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ABSTRACT

The Madden–Julian oscillation (MJO) skeleton model offers a theoretical prediction of the MJO’s struc-

ture. Here, a method is described for identifying this structure in observational data. The method utilizes

projections onto equatorial wave structures, and a main question is: Can this method isolate theMJOwithout

using temporal filtering or empirical orthogonal functions? For the data projection, a wide range of data is

incorporated: multiple variables (wind, geopotential height, water vapor, and, as a proxy for convective ac-

tivity, outgoing longwave radiation), multiple pressure levels (850 and 200 hPa), and multiple latitudes (both

equatorial and off-equatorial). Such a data variety is combined using a systematic method, and it allows for

a distinction between the Kelvin and Rossby components of the MJO’s structure. Results are illustrated for

some well-known cases, and statistical measures are presented to quantify the variability of theMJO skeleton

signal, MJOS(x, t), and its amplitude, MJOSA(t). The robustness of the methods is demonstrated through

a suite of sensitivity studies, including tests with two projection methods. When the projection is based on the

skeleton model’s energy, as opposed to the standard L2 energy, water vapor is seen to be of primary im-

portance. Finally, a simple interpretation is given for the MJO skeleton structure: it is related to the wave

response to amoving heat source. From either perspective, themethods here identify signals that project onto

coupled convection–circulation patterns, and the results suggest that a large portion of the MJO’s structure is

consistent with such a coupled pattern.

1. Introduction

To identify the Madden–Julian oscillation (MJO), a

large number of methods have been used. In their

pioneering studies, Madden and Julian (1971, 1972)

detected the oscillation in zonal wind, pressure, and

temperature data. Subsequently, many MJO indices

have been defined using different fields of interest:

winds only (e.g., Chen and Del Genio 2009), cloudiness

or precipitation only (e.g., Kiladis et al. 2005), or

combinations of winds and cloudiness (e.g., Wheeler

and Hendon 2004).

In a sense, each MJO index offers a different defini-

tion of what the MJO is. A commonality among these

MJO indices is that they are all empirical definitions of

the MJO. In contrast, by using a model of the MJO, one

can offer a theoretical definition of the MJO.

In recent theoretical work, Majda and Stechmann

(2009, 2011) proposed the MJO skeleton model, which

predicts the fundamental features of the MJO on intra-

seasonal and planetary scales: slow eastward phase speed

of roughly 5ms21, peculiar dispersion relationwithv(k)’
constant, and horizontal quadrupole vortex structure. In

subsequent work, a stochastic version of the skeleton

model has also been developed (Thual et al. 2014a,b).

Oneof themain goals of thepresent paper is to investigate

the MJO skeleton model’s predicted structure in observa-

tional data. To what extent is the structure of an individual

MJO event consistent with the MJO skeleton structure?
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To this end, the methods here will account for multi-

ple variables and multiple basis functions. For example,

data from four variables will be used: wind, geopotential

height, water vapor, and, as a proxy for convective activ-

ity, outgoing longwave radiation (OLR). To combine such

a large variety of data, a systematic method is presented,

based on equatorial wave theory and theMJO skeleton

model. As another example, since the MJO skeleton

structure includes both Kelvin and Rossby components,

both equatorial and off-equatorial data are needed here to

distinguish theMJO’s off-equatorial Rossby gyres. Again,

equatorial wave theory provides a systematic method for

accounting for equatorial and off-equatorial structures.

Anothermain question here is: Can theMJObe isolated

in observational data without the use of temporal filtering

or empirical orthogonal functions (EOFs)? These two

techniques are commonly used to identify the MJO,

whereas the present paper does not use these methods.

To identify the MJO, many indices have been defined

using different fields of interest: winds only (e.g., Knutson

and Weickmann 1987; Chen and Del Genio 2009),

cloudiness or precipitation only (e.g., Rui andWang 1990;

Kiladis and Weickmann 1992; Hendon and Salby 1994;

Wheeler et al. 2000; Kiladis et al. 2005; Matthews 2008;

Kiladis et al. 2014), or combinations of winds and cloudi-

ness (e.g., Weare 2003; Wheeler and Hendon 2004;

Ventrice et al. 2013). More extensive summaries and

comparisons were given recently by Straub (2013) and

Kiladis et al. (2014). The use of multiple variables, such

as winds and OLR together, is in line with the conceptual

viewpoint of theMJO as a coupled convection–circulation

phenomenon. Here, our methods build further on this

idea of including more variables into the definition of

the MJO’s structure.

Equatorial wave theory distinguishes several different

wave types, partly through their different meridional

structures. The natural meridional basis functions are

the parabolic cylinder functions, which have been useful

in several observational analyses of convectively cou-

pled equatorial waves (Yang et al. 2003, 2007; Gehne

and Kleeman 2012). Here, in addition, the different

wave types—Kelvin, Rossby, etc.—are also distinguished

by their different eigenvectors. The eigenvectors used

here are from the long-wave version of the theory of

Matsuno (1966), which is the equatorial analog of the

normalmode expansion of the primitive equations on the

sphere (Kasahara 1976; Kasahara and Puri 1981).

In the analysis below, an MJO signal MJOS(x, t) is

defined, and it could potentially be used as an MJO in-

dex. The definition of MJOS(x, t) is a projection onto

a theoretical MJO structure, and it is shown that the

structure has a more general interpretation beyond the

MJO skeleton model. In particular, it will be shown that

the MJO skeleton structure is related to the wave re-

sponse to a moving heat source. As such, MJOS(x, t)

provides insight into the moving-heat-source perspec-

tive of the MJO as well.

The rest of the paper is organized as follows. TheMJO

skeleton model is reviewed in section 2, and the data are

described in section 3. The methods are described and

illustrated in section 4, including the identification of

Kelvin, Rossby, and MJO structures. The results are

described in more detail in section 5, including case

studies, statistics, and sensitivity studies. In section 6, the

MJO skeleton structure is related to the wave response

to a moving heat source. Finally, conclusions are sum-

marized in section 7.

2. The MJO skeleton model

Since the data analysis requires observational surro-

gates for the MJO skeleton variables, we first present an

overview of the model itself before proceeding to the

details of the data and methods.

In its three-dimensional form, the MJO skeleton

model of Majda and Stechmann (2009) is

ut2yy52px , (1a)

yu52py , (1b)

052pz1u , (1c)

ux1yy1wz50, (1d)

ut1w5Ha2su , (1e)

qt2
~Qw52Ha1sq, and (1f)

at5Gqa . (1g)

Here, u, y, and w are the zonal, meridional, and vertical

velocity anomalies, respectively; p, u, and q are the

pressure, potential temperature, and water vapor

anomalies, respectively; and a is the amplitude of con-

vective activity, which is a nonnegative quantity. The

convective heating and drying are taken to be pro-

portional to the envelope of convective activity:Ha. All

other sources of cooling and moistening are represented

by su and sq, respectively. The equations have been

nondimensionalized using the reference scales shown

here in Table 1 (Stechmann et al. 2008).

Notice that this model contains a minimal number of

parameters, summarized in Table 1: ~Q5 0:9, the (non-

dimensional)mean background verticalmoisture gradient,

and G 5 1, or G ’ 0.47 day21 (g kg21) in dimensional

units. [See Stechmann et al. (2013) for a theoretical
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estimate of the value of parameter G.] These will be the

standard parameter values used throughout the paper

unless otherwise stated. The source terms su and sq must

also be specified (see below). The parameterH is used to

give Ha the units of a heating rate while keeping a non-

dimensional, and it is actually irrelevant to the dynamics

(as can be seen by rescaling a).

To obtain the simplest model for the MJO, truncated ver-

tical andmeridional structures are used, as described next.

To arrive at a two-dimensional form of (1), a vertical

truncation is used: only the first baroclinic mode is re-

tained so that u(x, y, z, t)5 u(x, y, t)
ffiffiffi
2

p
cos(z), etc.,

with a slight abuse of notation in the reuse of symbol u.

The resulting equations resemble a time-dependent

version of a Matsuno–Gill model (Matsuno 1966; Gill

1980), but without damping, plus equations for q and a:

ut2yy2ux50, (2a)

yu2uy50, (2b)

ut2ux2yy5Ha2su , (2c)

qt1
~Q(ux1yy)52Ha1sq, and (2d)

at5Gqa . (2e)

Here, the moisture q(x, y, t) represents the lower-

tropospheric water vapor, which has been shown to

lead the MJO’s heating anomaly in observations (Myers

and Waliser 2003; Kikuchi and Takayabu 2004; Kiladis

et al. 2005; Tian et al. 2006).

Finally, to arrive at a one-dimensional form of (2),

a meridional truncation is used. It is assumed that a, the

envelope of convective activity, has a simple equatorial

meridional structure proportional to exp(2y2/2). For

the long-wave-scaled equations, such a meridional

heating structure is known to excite only Kelvin waves

and the first symmetric equatorial Rossby waves

(Matsuno 1966; Gill 1980; Majda 2003), and the re-

sulting meridionally truncated equations can be

written as

Kt1Kx52
1ffiffiffi
2

p HA , (3a)

Rt2
1

3
Rx52

2
ffiffiffi
2

p

3
HA , (3b)

Qt1
1ffiffiffi
2

p ~QKx2
1

6
ffiffiffi
2

p ~QRx5

�
211

1

6
~Q

�
HA, and (3c)

At5GQ(A1A) . (3d)

The system (3) is written in terms of the anomalyA from

a radiative–convective equilibrium state,HA5 Su 5 Sq,

uniform in space and time. The total, positive amplitude

of convective activity is then A1A, and the quantities

TABLE 1. Physical constants, reference scales, and model parameters.

Parameter Derivation Value Description

b 2.28 3 10211m21 s21 Variation of Coriolis parameter with latitude

g 9.8m s22 Gravitational acceleration

cp 1006 J kg21K21 Specific heat of dry air at constant pressure

Ly 2.5 3 106 J kg21 Latent heat of vaporization

u0 300K Potential temperature at the surface

Pe 40 000 km Circumference of Earth at the equator

H 16 km Tropopause height

N2 (g/u0)du/dz 1024 s22 Buoyancy frequency squared

C NH/p 50.9m s21 Velocity scale

L
ffiffiffiffiffiffiffi
c/b

p
1490 km Equatorial length scale

T L/c 8.15 h Equatorial time scale

~a HN2u0 /(pg) 15.6K Potential temperature scale

H/p 5.09 km Vertical length scale

H/(pT) 0.174m s21 Vertical velocity scale

c2 2590m2 s22 Pressure anomaly scale (density scaled)

c2/g 265m Geopotential height scale

cp~a/Ly 6.27 g kg21 Water vapor scale

Su 1Kday21 Radiative cooling rate

Sq Su 3 cp/Ly 2.49 g kg21 day21 Moistening rate
~Q 1.1 g kg21 km21 Background vertical gradient of water vapor

G 0.469day21 (g kg21)21 Convective activity growth parameter

H 10Kday21 Convective heating rate factor

HA 1Kday21 Convective heating rate of the equilibrium state

HOLR 0.06Kday21 (Wm22)21 OLR-to-heating-rate conversion factor
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K and R are the amplitudes of Kelvin and equatorial

Rossby wave structures, respectively.

To identify these variables in observational data, a

more detailed description of (1)–(3) is needed, and it will

be provided below in section 4 and in appendix A.

3. Data

To identify surrogates of the variables in (1)–(3), two

data sources are used here. First, as a surrogate for

convective activity a, the National Oceanic and Atmo-

spheric Administration (NOAA) interpolated outgoing

longwave radiation (OLR) is used (Liebmann and Smith

1996). While many possible surrogates exist for con-

vective activity a, OLR is used here as a simple choice to

initially investigate. Second, National Centers for En-

vironmental Prediction–National Center for Atmo-

spheric Research (NCEP–NCAR) reanalysis data are

used for all other variables: zonal wind, geopotential

height, and specific humidity (Kalnay et al. 1996). De-

spite the fact that reanalysis data are a combined prod-

uct of observational data and model dynamics, we

sometimes refer to it as ‘‘observational’’ for simplicity.

Both datasets have a horizontal spatial resolution of

2.58 3 2.58 and a daily temporal resolution from 1 January

1979 to 31 December 2011. For comparison with the

MJO skeleton signal, data of the Real-timeMultivariate

MJO (RMM) index of Wheeler and Hendon (2004) and

the OLR MJO index (OMI) of Kiladis et al. (2014) will

also be used here.

4. Methods: Defining the MJO skeleton variables
and eigenmodes

The end goal of this section is to define the MJO skel-

eton structure and variability in terms of observational

data. To this end, the first two steps follow the path from

(1) to (2) to (3): a vertical mode truncation to move from

3D (x, y, z) to 2D (x, y) (section 4a), and then ameridional

mode truncation to move to 1D (x) (section 4b). A zonal

Fourier mode truncation is also used to isolate the plane-

tary spatial scales (section 4c). Furthermore, observational

definitions must be chosen for the lower-tropospheric

water vapor Q and the amplitude of convective activity

A (section 4d). Finally, the linear eigenvectors of theMJO

skeleton model are used to provide the ingredients for

defining the MJO skeleton signal MJOS(x, t) (section 4e).

In all figures presented here, a smoothed seasonal

cycle is removed via the annual mean and the first three

harmonics, and a 120-day running time average is

subtracted on each day at each spatial point to remove

low-frequency variability, as is recommended by

the Climate Variability and Predictability (CLIVAR)

Madden–Julian Oscillation Working Group (2009; see

also Gottschalck et al. 2010).

a. Vertical mode definition

To define the first baroclinic mode variables u(x, y, t)

and u(x, y, t) from (2), a simple method is used here. The

method utilizes data from only two pressure levels, 850

and 200 hPa, in order to capture the essence of com-

prehensive treatments of vertical basis functions (e.g.,

Fulton and Schubert 1985; Majda 2003). While the

model (1)–(2) is formulated in terms of the height co-

ordinate z, the reanalysis data are given in terms of

a vertical pressure coordinate p. To connect the two

formulations in a simple way, rather than reformulating

the model (1)–(2) in terms of a vertical pressure co-

ordinate, an association is made between pressure levels

and vertical levels:

z50 4 p5850hPa and (4a)

z5p 4 p5200hPa, (4b)

where, in nondimensional height units, z 5 0 corre-

sponds to a level near the bottom of the free troposphere

(and top of the boundary layer) and z 5 p corresponds

to a level near the tropopause.

Given velocity data u at the two levels in (4), it is

natural to associate the data with contributions from two

vertical modes. With a barotropic contribution uBT and

a first baroclinic mode contribution uBC, the velocity is

written as

u(z)5uBT1uBC

ffiffiffi
2

p
cos(z) , (5)

where 1 and
ffiffiffi
2

p
cos(z) are crude representations of the

barotropic and baroclinic mode vertical structures, re-

spectively, and the
ffiffiffi
2

p
is a normalization constant. At

the specific levels of 850 and 200 hPa, this is

u(850hPa)5uBT1uBC

ffiffiffi
2

p
3 (1) and (6a)

u(200hPa)5uBT1uBC

ffiffiffi
2

p
3 (21). (6b)

By subtracting these two equations, the value of uBC can

then be approximated as

uBC5
u(850hPa)2u(200hPa)

2
ffiffiffi
2

p . (7)

This definition of uBC is used to represent the variable u

(x, y, t) from (2), where the subscript BC is dropped to

ease notation.

For u, the derivation follows similarly. With a first

baroclinic mode contribution only, u is written as
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u(z)5uBC

ffiffiffi
2

p
sin(z) . (8)

Instead of obtaining this quantity from temperature data

in the middle troposphere (z ’ p/2), it is instead ob-

tained from the geopotential height Z in the lower and

upper troposphere. Using

Z(z)5ZBT1ZBC

ffiffiffi
2

p
cos(z) (9)

at the particular levels of 850 and 200 hPa, and pro-

ceeding as in the case of uBC in (5)–(7), one finds

ZBC5
Z(850hPa)2Z(200hPa)

2
ffiffiffi
2

p . (10)

To relate u andZ, hydrostatic balance is used in the form

›Z/›p52u in terms of a vertical pressure coordinate p;

consequently, (8) and (9) with (4) imply

uBC52ZBC (11)

and hence

uBC52
Z(850hPa)2Z(200hPa)

2
ffiffiffi
2

p . (12)

This provides an expression for the potential tempera-

ture anomaly u from the model, in terms of the geo-

potential height anomalyZ from the reanalysis data. For

nondimensionalization, the reference u and Z scales are

a’ 15:6K and c2/g ’ 265m, respectively. [Alternative

parameter choices were explored, but no compelling

reason was found for departing from the standard values

used in the previous studies of Stechmann et al. (2008)

and Majda and Stechmann (2009).] This definition of

uBC is used to represent the variable u(x, y, t) from (2),

where the subscript BC is dropped to ease notation.

b. Meridional modes and K and R

Given the first baroclinic mode variables u(x, y, t) and

u(x, y, t) from (2), the next step is to define the Kelvin

and equatorial Rossby wave variables, K(x, t) and

R(x, t), from (3). This is accomplished using meridional

basis functions, fm(y), which are the parabolic cylinder

functions,

fm(y)5
1

ðm!
ffiffiffiffi
p

p
2mÞ1/2

Hm(y)e
2y2/2, m50, 1, 2, . . . ,

(13)

where Hm(y) are the Hermite polynomials:

Hm(y)5(21)me1y2 d
m

dym
e2y2 . (14)

The functions fm(y) form an orthonormal basis, and the

variables u(x, y, t) and u(x, y, t) can then be expanded as

u(x, y, t)5 �
‘

m50

um(x, t)fm(y) , (15)

where the quantities um(x, t) are obtained using the

projection

um(x, t)5

ð‘
2‘

u(x, y, t)fm(y)dy . (16)

Formulas analogous to (15) and (16) also apply to y, u, q,

and a.

To describe the Kelvin wave K(x, t) and the first sym-

metric equatorial Rossby wave R(x, t), the two necessary

basis functions are (Matsuno 1966; Gill 1980; Majda 2003)

f0(y)5
1

p1/4
e2y2/2 and (17)

f2(y)5
1

p1/4

1

2
ffiffiffi
2

p (4y222)e2y2/2 . (18)

These functions are plotted in Fig. 1, which illustrates

the significant off-equatorial contribution of f2(y) in the

158–308 latitude band.Utilizing these basis functions, the

definitions of K and R are then

K5
1ffiffiffi
2

p (u02u0) and (19)

R52
1ffiffiffi
2

p (u01u0)1(u22u2) , (20)

where um and um are the meridional projections from

(15) and (16). See appendix A for more details of the

FIG. 1. Parabolic cylinder functions fm(y) for m 5 0 and 2. See

definitions in (13), (17), and (18). The Kelvin wave structure in-

volves only f0, whereas the Rossby wave structure involves both

f0 and f2.
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derivation. The important features of the K and R

structures are illustrated in Fig. 2. While theK structure

is equatorial with an exp(2y2/2) decay away from the

equator, the R structure includes off-equatorial gyres

that arise from the f2(y) terms in (20).

While (13)–(20) describe the theory on an equatorial

b plane with 2‘ , y , 1‘, the data analysis must use

latitude on a sphere. To relate latitude and meridional

length, a simple correspondence is used here: 18 latitude’
110km. Other basis functions, such as spherical har-

monics, are applicable for the entire sphere and include

variations at all latitudes. Here, the parabolic cylinder

functions are most applicable since the focus is on the

equatorial regions only.

The observed variability ofK(x, t) is shown in Fig. 3a.

Also shown are u0(x, t) and u0(x, t), which are combined

to form K(x, t), as in (19). The time period is 1 July

1992–1 July 1993, including the period of the Tropical

Ocean and Global Atmosphere Coupled Ocean–

Atmosphere Response Experiment (TOGACOARE).

The variability of K(x, t) includes any baroclinic vari-

ability whose meridional structure projects onto the

structure of the Kelvin wave. For example, this should

include dry Kelvin waves, convectively coupled Kelvin

waves, and the MJO. In Fig. 3a, eastward propagation

dominates the variability of K(x, t), and a variety of

propagation speeds are visible. Relatively fast propa-

gation can be seen in the eastern Pacific sector (1808–
908W) during many time periods (e.g., 15 December

1992–1 February 1993), reminiscent of that described

by Milliff and Madden (1996), that is, of far-field dry

Kelvin modes often observed during or after MJO or

other large-scale convective events over the warm pool.

FIG. 2. (a) Kelvin and (b) Rossby wave structures. The vector

field represents the lower-tropospheric winds. Contours show lower-

tropospheric pressure with positive (negative) anomalies denoted by

solid (dashed) lines. The contour interval is 1/4 themaximum amplitude

of the anomaly, and the zero contour is not shown. Anomalies of con-

vergence (divergence) that are greater than 2/3 themaximumamplitude

are shaded dark (light) gray. [FromMajda and Stechmann (2009).]

FIG. 3. (a) Variability of the observed Kelvin wave structure K(x, t) and its two contributing components: (b) u0(x, t) and (c) u0(x, t). See

(19) for definitions. The 1-yr period from 1 Jul 1992 to 1 Jul 1993 is shown, including the TOGA COARE period.
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Also, relatively slow propagation can be seen in the

western Pacific sector (1208E–1808) during January

1993, which coincides with the MJO events during

TOGA COARE (Chen et al. 1996; Yanai et al. 2000).

The signature of these features can also be seen in the

variability of u0(x, t) and u0(x, t) in Figs. 3b,c. Fur-

thermore, in u0(x, t) and u0(x, t), westward propagation

can be seen (e.g., 1 November 1992, 608E), but it is

filtered out by the definition of K5 (u0 2 u0)/
ffiffiffi
2

p
. In

the variability of K(x, t), it is difficult to discern co-

herent westward-propagating signals. In short, the

features in Fig. 3 lend confidence to the data analysis

method; they suggest that the simplemethods proposed

here can distinguish Kelvin wave structures by using

a particular combination of winds and geopotential

height.

Similarly, the observed variability of R(x, t) is shown

in Fig. 4a. Also shown are u2(x, t) and u2(x, t), which are

combined with u0(x, t) and u0(x, t) to form R(x, t) as in

(20). The variability of R(x, t) includes any baroclinic

variability whose meridional structure projects onto the

structure of the equatorial Rossby wave. Dry or con-

vectively coupled equatorial Rossby waves could po-

tentially have a nonzero projection onto this structure,

and these are the source of the westward-propagating

signals in R(x, t) in Fig. 4a. Also, the MJO’s structure

should have a nonzero projection onto the Rossby wave

structure, and it is likely the source of the eastward-

propagating signals in R(x, t) in Fig. 4a (e.g., from 608E
to 1208Wduring January). What is not present in Fig. 4a

is any rapid eastward propagation, which suggests that

the simple methods proposed here can distinguish

equatorial Rossby wave structures from theKelvin wave

structures.

c. Zonal wavenumber selection

To isolate the planetary zonal scales, a Fourier trun-

cation is also applied to retain only zonal wavenumbers

k523,22,21,11,12, and13, which will be referred

to loosely as k5 1–3. The effect of this truncation can be

seen by comparing the originalK(x, t) in Fig. 3a with the

filtered K(x, t) in Fig. 5a. Many smaller-scale features

have been filtered out, but the main features are present

in both plots, which suggests the main features ofK(x, t)

reside on planetary scales.

Similarly, the original and filtered R(x, t) are shown in

Figs. 4a and 5b, respectively. In this case, the filtered and

unfiltered plots appear quite different, which suggests

that many of the main features of R(x, t) do not reside in

planetary wavenumbers k 5 1–3. After the filtering, the

strongest remaining signal is eastward propagating

during the December–February (DJF) season, because

of the Rossby gyre structure of the MJO events during

TOGA COARE.

FIG. 4. Variability of (a) the observed first symmetric equatorial Rossby wave structure R(x, t) and two of its four contributing com-

ponents: (b) u2(x, t) and (c) u2(x, t). See (20) for definitions. The 1-yr period from 1 Jul 1992 to 1 Jul 1993 is shown, including the TOGA

COARE period.
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FIG. 5. Observed variability of MJO skeleton variables: (a)K(x, t), (b) R(x, t), (c)Q(x, t), and (d)A(x, t).

See (19)–(22) for definitions. A Fourier truncation has been applied to retain only zonal wavenumbers

k 5 1–3. The 1-yr period from 1 Jul 1992 to 1 Jul 1993 is shown, including the TOGA COARE period.
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By including multiple zonal wavenumbers, a variety

of zonal MJO structures can potentially be identified.

For example, an MJO structure localized near the

western Pacific warm pool—and not extending around

the globe as a k 5 1 sinusoid—could arise from a com-

bination of multiple zonal wavenumbers. Also, it is

possible that the MJO has some nonlinearity to its

structure, as suggested in the nonlinear MJO skele-

ton results of Majda and Stechmann (2011) and

Chen and Stechmann (2014, manuscript submitted

to Comm. Math. Sci.). In that work, the convectively

active region appears to be narrower than the con-

vectively suppressed region. To represent such fea-

tures with sinusoids would require multiple zonal

wavenumbers.

In short, by applying a zonal spatial filter without

temporal filtering, the signatures of a variety of Kelvin

and Rossby structures can be distinguished. This zonal

spatial filter is used in all plots that follow unless in-

dicated otherwise.

d. Moisture and convection: Q and A

The variable Q is meant to represent the lower-

tropospheric water vapor anomaly near 850 hPa. In

several studies, it has been shown to lead the MJO’s

convective anomaly (Myers and Waliser 2003; Kikuchi

and Takayabu 2004; Kiladis et al. 2005; Tian et al. 2006).

Accordingly, in this first study, we define

Q5
1

4
q(925hPa)1

1

2
q(850hPa)1

1

4
q(725hPa). (21)

Note that only the projection of q onto f0(y) is used

here, as described in appendix A [although to ease no-

tation this is not indicated symbolically in (21)].We have

also explored some alternatives to the definition (21)

(e.g., alternative weights or alternative pressure levels)

but did not notice any significant differences in the re-

sults.

The observed variability of Q(x, t) is illustrated in

Fig. 5c. Standing oscillations appear more prominently

than eastward- or westward-propagating signals, in con-

trast to the K and R signals. This is possibly because

Q variability is affected by such awide range of dynamical

and thermodynamical influences. Also notice that Q has

been nondimensionalized by the natural reference scale

Ly/cp~a, where ~a is the reference potential temperature

scale. In nondimensional units, the amplitude of Q is

comparable to that of K and R, which suggests that the

standard reference scales in Table 1 are a reasonable

choice.

The variable A is meant to represent the planetary-

scale envelope of convective activity. One could imagine

many possible surrogates for A. Here, OLR is used as

a surrogate for A:

HA52HOLR3OLR, (22)

where A and OLR are both anomalies and are projected

onto f0(y). Past estimates of this type of relationship have

suggested HOLR values in the range of 0.08–0.25Kday21

(Wm22)21 (Christy 1991; Yanai and Tomita 1998). In

a recent study by Stechmann and Ogrosky (2015), a

Walker circulation pattern is driven by the implied di-

abatic heating, and it is used to obtain an estimate of

0.06Kday21 (Wm22)21, which will be adopted here as

the standard value.

The observed variability of A(x, t) is shown in Fig. 5d.

The strongest signals appear during TOGA COARE,

during the period from 15 December 1992 to 15 Feb-

ruary 1993. These strong signals are eastward propa-

gating and associated with theMJO events that occurred

during this period (Chen et al. 1996; Yanai et al. 2000;

Straub 2013). Other weaker signals are also present and

are mostly eastward propagating, but some standing

oscillations are present (e.g., from 15 October 1992 to

5 November 1992), and some westward-propagating

signals are present (e.g., from 15 August to 1 October

1992). In nondimensional units, the amplitude of A is

comparable to that of K, R, and Q, which suggests

that the standard value of HOLR 5 0.06Kday21

(Wm22)21 (Stechmann and Ogrosky 2015) is a reason-

able choice for the relationship in (22) on the scales of

interest here.

e. Eigenvectors of the MJO skeleton model

From the set of variables (K,R,Q, andA) defined above,

a particular combination can be used to construct theMJO

FIG. 6. Component amplitudes of the MJO skeleton eigenvector

êMJO(k) for zonal wavenumbers k5 1 (black), k5 2 (gray), and k5
3 (white). [From Majda and Stechmann (2009). See also Table 2.]
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skeleton structure. Figure 6 shows the contributions of

K, R, Q, and A to the MJO structure. The relative con-

tributions are different for each wavenumber k, and the

contributions of K and R decrease relative to the contri-

butions of Q and A as wavenumber increases. Also

noteworthy is that the R component is substantial for

each wavenumber, which suggests the importance of the

MJO’s off-equatorial features in defining its structure.

In addition to the amplitudes shown in Fig. 6, the

phase relationships among the variables (K, R, Q, and

A) are also needed to complete the definition of the

MJO skeleton structure. The phase relationships are

shown in terms of velocity, pressure, etc. in Fig. 7. En-

hanced convective activity appears at the center of zonal

convergence and a quadrupole vortex structure. The

relative amplitudes of K and R can also be discerned

from Fig. 7a, since the pressure and zonal velocity arise

from a linear combination of the K and R structures

shown in Fig. 2.

TheMJO structure in Figs. 6 and 7 has been chosen to

match the MJO eigenvector of the linearized MJO

skeleton model (Majda and Stechmann 2009). This is

a theoretical prediction of the MJO’s structure, and it

provides a method for combining multiple fields—

winds, geopotential height, moisture, and convective

activity—in a systematic way. Such an approach is in line

with the viewpoint of theMJO as a coupled convection–

circulation phenomenon.

The MJO skeleton eigenvector will be denoted by

êMJO(k), and the following description is a brief sum-

mary of its derivation and properties (Majda and

Stechmann 2009). The starting point is the linearized

system (3). The state vector isU5 (K, R,Q,A)T, where

WT denotes the transpose of W. Using a plane-wave

ansatz, U(x, t)5 Ûei(kx2vt), leads to an eigenvalue

problem, where one of the four eigenmodes has prop-

erties that resemble the MJO. The model predicts an

eigenvalue vMJO(k) that is roughly constant as a func-

tion of wavenumber k, consistent with the observed

MJO power spectrum (Kiladis et al. 2009). Several

values of vMJO(k) are listed in Table 2. The model also

predicts the eigenvector êMJO(k), which was illustrated

in Figs. 6 and 7 and is listed for reference in Table 2. It is

a four-component column vector for each zonal wave-

number k, and each component describes themagnitude

and phase of the contributions of K̂, R̂, Q̂, and Â. The

eigenvector is complex valued and satisfies the condition

êMJO(2k)5 êMJO(k)*, where f * denotes the complex

conjugate of f, which ensures that the inverse Fourier

transform is real valued. Furthermore, the eigenvector

êMJO(k) has been normalized to have unit magnitude, and

an (arbitrary) overall phase factor has been chosen so that

theMJO eigenmode is in phase with convective activityA.

The eigenvector êMJO(k) can nowbe used as an identifier

of theMJO’s structure in observational data. To do this, the

observed state vector Û(k)5 [K̂(k), R̂(k), Q̂(k), Â(k)]T

is projected onto the MJO eigenmode:

MJOS^(k)5 êMJO(k)
yÛ(k) , (23)

where Wy denotes the conjugate transpose of W, and

where the time dependence has been suppressed to ease

notation. The inverse Fourier transform then leads to

the real-valued scalar quantity

MJOS(x, t)

5Projection of [K(x, t), R(x, t), Q(x, t), A(x, t)]T

onto theMJO skeleton eigenvector,

(24)

which we refer to as the MJO skeleton signal.

FIG. 7. Zonal–meridional structure associated with the MJO

skeleton eigenmode for zonal wavenumber k 5 2. (a) Low-level

velocity field and pressure contours, with convective activity

shaded dark (light) for positive (negative) anomalies. (b) As in (a),

but for contours of moisture. [FromMajda and Stechmann (2009).]

TABLE 2. MJO skeleton eigenvalues vMJO(k) and eigenvectors

êMJO(k) for zonal wavenumbers k 5 1–3. Wavenumber k is pre-

sented with respect to the Earth’s circumference [i.e., with units of

2p (40 000 km)21]. Frequency vMJO(k) is presented in units of cy-

cles per day (cpd). Eigenvectors êMJO(k) are nondimensional, are

normalized to have unit magnitude, and are chosen to be in phase

with convective activityA; i.e., the Â component is real valued and

positive. See also Fig. 6.

k vMJO K̂ R̂ Q̂ Â

1 0.0219 0.382i 20.767i 20.218i 0.467

2 0.0239 0.239i 20.643i 20.330i 0.649

3 0.0238 0.174i 20.532i 20.375i 0.739
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Note that (23) is not an orthogonal projection. How-

ever, an orthogonal projection could be defined by re-

placing (23) with

MJOS^(k)5 êMJO(k)
yMÛ(k) , (25)

where the inner product matrix M is defined in terms

of the MJO skeleton model’s conserved energy. See

appendix B for a description of this orthogonal pro-

jection, which is more in line with MJO skeleton theory.

In what follows, the standard L2 projection in (23) will

be used, due to the simplicity of its formulation.

As a case study for examining MJOS(x, t), the TOGA

COARE case is used here. In the period from Novem-

ber 1992 to February 1993, the MJO activity during

TOGA COARE is perhaps the most studied of any on

record (Lin and Johnson 1996; Wheeler and Kiladis

1999; Yanai et al. 2000; Straub 2013). Based on OLR,

two MJO-like convective events can be identified

(Yanai et al. 2000): one in December and one in Janu-

ary. These two convective events are associated with

rather different features, such as differing circulation

patterns (Lin and Johnson 1996; Straub 2013), which

makes this an interesting period for examining the dif-

ferent features (e.g., convection and circulation) of

large-scale convective activity.

A first example of MJOS(x, t) variability is shown in

Fig. 8. The time period 1 July 1992–1 July 1993 includes

TOGA COARE and is identical to that used in Figs. 3–5.

Eastward-propagating signals are significantly more com-

mon than westward-propagating signals, and a strong-

amplitude signal appears in the DJF season and reflects

the TOGA COARE MJO events. By comparing this

signal with theK,R,Q, andA variability from Fig. 5, it is

visually clear that the MJOS variability represents not

an individual component K, R, Q, or A but a composite

of the K, R, Q, and A components. This suggests that

MJOS(x, t) represents the coupled convection–circulation

variability of the MJO.

To succinctly quantify the strength of MJOS(x, t)

variability, its amplitude MJOSA(t) can be computed as

a root-mean square of the zonal variations:

MJOSA(t)5

�
1

Pe

ðP
e

0
jMJOS(x, t)j2dx

�1/2
, (26)

where Pe is the circumference (period) of the Earth at

the equator. A plot of MJOSA(t) for the time period

1 July 1992–1 July 1993 is shown in Fig. 9. The period

from late December to early February is identified in

MJOSA(t) as a time of intense MJOS(x, t) amplitude

relative to climatological values. In other words, given

the definition of MJOS(x, t), this is a period when the

coupled convection–circulation structures, or the pro-

jections onto such structures, are particularly strong.

FIG. 8.MJO skeleton signal,MJOS(x, t), defined in (24). The 1-yr

period from 1 Jul 1992 to 1 Jul 1993 is shown, including the TOGA

COARE period. Units are nondimensional. Corresponding plot of

amplitude MJOSA(t) is shown in Fig. 9.

FIG. 9. Amplitude MJOSA(t) of the MJO skeleton signal. See

definition in (26). The 1-yr period from 1 Jul 1992 to 1 Jul 1993 is

shown, including the TOGA COARE period. Units are non-

dimensional. The three dashed lines indicate the climatological

mean (middle) and the mean plus/minus one standard deviation

(top/bottom). Corresponding MJOS(x, t) signal is shown in Fig. 8.
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5. Results

In this section, the variability of MJOS(x, t) is ex-

plored further with case studies, statistical measures,

and sensitivity studies. Among other questions, we

build on the TOGACOARE case of section 4 by asking

the following question: In other cases of known strong

MJO events, how much of the MJO structure projects

onto the theoretical, coupled convection–circulation

structure?

a. Case studies

Three additional case studies are now considered to

illustrate the range of variability ofMJOS(x, t). One case

is the well-known period of strong MJO activity from

1 July 1987 to 1 July 1988 (Hendon and Liebmann 1994;

Wheeler and Hendon 2004). This is the middle case

shown in Fig. 10. The other two cases in Fig. 10 are

periods when the presence and/or initiation of MJO

activity is somewhat ambiguous (Straub 2013). On the

left is the period from 1 July 1986 to 1 July 1987, and on

the right is the period from 1 July 1997 to 1 July 1998,

which includes the time period of May–June 1998 when

the South China Sea Monsoon Experiment (SCSMEX)

was being conducted. It should also be noted that

a portion of 1986–88 was a strong El Niño period, and
hence convection was shifted eastward compared to its
climatological mean. Three corresponding plots of am-
plitude MJOSA(t) are shown in Fig. 11.

In the 1987–88 case in Fig. 10b, several periods show

strong MJO variability. The MJOS(x, t) signal is stron-

gest in November–December and February–March,

with a moderate signal in the interim during January.

An interesting feature is the circumnavigating signal

through February–April. The Western Hemisphere

component of the signal could be a strong instance of the

fast ‘‘dry’’ Kelvin wave signals described by Milliff and

Madden (1996), although in this case one can discern

FIG. 10. As in Fig. 8, but for (a) 1986–87, (b) 1987–88, and (c) 1997–98. Corresponding plots of amplitude MJOSA(t) are shown in Fig. 11.

FIG. 11. As in Fig. 9, but for (a) 1986–87, (b) 1987–88, and (c) 1997–98. Corresponding MJOS(x, t) signals are shown in Fig. 10.
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concomitant signals in all of the four variables K, R, Q,

and A (not shown), which suggests this is an instance of

coupled convection–circulation variability.

The 1986–87 case has been ambiguous in earlier work.

Wavenumber–frequency-filtered OLR indicates a strong

active MJO event throughout January and February,

whereas the RMM index indicates a strong MJO event

from late February to early March (Straub 2013). Here,

MJOS(x, t) does not indicate a particularly strong sig-

nal for either of those two periods. A short burst ap-

pears at the beginning of March, although there is no

particularly strong MJO event indicated by MJOS(x, t)

during January–March. It seems that the K, R, Q, and

A signals are not sufficiently interrelated to indicate

a coupled convection–circulation structure at these

times.

The final case of 1997–98 has also been ambiguous in

earlier work with other MJO indices (Straub 2013).

Complicating the picture is a synoptic-scale convectively

coupled Kelvin wave that appears in mid-May (Straub

et al. 2006; Straub 2013); its rapidly propagating signa-

ture is evident in MJOS(x, t) in Fig. 10c near the date

line, from 1508E to 1508W. However, in late April and

early May, a planetary-scale signal is also present in

MJOS(x, t). Its strongest anomalies are negative from

the date line to 608Wand positive from 08 to 908E, and its
slower propagation speed is consistent with the MJO.

From this information in the MJOS(x, t) signal, it is

possible that an MJO is present in early May and then

transforms into the convectively coupled Kelvin wave in

mid-May, or it is possible that the MJO signal is present

throughout May but is contorted by the concomitant

signal of the convectively coupled Kelvin wave. The

presence of anMJO is also suggested by a strong Rossby

signal R(x, t) that is present during May and propagates

slowly eastward (not shown).

An interesting feature in Fig. 10 is the mixture of

propagating and standing signals. For example, two

periods of standing signals are December 1986 in

Fig. 10a and October 1997 in Fig. 10c. This variety sug-

gests that MJOS(x, t) includes a range of intraseasonal

variability types.

Finally, it should be noted that MJOS(x, t) variability

can be present in any season, as indicated by the case

studies in Figs. 8–11. The mean MJOSA(t) amplitude

has a slight seasonal cycle, as described below in section

5b, where the boreal summer variability is on average

slightly weaker than boreal winter variability. With

these items inmind, relatively strong activity can be seen

outside boreal winter, for example, during late May and

early June 1987 (Fig. 11a), as well as during May 1998

(Fig. 11c). It would be interesting to do a more thorough

examination of the seasonal changes in MJOS(x, t).

Also, it may be advantageous to explore definitions of

MJOS(x, t) that account for asymmetry about the

equator, which could potentially be accomplished from

a moving-heat-source point of view (Biello and Majda

2005) or using MJO skeleton theory itself (Thual et al.

2014b). With the current techniques, the initial results

shown here suggest that the structures of intraseasonal

variability—in both boreal summer and winter—have dis-

cernable projections onto theoretical, coupled convection–

circulation structures that are symmetric about the

equator.

b. Statistics

To quantify the variability of MJOS(x, t), we present

several statistics that summarize both its spatial and

temporal characteristics.

The wavenumber–frequency power spectrum of

MJOS(x, t) is shown in Fig. 12. The largest peak is as-

sociated with eastward-propagating signals of zonal

wavenumber k 5 1 and oscillation periods in the range

of 30–90 days. This is consistent with the general view of

MJO variability and with the dominance of eastward-

propagating intraseasonal signals in the case studies of

Figs. 8 and 10. At the same time, a small amount of

westward power is also seen in Fig. 12, which is consis-

tent with the occurrence of standing oscillations in

Figs. 10a,c. Another feature in Fig. 12 is a weak tail of

higher-frequency eastward power, extending along

a line from roughly k 5 1 and v 5 0.04 cpd to roughly

k 5 3 and v 5 0.1 cpd, associated with propagation

speeds in a range of roughly 12–23m s21. This tail is

likely associated with the fast signals that appear mostly

over the eastern Pacific in Figs. 8 and 10, which are most

likely associated with either convectively coupled Kelvin

FIG. 12. Wavenumber–frequency power spectrum of the MJO

skeleton signal, MJOS(x, t). The three dashed lines correspond to

oscillation periods of 30, 60, and 90 days. The power was calculated

on multiple overlapping 512-day segments that span the period

1980–2010.
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waves or circumnavigating MJO signals (Milliff and

Madden 1996). In short, Fig. 12 indicates the statisti-

cal dominance of intraseasonal, eastward-propagating,

wavenumber-1 signals in MJOS(x, t), although a range

of other signals also contributes.

To illustrate the regional variability of MJOS(x, t), its

variance is shown for each longitude x in Fig. 13. While

nonzero variability exists at all latitudes, it is greatest

from 458E to 1808, in the Indian and western Pacific

Ocean regions, as is commonly identified as the regions

of greatest MJO variability (Kiladis et al. 2005). In these

regions, the variance exhibits a strong seasonal cycle,

with the greatest values occurring during DJF, the bo-

real winter season, and also during March–May (MAM;

not shown). In the Western Hemisphere, on the other

hand, very little change is seen from season to season.

Finally, several statistics of the MJOSA(t) time series

are shown in Figs. 14–16: histogram, autocorrelation

function, and seasonal cycle, respectively. The histo-

gram appears to decay roughly exponentially for large

MJOSA values [as also indicated by a log–linear plot

(not shown)]. The autocorrelation function has a some-

what rapid decay time scale of roughly 12 days. For

longer lags, the autocorrelation function oscillates an-

nually, and this behavior persists out to lags of at least

16 yr (not shown). Since MJOSA(t) contains no phase

information, there is no oscillation of correlation for

intraseasonal lags. Finally, in Fig. 16 the seasonal cycle is

displayed in both the mean ofMJOSA(t) (middle curve)

and the standard deviation, which is indicated by the

separation between the curves. July–September is the

period with the smallest mean and standard deviation,

whereas February–April is the period with the largest

mean and standard deviation.

In summary, these statistics are consistent with the

generally accepted behavior of MJO activity, which

suggests that MJOS(x, t) identifies MJO variability and

its regional and seasonal variations.

c. Comparison with RMM and OMI

The time series of MJOSA(t) is highly correlated with

other MJO indices, despite the different methods used

in each case. For example, for the 1992–93 case in Fig. 9,

the pattern correlation with the RMM index of Wheeler

and Hendon (2004) is 0.96, and the pattern correla-

tion with the OMI of Kiladis et al. (2014) is 0.89. For

FIG. 13. Variance of the MJO skeleton signal, MJOS(x, t), av-

eraged at each longitude for the period 1980–2010. Three time

averages are displayed: annual average (thick solid line), DJF av-

erage (thin solid line), and JJA average (dashed line).

FIG. 14. Histogram of MJOSA(t) values. The mean is 0.101, and

the standard deviation is 0.0348. The bin width is 0.0025, and 100

bins were used, spanning the range from the minimum (0.0126) to

the maximum (0.2651). Total number of samples is 12 053 over the

33 yr from 1979 to 2011.

FIG. 15. Autocorrelation function of the MJOSA(t) time series.

Computed using the 33 yr of data from 1979 to 2011.

FIG. 16. Seasonal cycle of themean and standard deviation of the

MJO skeleton amplitude, MJOSA(t). Solid curves indicate the

mean (middle) and mean plus/minus one standard deviation (top/

bottom). Dashed curves are smoothed versions of the solid curves,

constructed using the first three harmonics of the seasonal cycle.
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comparison, the pattern correlation of RMM and OMI

is 0.91. These results are somewhat similar for the three

cases in Fig. 11 as well. The slightly higher correlation

betweenRMMandMJOSA is perhaps due to one of the

commonalities in their methods that differs from OMI;

for instance, both RMM and MJOSA are real-time in-

dices whereas OMI employs some temporal filtering,

and both RMM and MJOSA are based on multiple

variables whereas OMI uses OLR only. In any case, all

three indices are highly correlated. At the same time, it

should be noted that a high statistical correlation can

occur even when two indices differ in their detailed

characterization of some individual events (Straub 2013;

Kiladis et al. 2014).

The statistics in Figs. 14–16 can also be computed for

the RMM index and OMI (not shown). Overall, the

broad features are similar in all cases, despite the dif-

ferent methods used for each index. One slight differ-

ence appears in the seasonal cycles, where MJOSA and

RMM reach a maximum in February–April whereas

OMI reaches a maximum in December–February. If

MJOSA is instead computed using an orthogonal pro-

jection as described in appendix B, it also reaches

a maximum in December–February (not shown).

d. Parameter sensitivity studies

Several sensitivity studies demonstrate that the

methods of this paper are robust. The parameter ~Q5 0:9

has been tested at values of 0.8 and 0.95, and the pa-

rameters G 5 1 and Su 5 1Kday21 have been tested at

values of 0.5 and 2.0, and the pattern correlation of the

modified results with the standard results in Fig. 8 are

greater than 0.99 (not shown). Similar changes in the

parameter HOLR lead to pattern correlations of 0.97, as

reported in Table 3 along with tests of even larger

modifications of HOLR. Finally, to test the influence of

different spatial scales, the selection of zonal wave-

numbers was changed to k5 1–2 or k5 1–4, which leads

to pattern correlations of 0.9. These tests lend confidence

in the robustness of the present methods and results.

e. Subsets of the variables K, R, Q, and A

As another type of sensitivity study, we now evaluate

the contributions of each variable (K, R, Q, and A) in

shaping the combined signal of MJOS(x, t). This is

analogous to previous evaluations of the contributions

of U850, U200, and OLR to the RMM index (Wheeler

and Hendon 2004; Straub 2013). The method used here

is to compute the projection (23) with only a subset of

the four components (K, R, Q, and A). The resulting

MJOS(x, t) is then comparedwith the standardMJOS(x, t)

by computing the pattern correlation. All possible sub-

sets of variables are considered: dropping one variable,

dropping two variables, or keeping only a single vari-

able. The results are shown in Table 4.

If only one variable is dropped, does the signal MJOS

(x, t) change much? If R or A is dropped, slight changes

are seen; whereas ifK orQ is dropped, almost no change

is seen. This suggests, preliminarily, that K and Q offer

little additional information beyond that of the other

variables (although subtleties can arise with such state-

ments; see paragraphs below). From a physical point

of view, this perhaps indicates a high degree of cou-

pling among the convective activity and the K and R

circulations.

At the other extreme, one can compare MJOS(x, t)

with a single variable. When compared with Q(x, t), the

pattern correlation is very low—only 0.18. This and

other entries in Table 4 suggest that theQ formulation in

(21) may be inadequate. However, when an orthogonal

projection method is used (see appendix B),Q is seen to

play a leading role. This suggests that the standard L2

projection in (23) may be inadequate. The orthogonal

projection of (25) is more in line with MJO skeleton

theory.

When MJOS(x, t) is compared with one ofK, R, orA,

the pattern correlation is in the range 0.74–0.76. This is

noteworthy for two reasons. First, the narrow range of

0.74–0.76 indicates that each of K, R, and A is equally

correlated with MJOS(x, t), which, in some sense, in-

dicates that no single variable is ‘‘more important’’ to

TABLE 3. Parameter sensitivity studies. Pattern correlations

between the standard case and the alternative parameter choice,

computed either for 1 Jul 1992–1 Jul 1993 or for only 1Dec 1992–28

Feb 1993. Units of HOLR are Kday21 (Wm22)21.

Parameter change

Pattern correlation

(full year)

Pattern correlation

(DJF only)

HOLR 5 0.015 0.94 0.94

HOLR 5 0.03 0.98 0.98

HOLR 5 0.12 0.97 0.97

HOLR 5 0.24 0.90 0.91

kmax 5 2 0.89 0.93

kmax 5 4 0.91 0.93

TABLE 4. Comparison of MJO definitions using subsets of vari-

ables. Pattern correlations between the standard case (using all

four variables: K, R, Q, and A) and the alternative case (using

a subset of these variables). Computed for 1 Jul 1992–1 Jul 1993.

Subset Pattern correlation Subset Pattern correlation

RQA 0.99 K 0.76

KQA 0.77 R 0.75

KRA 0.98 Q 0.18

KRQ 0.87 A 0.74

KA 0.81 KQ 0.49

RA 0.97 RQ 0.84

KR 0.80 QA 0.70
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the definition of MJOS(x, t) than the other variables.

Second, pattern correlations of 0.74–0.76 are quite far

from a 1.00 perfect correlation. In other words, no single

variable is perfectly correlated with MJOS(x, t), which

indicates that MJOS(x, t) is truly a multivariate signal.

6. Relation to the wave response to a moving heat
source

As an alternative method for obtaining a theoretical

MJO structure, one can find the wave response to

a prescribed, moving heat source (Chao 1987;Majda and

Biello 2004; Biello and Majda 2005). In fact, the MJO

skeleton eigenvector can be interpreted from this per-

spective if some additional assumptions are made.

To summarize this alternative perspective, consider

a moving heat source:

HA(x, t)5HÂ(k)expfi[kx2vMJO(k)t]g . (27)

The Kelvin wave response K(x, t)5 K̂(k) expfi[kx2
vMJO(k)t]g can be computed using (3a):

2ivMJOK̂1 ikK̂52
1ffiffiffi
2

p HÂ , (28)

or

K̂(k)52i
1ffiffiffi
2

p [vMJO(k)2k]21HÂ(k) , (29)

where it is understood that the real part of these com-

plex quantities is desired. Similarly, the Rossby wave

response is

R̂(k)52i
2
ffiffiffi
2

p

3

�
vMJO(k)1

1

3
k

�21

HÂ(k) , (30)

and the lower-tropospheric moisture response is

Q̂ (k)5vMJO(k)
21

"
~Qffiffiffi
2

p kK̂(k)2
~Q

6
ffiffiffi
2

p kR̂(k)

1 i

 
211

~Q

6

!
HÂ(k)

#
. (31)

Note that these solutions differ from those of Chao

(1987) and Biello and Majda (2005) in that no damping

is used here in the model (3).

The solutions (29)–(31) offer a simple perspective on

the MJO skeleton eigenvector êMJO(k): its components

of K̂(k), R̂(k), and Q̂(k) are precisely the response (29)–

(31) to a prescribedmoving heat source (27). This can be

seen by verifying that the values in Table 2 satisfy the

relations (29)–(31). While this analogy offers a simple

interpretation of êMJO(k), it is not an equivalence of the

two perspectives, since the moving heat source requires

a prescribed vMJO(k), whereas the MJO skeleton model

predicts vMJO(k).

7. Conclusions

To identify the MJO skeleton in observational data,

a method has been presented using theoretical wave

structures. Instead of defining an empirical MJO struc-

ture (i.e., instead of using EOFs), a theoretical MJO

structure was defined using equatorial wave theory. The

theoretical definition incorporates a wide variety of

data: multiple variables (wind, geopotential height,

water vapor, and OLR), multiple pressure levels (850

and 200 hPa), and multiple latitudes (both equatorial

and off equatorial). Equatorial wave theory provides

a systematic way to combine this variety of data, and it

allows, among other things, a distinction between the

Kelvin and Rossby components of the MJO.

Using the MJOS(x, t) signal, one can explore the fol-

lowing question: To what extent is the structure of an

MJO event consistent with the theoretical structure of

a coupled convection–circulation anomaly? In several

case studies, considerable amounts of consistency were

seen. Furthermore, an alternative simple interpretation

was also provided for the MJO skeleton structure: it is

related to the wave response to a moving heat source.

Consequently, the methods and results here are also

applicable to a more general class of theories.

Several statistical measures were used to illustrate the

spatial and temporal variability of theMJOS(x, t) signal.

For example, it was seen that intraseasonal time scales

dominate the MJOS(x, t) signal, without the use of an

explicit temporal filter. Instead, through the combina-

tion of a spatial filter and a projection onto equatorial

wave structures, the data are automatically, implicitly

filtered onto intraseasonal time scales. As a result, the

methods here can be used to filter data in real time.

A suite of studies was used to demonstrate that

MJOS(x, t) is truly a multivariate signal. For example, in

studies with subsets of the four variables (K, R, Q, and

A), it was shown that MJOS(x, t) is only moderately

correlated with any single variable (K, R, Q, or A),

and each of the variables K, R, and A is equally cor-

related with MJOS(x, t). The role of moisture Q was

seen to be key, provided an orthogonal projection is

used (appendix B), based on the MJO skeleton model’s

conserved energy.

While the methods here were illustrated using ob-

servational and reanalysis data, they could also be ap-

plied to GCM data. For example, the methods could be
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used to evaluate the abilities of GCMs to simulate the

MJO and its proper structure (Lin et al. 2006; Kim et al.

2009; Hung et al. 2013). Since the MJO structures here

are defined theoretically, they provide an independent

standard for this application.

Finally, we note that the MJOS(x, t) signal could

potentially be used as an MJO ‘‘index.’’ Furthermore,

the methods here could be combined with statistical

methods such as EOFs or nonlinear Laplacian spectral

analysis (Giannakis and Majda 2012), or the methods

here could be modified to include the effects of a cli-

matological mean state with zonal variations or me-

ridional variations (Ogrosky and Stechmann 2014,

manuscript submitted to Quart. J. Roy. Meteor. Soc.;

Thual et al. 2014b). The authors are currently pursuing

some of these directions and will present the results

elsewhere in the near future.
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APPENDIX A

Derivation of K, R, Q, and A Variables and
Evolution Equations

In this appendix, some selected aspects are presented

for the derivations of (3) from (2), including the deri-

vations of the variables K and R. A main part of this

derivation is the progression from primitive variables

(u, u) to characteristic variables (r, l) to equatorial wave

variables (K, R1, R2, . . .). For more information, see Gill

(1980, 1982), Majda (2003), Biello and Majda (2006),

and Majda and Stechmann (2009).

a. Characteristic variables l and r

The equatorial long-wave equations can be written

naturally in terms of characteristic variables r and l:

r5
1ffiffiffi
2

p (u2u), l5
1ffiffiffi
2

p (u1u) , (A1)

f r5
1ffiffiffi
2

p ( f u2 f u)52
1ffiffiffi
2

p (Ha2su), and (A2)

f l5
1ffiffiffi
2

p (f u1 f u)51
1ffiffiffi
2

p (Ha2su) , (A3)

where f u and f u are the forcing terms (right-hand sides)

of the equations for u and u, (2a) and (2c), respectively.

In terms of these variables, (2a)–(2c) can be rewritten as

rt1rx1L2y5 f r , (A4)

lt2 lx2L1y5 f l, and (A5)

L1r2L2l50, (A6)

whereL2 andL1 are the raising and lowering operators,

respectively:

L65
1ffiffiffi
2

p (›y 6 y) , (A7)

which operate on parabolic cylinder functions as

L1fm5
ffiffiffiffiffi
m

p
fm21, L2fm52

ffiffiffiffiffiffiffiffiffiffiffiffi
m11

p
fm11 . (A8)

Note that the meridional velocity equation has become

(A6), which describes the meridional geostrophic bal-

ance in terms of the characteristic variables.

b. Defining K, R1, R2, R3, . . .

Next, we pass from characteristic variables (r, l) to the

equatorial wave variables (K, R1, R2, R3, . . .). This

change of variables is facilitated by an expansion in

meridional basis functions fm(y), similar to (13)–(16):

0
@ r

l

y

1
A5

0
@r0f0

0

0

1
A1

0
B@

0

0

y0f0

1
CA1 �

‘

m51

0
B@
rmfm11

lmfm21

ymfm

1
CA . (A9)

Each term on the right-hand side corresponds to a dif-

ferent wave type. By combining this expansion with

(A4)–(A6), the evolution equation of each wave type

can be obtained as follows.

The first term in the expansion (A9) corresponds to

the Kelvin wave, which from (A4) evolves as

›tr01›xr05 f r052
1ffiffiffi
2

p (Ha02su0) . (A10)

Replacing the symbol r0 with K leads to (3a).

The second term in the expansion (A9) corresponds to

the mixed Rossby–gravity (MRG) wave. With the

equatorial long-wave scaling used here, the remnant of

the MRG wave is not a dynamical equation but a di-

agnostic relation: y0 52f r1 5 1(Ha1 2 su1)/
ffiffiffi
2

p
, which

follows from (A4). Since the antisymmetric convective

activity a1 is not included in the simplest skeleton model

with onlyK andR, theMRG remnant plays no role here.
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Finally, in the infinite sum in (A9), each m corre-

sponds to the mth Rossby wave. The sum of all types of

Rossby waves can be written as an expansion in para-

bolic cylinder functions as

Rtotal5L1r1L2l5 �
‘

m51

Rmfm . (A11)

To get an equation forRtotal, applyL1 to (A4), applyL2

to (A5), and then add or subtract to get, respectively,

›tRtotal1(L1L22L2L1)y5L1f
r1L2f

l and

(A12)

›xRtotal1(L1L21L2L1)y5L1f
r2L2f

l . (A13)

These equations can be written in terms of meridional

modes as

›tRm2ym5
ffiffiffiffiffiffiffiffiffiffiffiffi
m11

p
f rm112

ffiffiffiffiffi
m

p
f lm21 and

(A14)

›xRm2(2m11)ym5
ffiffiffiffiffiffiffiffiffiffiffiffi
m11

p
f rm111

ffiffiffiffiffi
m

p
f lm21 . (A15)

To get an equation in terms of Rm alone, ym can be

eliminated to yield

›tRm2
1

2m11
›xRm

5
2m

ffiffiffiffiffiffiffiffiffiffiffiffi
m11

p

2m11
f rm112

(2m12)
ffiffiffiffiffi
m

p
2m11

f lm21 . (A16)

In the simplest version of the skeleton model, only a0 is

retained andhence onlyR1 is excited. Taking (A16) form5
1 and replacing the symbol R1 with R then leads to (3b).

c. Recovering u and u from K, R1, R2, R3, . . .

The variables u, y, and u are recovered in a two-step

process. First, from K and Rm, m 5 1, 2, 3, . . . , one can

recover the characteristic variables l and r using merid-

ional geostrophic balance (A6) ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
m1 1

p
rm 1

ffiffiffiffiffi
m

p
lm5 0Þ

and the definition Rm 5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m1 1

p
rm 2

ffiffiffiffiffi
m

p
lm from (A11).

Second, from r and l, one can recover u and u using (A1).

With the meridional mode truncations of this paper

described above, the resulting formulas are (Majda

2003; Biello and Majda 2006)

u(x, y)5
1ffiffiffi
2

p
�
K(x)2

1

2
R(x)

�
f0(y)1

1

4
R(x)f2(y) ,

(A17)

y(x, y)5

�
1

3
›xR(x)2

1

3
ffiffiffi
2

p HA(x)

�
f1(y), and (A18)

u(x, y)52
1ffiffiffi
2

p
�
K(x)1

1

2
R(x)

�
f0(y)2

1

4
R(x)f2(y) ,

(A19)

where y is recovered from (A15) and where the standard

meridional mode truncations of this paper were applied

as described above.

d. Moisture dynamics

The moisture q(x, y, t) can be expanded as q(x, y, t)5

�‘
m50qm(x, t)fm(y), where the sum is truncated here at

q0(x, t), which is relabeled as Q(x, t) in (3).

The dynamics of Q(x, t) in (3c) can be derived from

the dynamics of q(x, y, t) in (2d) in the following way.

Each term in (2d) can be expanded in parabolic cylinder

functions and then projected onto f0 in order to find the

evolution equation for q0(x, t). First, ux can be expanded

in parabolic cylinder functions using (A17). Next, to

handle the yy term, the operator ›y can be written in

terms of the ladder operators as ›y 5 (L1 1L2)/
ffiffiffi
2

p
, and

ym can be written in terms of Rm and the convective

activity using (A15) or (A18). Finally, a projection onto

f0 leads to (3d).

e. Convective activity dynamics

The convective activity a(x, y, t) can be expanded as

a(x, y, t)5�‘
m50am(x, t)fm(y), where the sum is trun-

cated here at a0(x, t), which is relabeled as A(x, t) in (3).

The dynamics of A(x, t) in (3d) can be derived from the

dynamics of a(x, y, t) in (2e) by expanding q and a in the

basis ffm(y)g‘m50 and projecting (2e) ontof0. Assuming

that q and a are truncated at the q0 and a0 terms, (3d) is

obtained. Note that the projection procedure leads to

the integral
Ð1‘
2‘ f0(y)f0(y)f0(y) dt, which takes the

value
ffiffiffiffiffiffiffi
2/3

p
p21=4, which for notational simplicity has

been absorbed into a new definition of G in (3d) com-

pared to the G in (2e).

APPENDIX B

Orthogonal Projection Method Based on MJO
Skeleton Energy

Here, we present a second projection method that can

be used instead of the projection in (23). One of the

main differences is that (23) is not an orthogonal pro-

jection, whereas the second method here uses an or-

thogonal projection. This is achieved by replacing the

standard L2 inner product of (23) with an inner product

that is based on the MJO skeleton model’s conserved

energy. As described below, by using the MJO skeleton

energy, two consequences are (i) water vapor plays

a leading role, as opposed to its lesser role in section 5,

and (ii) fast waves do not project as strongly onto the

MJOS(x, t) signal, as compared to their presence in

section 5.
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The energy equation of the nonlinear skeleton model

(2) has the form

›t

"
1

2
u21

1

2
u21

1

2

~Q

12 ~Q

�
u1

q

~Q

�2

1
H

G ~Q
a2

s

G ~Q
log a

#

2›x(uu)2›y(yu)50,

(B1)

which holds when the time-independent sources of

heat and moisture are equal: s5 su5 sq. Note that this

energy is a convex function of u, u, q, and a. Upon

using a meridional truncation to move from (2) to (3),

and linearizing about a state of radiative–convective

equilibrium, the conserved energy of the linearized

system is

E5
1

2
K21

3

16
R21

1

2

~Q

12 ~Q

�
Q

~Q
2

Kffiffiffi
2

p 2
R

2
ffiffiffi
2

p
�2

1
1

2

S

G ~Q

�
A

A

�2

. (B2)

where HA5 Su 5 Sq 5 S in radiative–convective

equilibrium.

The energy in (B2) can be used to define a natural

inner product for the skeleton model. To do this ele-

gantly, one can put the MJO skeleton model into sym-

metric hyperbolic form, following Friedrichs and Lax

(1971). With this approach, the key quantity is the

Hessian matrix M of the conserved convex energy:

Mij5
›2E

›Ui›Uj

, (B3)

where the Ui are the elements of the state vector U 5
(K,R,Q,A)T. Explicitly, the matrixM is computed from

(B2):

M5

0
BBBBBBBBBBBBBBBB@

11
1

2

~Q

12 ~Q

1

4

~Q

12 ~Q
2

1ffiffiffi
2

p 1

12 ~Q
0

1

4

~Q

12 ~Q

3

8
1
1

8

~Q

12 ~Q
2

1

2
ffiffiffi
2

p 1

12 ~Q
0

2
1ffiffiffi
2

p 1

12 ~Q
2

1

2
ffiffiffi
2

p 1

12 ~Q

1
~Q

1

12 ~Q
0

0 0 0
S

G ~QA2

1
CCCCCCCCCCCCCCCCA

.

(B4)

For the parameter values used throughout this paper

(see Table 1), this matrix takes the numerical values

M5

0
BBB@

5:50 2:25 27:07 0

2:25 1:50 23:54 0

27:07 23:54 11:1 0

0 0 0 2:42

1
CCCA , (B5)

where the units are nondimensional. Since E is convex,M is

a positive definite matrix. Furthermore, M defines an inner

product, and the linear eigenvectors are orthogonal with re-

spect to this inner product. For example, if eMJO(k) and eK(k)

are the MJO and dry Kelvin eigenvectors, respectively, for

the same wavenumber k, then eyKMeMJO 5 0. Moreover,

each eigenvector can be normalized in a natural way via

this inner product using, for example, eyMJOMeMJO 5 1.

The orthogonal projectionmethod is then obtained by

replacing (23) with (25), that is, with

MJOS^(k)5 êMJO(k)
yMÛ(k) , (B6)

where M is defined in (B4) and (B5). We have exten-

sively explored this orthogonal projection method, and

FIG. B1. As in Fig. 8, but the MJO skeleton signal, MJOS(x, t), is

computed using the orthogonal projection described in (25) and

appendix B.
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we now briefly describe how the results differ from those

in section 5.

As an example of MJOS(x, t) defined through the

orthogonal projection (B6), the TOGACOARE case of

1992–93 is shown in Fig. B1. This figure should be

compared with Fig. 8, which was computed with the

standard L2 projection in (23). The MJO events during

January are prominent for both projection methods.

One difference is that the rapidly propagating eastward

signals in Fig. 8 (e.g., in the region 908–1208W, from late

December to early February) are absent from Fig. B1.

The orthogonal projection method isolates the MJO

eigenmode only, whereas the standardL2 projection can

contain contributions from other modes, such as the fast

dry Kelvin mode.

Another significant difference is in the comparison of

subsets of variables (as in section 5e and Table 4). With

the orthogonal projection method, Q alone produces

a pattern correlation of 0.79, and the pair of Q and A

together produce a pattern correlation of 0.96. Hence,

the pair of Q and A appears to be the most important

subset in defining the MJO skeleton signal. This is quite

different from the results in section 5e, where Q was

seen to play a minor role. This suggests that the Q def-

inition in (21) is appropriately chosen (in contrast to the

suggestions of section 5e).

In terms of the time series of the amplitudeMJOSA(t)

(not shown), the results with the orthogonal inner

product M are highly correlated with the L2 inner

product results. For example, for the TOGA COARE

case, the two MJOSA(t) time series have a pattern

correlation of 0.95. For the three cases in Fig. 11, the

pattern correlations are in the range of 0.95–0.97. Nev-

ertheless, the spatial variability of MJOS(x, t) shows

noticeable differences in the appearance of fast wave

signals, as mentioned above, and a high statistical cor-

relation can occur even when two indices differ in their

detailed characterization of some individual MJO

events (Straub 2013; Kiladis et al. 2014).

The two projection methods in (23) and (25) each have

their advantages and disadvantages. The L2 projection

was given more emphasis here due to its simplicity and

due to its potential applicability for the moving-heat-

source perspective on the MJO (section 6). It is perhaps

the simplest method to use in more general settings, for

example, with a zonally varying base state (Ogrosky and

Stechmann 2014, manuscript submitted toQuart. J. Roy.

Meteor. Soc.) or a meridionally varying base state (Thual

et al. 2014b). On the other hand, the orthogonal pro-

jection is desirable because it ismore in linewith theMJO

skeleton theory, it provides the mathematical advantages

of orthogonality, and it better filters out contributions

from other modes of variability.
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