstable waves propagate both eastward and west-
ward, and there is perfect east–west symmetry. In the nonlinear simulation, a westward-propagating
traveling wave arises as the stationary solution (if viewed from a translating reference frame), which
grows from a small initial random perturbation. Due to the perfect east–west symmetry of this case, the
initial conditions randomly select whether the eastward- or westward-propagating wave will eventually
become the stationary solution. The second column shows a case with a lower tropospheric westerly jet
and an upper tropospheric easterly jet. In this case, the east–west symmetry is broken, the westward-
propagating wave has the largest linear theory growth rates, and it is the eventual stationary solution
in the nonlinear simulation. The third column shows another case with a nontrivial vertical shear. In
this case, the linear theory growth rates are nearly east–west symmetric, and the nonlinear simulation
appears to favor a standing wave solution rather than a travelling wave solution. In fact, at later times
(not shown), there is an oscillation between the standing and travelling wave states in this case, so
the preference for the standing wave is tenuous. [It is possible that a different parameter regime of the
multicloud model may show a more robust standing wave state, but the present parameter regime is
chosen to match that of [29].] Nevertheless, these cases demonstrate, to an extent, two effects of the
background shear on the CCWs: it can break the east–west symmetry to favor either the eastward- or
westward-propagating wave, and it can determine, to an extent, whether a traveling wave or standing
wave state is favored.

The competition between the traveling wave and standing wave states also appears in other sci-
entific contexts such as combustion (see [6] and references therein). In these other contexts, a useful
tool for understanding this competition has been wave amplitude equations, which can sometimes be
derived from the governing equations using systematic asymptotics. Here, since the multicloud model
of (1) includes complicated combinations of polynomial nonlinearities and nonlinear switches, we use
amplitude equations as a qualitative model without carrying out a systematic asymptotic derivation for
them. The end results will suggest that amplitude equations can capture the basic dynamical behavior
of the multicloud model.

In other contexts [8,6], amplitude equations are derived by first assuming a leading-order solution
with contributions from both eastward- and westward-propagating waves:

α+(ǫ
2t)e+(k)e

i[kx−ω+(k)t] + α−(ǫ
2t)e−(k)e

i[kx−ω
−
(k)t] + c.c. (3)

where T = ǫ2t is a slow time scale, α±(T ) are complex-valued amplitudes, e±(k) are the eigenvectors
of the wavenumber-k linear modes, ω±(k) are the frequencies of the wavenumber-k linear modes, and
“c.c.” stands for the complex conjugate. The systematic asymptotic procedure in other similar contexts
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Fig. 3 Linear theory and nonlinear simulations for three cases of fixed background shear. Row 1: Three different
mean flows Ū(z) used for the three cases. Row 2: Phase speed as a function of wavenumber for the linear modes.
Row 3: Growth rate as a function of wavenumber for the linear modes. Filled circles denote damped modes,
and crosses and open circles denote eastward- and westward-propagating unstable modes, respectively. Row 4:
Space–time plots of deep convective heating Hd(x, t) from nonlinear simulations.
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would then yield coupled ODEs for the complex amplitudes:

dα+

dT
= χα+ + β|α+|2α+ + η|α−|2α+

dα−

dT
= χα− + β|α−|2α− + η|α+|2α− (4)

From this it can be seen that the real-valued magnitudes a±(T ) = |α±(T )| evolve according to

da+
dT

= Γa+ − da3+ − sa2−a+

da−
dT

= Γa− − da3− − sa2+a− (5)

where the variables a±(T ) and the parameters Γ, d, b are all real-valued, and the parameters are
determined in terms of the parameters of the original PDE for the nonlinear waves. In this model, the
positive parameter Γ > 0 is the coefficient of the linear growth term, the positive parameter d > 0 is
the coefficient of the nonlinear damping term, and the positive parameter s > 0 is the coefficient of the
nonlinear interaction term between the two waves. [The parameter b = −s was allowed to be either
positive or negative in [6], but we restrict to s > 0 here for simplicity.]

The competition between traveling and standing waves can be addressed in (5) through the stability
of the corresponding fixed points. The nontrivial fixed points are the

1. Traveling wave (eastward-propagating),

(a+, a−) =

(

√

Γ

d
, 0

)

(6)

2. Traveling wave (westward-propagating),

(a+, a−) =

(

0 ,

√

Γ

d

)

(7)

3. Standing wave,

(a+, a−) =

(

√

Γ

d+ s
,

√

Γ

d+ s

)

. (8)

The stability of these fixed points is determined by the values of the parameters d and s; a brief
summary of [6] is:

d < s : traveling wave is stable and standing wave is unstable
s < d : traveling wave is unstable and standing wave is stable

(9)

Figure 4 illustrates the solution to (5) for each of these parameter regimes. These different cases are
comparable to the multicloud model results in figure 3, and they suggest that the background shear
plays the role of the parameters d and s. The parameter values are listed in table 1; Γ was determined
from the linear theory growth rate in figure 3, and d and s were chosen so that the fixed point amplitudes
in (9) are comparable to the multicloud model results in figure 3. The amplitudes a± will be given
velocity units throughout the paper to facilitate comparison with the mean flow amplitude.

In nature, one can think of the traveling wave state as a case where a single wave type is present
in some region, and the standing wave state as a case where there is a mixture of different wave
types present in some region. The competition between the two states is important for many reasons,
such as energy exchanges between scales: a coherent wave can be expected to transport momentum to
larger scales, whereas a mixture of wave types would not (due to cancellation of the different waves’
momentum transports). This topic is investigated next.
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Table 1 Parameters for the amplitude models (5), (22), and (25).

Parameter Value

Γ 1.05 × 10−5 s−1

d 1.11 × 10−7 s m−2

s 9.50 × 10−8 s m−2

1.11 × 10−7 s m−2

1.27 × 10−7 s m−2

C 1.47 × 10−8 m−1

γ 1.00 × 10−6 m−1
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Fig. 4 Dynamics of the amplitude model (5) for two parameter regimes. Left: Traveling wave is stable for
d < s (compare with left column of multicloud model simulations in figure 3). Right: Standing wave is stable
for s < d (compare with right column of multicloud model simulations in figure 3).

2.2 Effect of CCW on mean flow

In the previous subsection, models were presented for the effect of a mean flow on CCW; in this
subsection, the converse effect – the effect of the CCW on the mean flow – is considered using three
models. First, an exactly solvable model is used to show when and how a CCW will affect the mean
flow. Second, it is shown that the CCW from the PDE model in figure 3 should affect the mean flow.
Third, an ODE model is presented that includes the effect of CCW on the mean flow.

First consider the following exactly solvable model for a CCW:

w′(x, z, t) = S′

θ(x, z, t)

∂xu
′ + ∂zw

′ = 0. (10)

In this model, called the weak-temperature-gradient approximation, the wave’s vertical velocity w′ is
exactly in balance with the heating rate S′

θ, which we must specify. The wave’s horizontal velocity u′

is then determined from the incompressibility constraint in (10) [28,5]. Given this exact solution for
u′ and w′ of the CCW, its effect on the mean flow is determined by

∂tū = −∂zw′u′, (11)

where this is the horizontal spatial average of the horizontal momentum equation, ∂tu + ∂x(u
2) +

∂z(wu) + ∂xp = 0, and where bar and prime notation is used to denote a horizontal spatial average
and fluctuation, respectively:

f̄(z, t) =
1

L

∫ L

0

f(x, z, t) dx

f ′(x, z, t) = f − f̄ , (12)

where periodic horizontal boundary conditions are assumed for simplicity. From (11) it is seen that
a CCW will alter the mean flow if and only if ∂zw′u′ 6= 0. In the context of convective motions, this
effect on the mean flow is called CMT.
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To illustrate CMT in some specific cases, consider a heat source with two phase-lagged vertical
modes, sin(z) and sin(2z), which represent deep convective heating and congestus/stratiform heating,
respectively:

S′

θ = a∗

{

cos[kx− ωt]
√
2 sin(z) + α cos[k(x+ x0)− ωt]

√
2 sin(2z)

}

, (13)

where k is the horizontal wavenumber and a∗ is the amplitude of the heating. Two key parameters
here are α, the relative strength of the second baroclinic heating, and x0, the lag between the heating
in the two vertical modes. Figure 5 shows three cases for the lag x0: 0 (top), +500 km (middle), and
−500 km (bottom) for a wave with wavelength 3000 km, heating amplitude a∗ = 4 K/day, and relative
stratiform heating of α = −1/4. The lag determines the vertical tilt of the heating profile. Given this
heating rate, the velocity can be found exactly from (10):

u′(x, z, t) = −a∗
k

{

sin[kx− ωt]
√
2 cos(z) + 2α sin[k(x+ x0)− ωt]

√
2 cos(2z)

}

w′(x, z, t) = a∗

{

cos[kx− ωt]
√
2 sin(z) + α cos[k(x+ x0)− ωt]

√
2 sin(2z)

}

(14)

With this form of u′ and w′, the eddy flux divergence is

∂zw′u′ =
3

2

sin(kx0)

k
a2∗ α[cos(z)− cos(3z)] (15)

Notice that a wave with first and second baroclinic components generates CMT that affects the first
and third baroclinic modes [28,5]. The third baroclinic mode was not included in the earliest work
with the multicloud model, and a third baroclinic wave momentum u′

3(x, t) for the fluctuations is
still not included here. However, a third baroclinic mode mean flow, Ū3(T ), is included in [29] and
here in order to capture the large scale effect of CMT; it will play an important role in the CCW–
mean flow dynamics. Also notice that (15) is nonzero as long as α 6= 0 (i.e., there are both first and
second baroclinic mode contributions) and x0 6= 0 (i.e., there is a phase lag between the first and
second baroclinic modes). The CCWs in the multi-cloud model typically have this structure [17,18],
in agreement with observed CCW [20].

For illustrations of the above exact solutions, consider the three cases shown in figure 5: upright
updraft (top), “westward-propagating” CCW (middle), and “eastward-propagating” CCW (bottom).
Although there is no inherent definitive propagation in the exactly solvable model (10), propagation
direction labels are assigned to the vertical tilt directions according to the structures of observed
CCW [20]: heating is vertically tilted with leading low-level heating and trailing upper-level heating
with respect to the CCW propagation direction. Also shown in figure 5 are the average vertical flux
of horizontal momentum, w′u′, and its vertical derivative, ∂zw′u′. These exact solutions show that
upright updrafts have zero CMT, and tilted updrafts have nonzero CMT with the sign determined by
the CCW’s propagation direction.

Second, rather than the exactly solvable model, consider the velocity fluctuations u′ and w′ in
figure 6 from the multicloud model, which are taken from the first case from figure 3 at time t = 30
days. The CCW has a vertically tilted updraft due to a heating structure from a combination of deep
convection and stratiform heating. There is a positive momentum flux w′u′ in the middle troposphere,
which corresponds to a −∂zw′u′ structure that would accelerate easterlies in the lower troposphere
and westerlies in the upper troposphere, if this CMT were not balanced by other momentum sources.
(In the next section, the mean wind will be allowed to evolve in response to this type of CMT.)
Also note that the middle case from figure 3 also has a CCW structure as in figure 6, which, in that
case, would decelerate the mean flow at all levels if the CMT were not balanced by other momentum
sources. Together, these two cases illustrate that the energy transer can be either upscale or downscale,
depending on the particular mean flow and the propagation direction of the CCW.

Third and finally, we describe a simple ODE model for the effect of CCW amplitudes, a+ and a−,
on the mean flow. Recall the formula from (15) for the eddy flux divergence ∂zw′u′. Since its vertical
structure is cos(z)− cos(3z), only the ū1 and ū3 modes of ū will be affected. In fact, only the ū1 − ū3

component will be affected; the ū1 + ū3 component will remain unchanged. For this reason, we define
the dynamical part of the mean flow to be

U(T ) = ū1(T )− ū3(T ). (16)
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Fig. 5 Solutions to the exactly solvable model (10) for CCW structure and CMT in three cases: upright
updraft (top), vertically tilted updraft of “eastward-propagating” CCW (middle), and vertically tilted updraft
of “westward-propagating” CCW (bottom). Left: Vector plot of (u′, w′) and shaded convective heating S′

θ(x, z).
For vectors, the maximum u′ is 6.0 m/s for the top and 4.0 m/s for the middle and bottom, and the maximum
w′ is 2.8 cm/s for the top and 2.2 cm/s for the middle and bottom. Dark shading denotes heating, and light
shading denotes cooling, with a contour drawn at one-fourth the max and min values. Middle: Vertical profile
of the mean momentum flux: w′u′. Right: Negative vertical derivative of the mean momentum flux: −∂zw′u′.

(Note the lack of an overbar to distinguish this from the vertical profile of the mean flow, Ū(z).) The
effect of a CCW amplitude, a+ or a−, on the mean flow U(T ) can then be ascertained from (11) and
(15). First, notice that the eddy flux divergence in (15) is proportional to a2∗, i.e., quadratic in its
dependence on the wave amplitude. Second, notice that it changes sign if the lag (and hence the tilt
and propagation direction) changes sign. A simple model for these effects would then take the form

dU

dT
= C(a2+ − a2−), (17)



Convectively coupled wave–environment interactions 11

x (1000 km)

z 
(k

m
)

1 2 3 4

0

2

4

6

8

10

12

14

16

0 0.01 0.02
0

2

4

6

8

10

12

14

16

___                
w’u’ (m^2/s^2)

z 
(k

m
)

−0.5 0 0.5
0

2

4

6

8

10

12

14

16

___                    
−d(w’u’)/dz [(m/s)/day]

z 
(k

m
)

Fig. 6 Structure and CMT of the westward-propagating CCW from the left case of figure 3 at time t = 30
days. Left: Vector plot of (u,w) and shaded convective heating. Maximum u and w are 5.2 m/s and 7.3 cm/s,
respectively, and dark and light shading show convective heating greater than +2 K/day and less than -2 K/day,
respectively. Middle: Vertical profile of the mean momentum flux: w′u′. Right: Negative vertical derivative of
the mean momentum flux: −∂zw′u′.

where C is a constant of proportionality and a+ and a− are the amplitudes of the eastward- and
westward-propagating waves, as in (5). The value of C used here is shown in table 1; it can be estimated
a priori using the model in (15) or checked a posteriori through the model comparisons in the next
subsection.

The simple model (17) shows an important difference between the standing wave state with a+ = a−
and the traveling wave state with either a+ = 0 or a− = 0: a standing wave state will not cause changes
in the mean flow, whereas a traveling wave does change the mean flow.

2.3 CCW–mean flow interactions

Now the one-way effects of subsections 2.1 and 2.2 will be combined to allow two-way CCW–mean
flow interactions. As before, both the multicloud model (1) and amplitude equations will be used.

To obtain CCW–mean flow interactions with the multicloud model, one key is to include a third
baroclinic mode background wind Ū3(T ) that evolves on a long time scale T = ǫ2t. Another key is to
free the domain-mean wind from the parameterized momentum damping, −u/τu, and instead to allow
it to evolve according to the resolved CMT, −∂z〈w′u′〉, where 〈f〉 is the time average of f over the
fast wave time scale. The practical details involved in implementing these changes with the multicloud
model are explained in [29] and are not repeated here. Instead, to give the idea of the multiscale model
without the encumberance of the practical details, the theoretical multiscale asymptotic derivation
from [29] will be outlined.

A multiscale asymptotic model for CCW–environment interactions can be derived from the atmo-
spheric primitive equations, as described by [29]. The derivation is outlined here for the zonal velocity
u only, although the full set of atmospheric variables is used by [29]. The starting point is the two
dimensional equation,

∂tu+ ∂x(u
2) + ∂z(wu) + ∂xp = Su (18)

It is assumed that the velocity depends on two time scales: a fast time scale t on equatorial synoptic
scales, and a slow time scale T = ǫ2t on intraseasonal time scales. The asymptotic expansion of u takes
the form

u = Ū(z, T ) + ǫu′(x, z, t, T ) + ǫ2u2 +O(ǫ3) (19)

with similar expansions for other variables, and where Ū(z, T ) is the slowly varying mean wind and
u′(x, z, t, T ) is the fluctuating wind. After inserting the ansatz (19) into the primitive equation (18)
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and applying the procedure of systematic multiscale asymptotics, the result is

∂T Ū = −∂z〈w′u′〉
∂T Θ̄ = −∂z〈w′θ′〉+ 〈Sθ,2〉
∂zP̄ = Θ̄ (20)

and a set of equations for the fluctuations,

∂tu
′ + Ū∂xu

′ + w′∂zŪ + ∂xp
′ = S′

u,1

∂tθ
′ + Ū∂xθ

′ + w′∂zΘ̄ + w′ = S′

θ,1

∂zp
′ = θ′

∂xu
′ + ∂zw

′ = 0 (21)

where the full derivation by [29] includes the full set of atmospheric variables. The multiscale equations
(20)–(21) demonstrate the main two mechanisms of CCW–mean flow interactions: CMT from the
CCW drives changes in the mean wind on the slow time scale T = ǫ2t, and the mean flow affects
the CCW through the advection terms. By themselves, (20)–(21) include the dry dynamical basis and
the multiscale interactions, but the source term S′

θ,1 still needs to be specified; the multicloud model

is thus used to supply interactive source terms and moisture effects. Note that (20)–(21) allows for
changes in the mean thermodynamic state such as Θ̄(z, T ) in addition to mean flow Ū(z, T ); this was
also included in [29] and here as well, but only the mean flow Ū(z, T ) dynamics will be shown here as
it has the most significant effect in this single-planetary-scale-column setup.

In short, the model for CCW–environment interactions can be thought of as the multiscale model
in (20)–(21) with the multicloud model used to supply moisture effects and interactive source terms for
(21). Figure 7 shows three cases from [29] with the CCW evolution shown as well. These cases have an
initial mid-tropospheric jet of different strength. For the left case with weaker climatological jet, CCW–
mean flow oscillations arise on the long time scale. As part of this oscillation, the mean flow jet oscillates
between the lower-middle troposphere and the upper-middle troposphere, and, simultaneously, the
CCW grow, decay, and change their propagation direction. The evolution through one period from
roughly time 500 to 600 days is as follows. At time 500 days, the mean flow has an upper-middle
tropospheric jet, and the westward-propagating CCW is favored in the sense that its linear theory
growth rate is larger than the eastward-propagating CCW’s (not shown). From time 510 to 550 days,
the CMT from this westward-propagating CCW then drives the jet to the lower-middle tropospere,
and in this shear it is the eastward-propagating CCW that is favored. Hence, around time 550 days, the
westward-propagating CCW decays, the eastward-propagating CCW amplifies, and the cycle repeats.
In short, each CCW essentially creates its own demise. Also note that the CMT energy transfers in
this case are both upscale and downscale: the jet is decelerated at one altitude and accelerated at a
different altitude.

Figure 7 also shows a Hopf bifurcation: the stable fixed point becomes unstable and locks into an
irregular limit cycle as the climatological jet strength is decreased. The stable fixed point corresponds
to a fixed mean jet and a CCW standing oscillation. In the middle case, at the point of neutral stability,
the mean jet has small oscillations, and the CCWs both have nontrivial amplitudes that also have small
oscillations on the long time scale. The period of the small amplitude oscillations is shorter than the
large-amplitude oscillations in the left case.

For a simplified ODE model of the CCW–mean flow interactions, the amplitude models (5) and
(17) can be combined to give the CCW–mean flow amplitude ODEs:

dU

dT
= C(a2+ − a2−),

da+
dT

= (Γ − γU)a+ − da3+ − sa2−a+

da−
dT

= (Γ + γU)a− − da3− − sa2+a− (22)

Additional terms ∓γUa± were added to these equations to account for the effect of mean flow changes
on the CCW growth rates. The linear dependence Γ ± γU of the growth rate on U is shown to be
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Ū (z )(m/s )

z 
(k

m
)

−10 −5 0 5 10
0

4

8

12

16
600 days
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Fig. 7 Nonlinear simulations with the multiscale multicloud model for three climatological background shears:
weaker (left), intermediate (middle), and stronger (right). Row 1: Snapshots of mean wind Ū(z, T ) at different
times. Row 2: Evolution in time of the mean wind vertical modes from time 0 to 600 days: Ū2 (thin solid),
Ū1 + Ū3 (thin dashed), and Ū1 − Ū3 (thick solid). Row 3: Space–time plots of deep convective heating Hd(x, t)
of the CCW from time 500 to 600 days.

a good fit based on linear theory with the multicloud model, shown in figure 8, and it provides an
estimated parameter value of γ = 0.086 day−1 (m/s)−1. Also note that this real-valued cubic nonlinear
system could be reduced to a quadratically nonlinear system by changing variables from a± to a2±, but
we do not employ this change here.

The amplitude model in (22) has a standing wave fixed point given by

(U, a+, a−) =

(

0 ,

√

Γ

d+ s
,

√

Γ

d+ s

)

. (23)
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Fig. 8 Maximum linear theory growth rate of the multicloud model as a function of Ū1− Ū3 for the westward-
propagating unstable mode (left) and the eastward-propagating unstable mode (right).

but it does not have a traveling wave fixed point, due to the mean flow dynamics. The linear stability
of this fixed point shows the same parameter dependence as the amplitude model (9):

d < s : standing wave is unstable
s < d : standing wave is stable

(24)

Figure 9 shows numerical solutions of the amplitude model (22) for three parameter regimes: d < s
(left), s = d (middle), and s < d (right), using the values from table 1. In combination with the linear
stability analysis (24), these numerical results demonstrate a Hopf bifurcation: as the parameter s is
increased from s < d to d < s, the standing wave fixed point becomes unstable and a stable limit cycle
appears. Moreover, these three cases are comparable to the multicloud model results seen in figure
7. The oscillatory case on the left even captures the ramp–step-like dynamics of the wave amplitude,
where long periods of time with only one significant wave amplitude are punctuated by somewhat
rapid transitions between wave amplitudes. However, the transitions between a+ and a− occur more
rapidly than they do for the spatially resolved CCW in figure 7, and this leads to a sawtooth-like
evolution in U(T ). In the middle case, there is initially a sawtooth-like dynamics, but it slowly evolves
into a smaller-amplitude shorter-period oscillation that is more sinusoidal. Eventually the dynamics
locks into a regular small-amplitude oscillation with period of roughly 45 days and with U(T ) taking
values 6.5± 1.5 m/s and a± taking values 0± 0.3 m/s (not shown).

For the oscillator cases, an even simpler amplitude model with the basic mechanism of the CCW–
mean flow oscillations is

dU

dT
= C(a2+ − a2−)

da+
dT

= −γUa+

da−
dT

= +γUa− (25)

which is the same as (22) except the cubic terms and the linear growth terms have been left out. Figure
10 shows numerical solutions for two cases: large-amplitude oscillations (left) and small-amplitude
oscillations (right). These are meant for comparison with the first two cases in figure 9 for (22) and
in figure 7 for the multicloud model. The simple model (25) captures the basic oscillatory behavior,
including the longer oscillation period corresponding to larger-amplitude oscillations. While there are
several similarities, many details of the large-amplitude oscillations are different from (22). For example,
(25) misses the ramp–step-like behavior of the CCW amplitude seen in figures 7 and 9, but it includes
periods of time when the mean flow U(T ) is essentially unchanging, due to weak convective momentum
transports; this latter behavior is actually seen to a small extent in the first case in figure 7 and to a
large extent in other cases shown by [29] (see their figures 6 and 7). Another property of (25) is that
it is a neutrally stable model, and hence its initial conditions determine the oscillation amplitude to a
large degree. In fact, (25) has two conserved quantities

E = γU2 + C(a2+ + a2−), and A = a+a−, (26)
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Fig. 9 Numerical solution to amplitude model (22) for CCW–mean flow interaction for three parameter
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figure 7, respectively. Top row: Mean wind amplitude, U(T ). Bottom row: CCW amplitudes, a+(T ) (solid) and
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Fig. 10 Numerical solution to the simple oscillatory amplitude model (25) for CCW–mean flow interaction
for large-amplitude oscillations (left) and small-amplitude oscillations (right). Compare with the first two cases
in figure 9 for the cubic nonlinear amplitude model (22) (and note the difference in plotted time interval). Top
row: Mean wind amplitude, U(T ). Bottom row: CCW amplitudes, a+(T ) (solid) and a−(T ) (dashed).

which represent a sort of energy and a product of CCW amplitudes. Furthermore, (25) is actually
equivalent to Duffing’s equation, as it can be rewritten as

d2U

dT 2
= −2γU(E − γU2) (27)
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3 CCW–water vapor interactions: the MJO skeleton

In the tropical troposphere, it is not only CCW–mean flow interactions that are important but also
CCW–water vapor interactions. In fact, [30] proposed a minimal model for the skeleton of the MJO
and tropical intraseasonal variability, and the proposed fundamental mechanism is CCW–water vapor
interactions, coupled with planetary-scale fluid dynamics. The model includes an amplitude equation
in the spirit of (25), coupled with the linearized (long-wave-scaled) moist primitive equations:

∂T a = γqqa (28)

∂T q − Q̃w = −H̄a+ Sq (29)

∂T θ + w = H̄a− Sθ (30)

∂Tu− yv = −∂Xp (31)

yu = −∂yp (32)

0 = −∂zp+ θ (33)

∂Xu+ ∂yv + ∂zw = 0 (34)

The amplitude dynamics in (28) arises from

da±
dT

= γqqa± and a(T ) = a+(T ) + a−(T ) (35)

where it is only the total amplitude a(t) that is important in this context of water vapor interactions,
not the detailed competition between the different wave types a+ and a−. Furthermore, in nature,
there would actually be not only the two convectively coupled gravity wave types a+ and a− but the
complex menagerie of equatorial shallow water waves coupled with convection, including Kelvin waves,
mixed Rossby–gravity waves, etc. [27,20].

What is the value of the important parameter γq in (28)? In [30] its value was motivated mainly
by two expectations: it should be O(1) in nondimensional units, and it should lead to an oscillation
frequency in agreement with the MJO. A conjectured value of exactly 1 in nondimensional units is 0.19
day−1 K−1 in dimensional units. But an important question remains: Is there a way to estimate γq a
priori from independent theoretical considerations? Here we address this using the multicloud model,
as was also the case for the amplitude model parameters from section 2. The parameter γq represents
the change in the CCW growth rate per unit change in background water vapor. The background
water vapor enters into the multicloud model in several places that could potentially be complicated
[17]. The simplest place is in the water vapor equation

∂tq + ∂x[q(u1 + α̃u2)] + Q̃∂x(u1 + λ̃u2) = −P +
1

HT

D (36)

If q on the left hand side is split into background q̄ and fluctuation q′ contributions, then (36) becomes

∂tq
′ + ∂x[q

′(u1 + α̃u2)] + q̄∂x(u1 + α̃u2) + Q̃∂x(u1 + λ̃u2) = −P +
1

HT

D (37)

From this it is seen that, to some degree, the background water vapor q̄ has the same effect as the
parameter Q̃. Figure 11 shows the maximum linear theory growth rate as a function of Q̃, centered on
the standard nondimensional value Q̃ = 0.9. The linear approximation Γ + γq(Q̃ − 0.9) is a good fit.

After translating this result from nondimensional Q̃ to the background water vapor q̄ in dimensional
units, one finds an estimate of γq ≈ 0.12 day−1 K−1, which is in good agreement with the standard
value of 0.19 day−1 K−1 conjectured by [30]. In addition to this a priori theoretical estimate, it would
be interesting to try to estimate γq from observational analysis as well.
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Fig. 11 Maximum linear theory growth rate of the multicloud model as a function of the nondimensional
parameter Q̃ (left) and translated to anomalous dimensional units (right). The curve is approximately linear
with a slope of roughly 0.12 day−1 K−1.

4 Concluding discussion

Two types of CCW–environment interactions were investigated – CCW–mean flow and CCW–water
vapor interactions – and they were investigated with two types of models: the spatially varying multi-
cloud model and amplitude ODEs. The basic mechanisms of the CCW–mean flow interactions are that
(i) the mean flow’s vertical shear determines the preferred propagation direction of the CCW, and (ii)
the CCWs can drive changes in the mean flow through convective momentum transport, with energy
transfer that is sometimes upscale and sometimes downscale. A multiscale version of the multicloud
model showed CCW–mean flow interactions with nonlinear oscillations and a Hopf bifurcation as the
climatological background wind is varied. These features were also captured by a set of amplitude
ODEs, which were motivated by amplitude equations in other fluid dynamics settings. In the oscilla-
tory regime, the amplitude equations displayed a ramp–step-like dynamics, in qualitative agreement
with the multicloud model CCW dynamics. In addition, an even simpler amplitude model was also
presented, and it was shown to be equivalent to the Duffing oscillator.

While the amplitude equations reproduced many of the features of the spatially varying model,
it is also an idealized representation that has its limitations. For instance, using amplitude variables
like a± does not account for the wide variety of spatial variability that is possible. While the cases
shown here in figure 7 tend to show simple types of spatial variability with either a single westward-
or eastward-propagating CCW present at each time, other cases shown in [29] show finer-scale spatial
variability that resembles the schematic picture in figure 1 and that has important consequences for
CMT. When the finer scale fluctuations are present in this model, the total CMT is often weaker,
partly because the tilted updraft tends to be less coherent. This suggests interesting further questions
related to CMT and multiscale waves. For instance, when a multiscale wave envelope exists, will the
envelope’s momentum transport dominate over that of the fluctuations within the envelope, or vice
versa? Some of these questions are studied further in the recent work of [16], and they are likely not
adequately represented by the amplitude ODEs studied here.

The question of upscale versus downscale energy transfer – i.e., of acceleration versus deceleration
of the mean wind – was seen to be quite complex in the examples studied here, and one might expect
it to be equally complex in nature. The model results here did not suggest any simple rules based on
the mean shear alone; instead, it appears to depend on both the mean shear and the types of waves
present (and the interactions between the two). Further studies – both theoretical and observational –
are needed to better understand this issue.

The competition between standing and traveling waves here is a paradigm for a more complicated
situation in nature: Is a single wave type present, which would lead to nonzero CMT and energy trans-
fer? Or are multiple wave types present, whose CMT effects cancel each other and lead to negligible
energy transfer? In a three-dimensional equatorial setting, these wave types include all types of convec-
tively coupled equatorial waves, such as Kelvin, mixed Rossby-gravity, etc. [20], and the competition
among these waves and their CMT effects would be even more complex than the simple setting studied
here.
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In the second part of this paper, CCW–water vapor interactions were investigated in the context
of the MJO skeleton model of [30,31]. In that model, a simple amplitude equation is used to represent
the dynamics of the planetary-scale envelope of sub-planetery-scale convection/wave activity. Here, the
key parameter of that model is estimated a priori theoretically using linear stability analysis of CCW
in the multicloud model. The theoretical estimate is in agreement with previously conjectured values
from [30].

The results here demonstrate some of the interesting dynamics of wave–convection–environment
interactions in the tropical troposphere. While the results presented were targeted at CCW specifi-
cally, many of the ideas here should also be relevant for other scales of the rich variety of tropical
wave–convection–environment interactions, as described in the introduction section. Further studies –
theoretical, numerical, and observational – are needed to gain a better understanding of the hierarchy
of organized tropical convection.

A Appendix: The Multicloud Model with Advection

The multicloud model with advection is the following set of seven equations:

∂u1

∂t
−

∂θ1

∂x
= −

1

τu
(u1 − Ū1)−

1

2
√
2

[

6u2

∂u1

∂x
+ (3u1 + 5Ū3)

∂u2

∂x

]

(A1)

∂u2
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∂t
+ Q̃

∂

∂x
(u1 + λ̃u2) = −P +

1

HT

D −
∂

∂x
[q(u1 + α̃u2)] (A6)

∂Hs

∂t
=

1

τs
(αsP −Hs) +

[

Asu1

∂Hs

∂x
+

1

2
AsHs

∂u1

∂x

]

(A7)

The variables uj are the jth baroclinic mode velocity, θj are the jth baroclinic mode potential temperature,
θeb is the boundary layer equivalent potential temperature, and q is the vertically integrated water vapor.
Note that the nonlinear advection terms are written on the right hand side here. The source terms for these
equations are

Hc = αc
Λ− Λ∗

1− Λ∗
Qc (A8)

Hd =
1− Λ

1− Λ∗
Qd (A9)

P =
2
√
2

π
(Hd + ξsHs + ξcHc) (A10)

Qd =

[

Q̄+
1

τconv

(a1θeb + a2q − a0(θ1 + γ2θ2 + γ3Θ̄3 + γ4Θ̄4))

]+

(A11)

Qc =

[

Q̄+
1

τconv

(θeb − a
′

0(θ1 + γ
′

2θ2 + γ
′

3Θ̄3 + γ
′

4Θ̄4))

]+

(A12)

Λ =











Λ∗ for θeb − θem < θ−

Λ∗ + (1− Λ∗) θeb−θem−θ−

θ+−θ−
for θ− < θeb − θem < θ+

1 for θ+ < θeb − θem

(A13)
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θem = q +
2
√
2

π
(θ1 + α2θ2 + α3Θ̄3) (A14)

Rj =
1

τθ
θj +Q

0
R,j , j = 1, 2 (A15)

1

hb

E =
1

τe
(θ∗eb − θeb) (A16)

D =
m0

PD

(PD + µ2(Hs −Hc))
+(θeb − θem). (A17)

Notice that Λ in (A13) is a nonlinear switch, and the superscript + in (A11), (A12), and (A17) also represents
a nonlinear switch, defined as f+ = max(0, f) (although the superscript + of θ+ in (A13) does not take this
meaning as θ+ is just a constant parameter). The source termsHc,Hd, andHs represent heating from congestus,
deep convective, and stratiform clouds, respectively. Radiative cooling is Rj , evaporation is E, downdrafts are
D.

These are the equations of the multicloud model of [18], with advection terms added using vertical mode
projections as described by [39], and with a few other changes described in [29], where all parameter values are
also described.

The linearized version of the multicloud model equations without background shear has been developed
in mathematical detail elsewhere [17,18]. It is straightforward to linearize the quadratic advection terms at
a mean background shear to produce the complete linearized equations that have been used throughout this
paper for linear stability analysis.
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