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ABSTRACT

It is known that gravity waves in the troposphere, which are often excited by preexisting convection, can

favor or suppress the formation of new convection. Here it is shown that in the presence of wind shear or

barotropic wind, the gravity waves can create a more favorable environment on one side of preexisting

convection than the other side.

Both the nonlinear and linear analytic models developed here show that the greatest difference in favor-

ability between the two sides is created by jet shears, and little or no difference in favorability is created by

wind profiles with shear at low levels and no shear in the upper troposphere. A nonzero barotropic wind (or,

equivalently, a propagating heat source) is shown to also affect the favorability on each side of the preexisting

convection. It is shown that these main features are captured by linear theory, and advection by the back-

ground wind is the main physical mechanism at work. These processes should play an important role in the

organization of wave trains of convective systems (i.e., convectively coupled waves); if one side of preexisting

convection is repeatedly more favorable in a particular background wind shear, then this should determine

the preferred propagation direction of convectively coupled waves in this wind shear.

In addition, these processes are also relevant to individual convective systems: it is shown that a barotropic

wind can lead to near-resonant forcing that amplifies the strength of upstream gravity waves, which are known

to trigger new convective cells within a single convective system. The barotropic wind is also important in

confining the upstream waves to the vicinity of the source, which can help ensure that any new convective cells

triggered by the upstream waves are able to merge with the convective system.

All of these effects are captured in a two-dimensional model that is further simplified by including only the

first two vertical baroclinic modes. Numerical results are shown with a nonlinear model, and linear theory

results are in good agreement with the nonlinear model for most cases.

1. Introduction

Tropical convection can be organized across a wide

range of space and time scales, from mesoscale convec-

tive systems (Houze 2004) to convectively coupled waves

on equatorial synoptic scales (Kiladis et al. 2009) to the

Madden–Julian oscillation on planetary/intraseasonal

scales (Zhang 2005). These phenomena remain chal-

lenging both theoretically and practically; not only are

their physical mechanisms not adequately understood,

but even numerical simulation of these multiscale phe-

nomena is a challenging endeavor.

To better understand the physical mechanisms of or-

ganized convection, numerical simulations are often

carried out using cloud-resolving models (CRMs). Many

CRM studies have documented the role of gravity

waves in organizing convection into wave trains (Oouchi

1999; Shige and Satomura 2001; Lac et al. 2002; Liu and

Moncrieff 2004; Tulich et al. 2007; Tulich and Mapes

2008). Convective heating generates a variety of gra-

vity waves that propagate away from the convection, and
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these gravity waves can favor or suppress the formation

of new convection. New convection is favored when

gravity waves promote ascent of air in the free tropo-

sphere, which is also accompanied by adiabatic cooling

and moistening, and new convection is suppressed in the

opposite situation. In addition to gravity waves, density

currents can play a similar role in triggering new con-

vection (Moncrieff and Liu 1999; Tompkins 2001; Fovell

2005). Furthermore, in addition to their role in favoring

or suppressing new convective systems, gravity waves

and density currents can play a similar role in favoring or

suppressing new convective cells within a single con-

vective system (McAnelly et al. 1997; Lane and Reeder

2001; Fovell 2002; Fovell et al. 2006).

In addition to (and in some cases preceding) these

CRM studies, several theoretical studies using simplified

models have also been carried out to better understand

the role of gravity waves and density currents in orga-

nizing convection (Bretherton and Smolarkiewicz 1989;

Nicholls et al. 1991; Pandya et al. 1993; Mapes 1993;

Liu and Moncrieff 2004). These studies use a simpli-

fied setup with linearized dynamics and imposed heat

sources to represent cloud heating. The exact linear re-

sponse to the heating can then be found analytically

for any heating profile, usually chosen to represent

deep convective and stratiform heating. Mapes (1993)

used such a model with two vertical modes to demon-

strate how the formation of new convection could

be favored or triggered near preexisting convection

by convectively generated gravity waves; such a mech-

anism was posited to be important for convective

organization, and the observations and CRM sim-

ulations mentioned in the previous paragraph largely

confirm this.

For the sake of simplicity, these simplified modeling

studies mentioned above all assumed a motionless,

shear-free background wind. The main purpose of the

present paper is to investigate the effect of wind shear

and barotropic wind on gravity waves by using the

simplified nonlinear model of Stechmann et al. (2008,

hereafter SMK08) and a linearized version of this

model.

The main simplification used by SMK08, as in the

other simplified model studies mentioned above, is a

truncated vertical structure with only two baroclinic

modes; however, unlike previous truncated models,

SMK08 included nonlinear interactions between the

vertical modes, which allows nonlinear interactions be-

tween gravity waves and wind shear. The truncated

vertical structure of this model has the important ad-

vantage that it reduces the system dimension, which

greatly reduces the computation time needed to solve

the equations numerically. In addition to results with

this nonlinear model, an exact linear theory with back-

ground shear is developed here; these results are also

shown below, and they are in good agreement with the

nonlinear numerical results. The implications of these

results for organized convection are discussed through-

out the paper.

The paper is organized as follows: The simplified

model of SMK08 is described in section 2. Results for

various wind profiles are presented in section 3. The

physical mechanisms at work are discussed throughout

section 3 and in section 4, and some sensitivity studies

including higher vertical resolution are shown in section 5.

Finally, conclusions are summarized in section 6. To

streamline the presentation, some analytic details of the

model are relegated to the appendices.

2. The simplified model

In this section, the simplified model of SMK08 is re-

viewed. The representation of convective heating as an

imposed heat source is also described; it will allow cer-

tain linear theory techniques to be used, which are also

described below.

a. Description of the simplified nonlinear model

The setup considered here is a hydrostatic Boussinesq

fluid with a background potential temperature ubg(z)

that is linear with height. For simplicity, and following

previous work mentioned in the introduction, a two-

dimensional setup with zonal coordinate x and vertical

coordinate z will be used here. The fluid is bounded

above and below by rigid lids where free slip boundary

conditions are assumed: Wjz50,H 5 0. The upper

boundary here is taken to be z 5 H 5 16 km, which is

roughly the height of the tropopause in the tropics, and

the height z will be nondimensionalized so that z 5 p is

the upper boundary in nondimensional units. Standard

equatorial scales are chosen as reference units so that

the horizontal spatiotemporal scales are 1500 km and

8 h (Majda 2003), with a reference speed of 50 m s21

corresponding to the first baroclinic mode gravity wave

speed. See Table 1 for the reference scales used to

nondimensionalize the model variables.

In this situation there is an infinite set of horizontally

propagating linear gravity waves with phase speeds cj

and vertical profiles sin(jz) for j 5 1, 2, 3, . . . (Majda

2003). The waves cj are decoupled from all waves ck (k 6¼ j)

for the case of linear dynamics, but the waves become

coupled in the case of nonlinear dynamics, as will be

shown below. For the nonlinear model of this paper,

only the first two baroclinic modes are kept so that the

model variables are expanded as
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Note that the convention here is to expand Q on the

basis of j
ffiffiffi
2
p

sin(jz), not
ffiffiffi
2
p

sin(jz). This vertical struc-

ture is illustrated in Fig. 1. The hydrostatic and conti-

nuity equations lead to the relationships

u
j
5 �p

j
and w

j
5 �1

j
›

x
u

j
. (2)

When the hydrostatic Boussinesq equations are pro-

jected onto the first two baroclinic modes, including the

projections of the nonlinear advection terms, the result

is (SMK08)

(In three dimensions, the u2 equation includes terms

proportional to u1 � $u1 2 u1$ � u1, which are zero in this

two-dimensional case.) Notice that the left-hand side

shows the familiar linear dynamics for the baroclinic

modes with phase speeds 1 and ½ in the nondimensional

units used here. The right-hand side shows how the

baroclinic modes interact nonlinearly because of the

projection of the nonlinear advection terms. These non-

linear terms also allow for nonlinear interactions between

gravity waves and wind shear. Note that these equations

have a conserved energy,

E 5
1

2
(u2

1 1 u2
2 1 u2

1 1 4u2
2), (4)

and they can be written in matrix form as

›
t
u 1 A(u)›

x
u 5 S, (5)

where u 5 (u1, u1, u2, u2)T, S 5 (0, S1, 0, S2), and the

matrix A(u) is written out in appendix A. Because these

equations cannot be written as a system of conservation

laws, designing a numerical method for them is a chal-

lenge. The numerical methods used here were designed

and extensively tested by SMK08; the reader is referred

there for more details.

We also note here that a propagating source term

S(x 2 st) is equivalent to a stationary source term with a

barotropic wind of u0 5 2s. To see this, start with (5)

and assume a source term of the form S 5 S(x 2 st). By

changing variables into a reference frame moving with

the source term, with x9 5 x 2 st and t9 5 t, this equation

becomes

TABLE 1. Model parameters and scales.

Parameter Derivation Value Description

b — 2.3 3 10211 m21 s21 Variation of Coriolis parameter with latitude

uref — 300 K Reference potential temperature

g — 9.8 m s22 Gravitational acceleration

H — 16 km Tropopause height

N2 (g/uref) dubg/dz 1024 s22 Buoyancy frequency squared

c NH/p 50 m s21 Velocity scale

L
ffiffiffiffiffiffiffi
c/b
p

1500 km Equatorial length scale

T L/c 8 h Equatorial time scale

a HN2uref/(pg) 15 K Potential temperature scale

— H/p 5 km Vertical length scale

— H/(pT) 0.2 m s21 Vertical velocity scale

— c2 2500 m2 s22 Pressure scale
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›
t9
u� s›

x9
u 1 A(u)›

x9
u 5 S(x9), (6)

which is equivalent to a stationary source with a change

of 2s to the barotropic wind. Because of this equiva-

lence, all of the results in this paper could be interpreted

in many ways, since, for instance, even the case of zero

barotropic wind and a stationary source is equivalent to

any case with u0 5 y and s 5 y for any choice of y.

b. Representation of convective heating

Convective heating will be represented as an imposed

heat source with components from two vertical baroclinic

modes, as it was represented in the previous simplified

modeling studies mentioned in the introduction (Mapes

1993):

S(x, z) 5 S
1
(x)

ffiffiffi
2
p

sinz 1 S
2
(x)2

ffiffiffi
2
p

sin2z. (7)

The first baroclinic heating S1 represents deep convec-

tive heating, whereas the second baroclinic heating S2

represents stratiform and congestus heating. The stan-

dard top-heavy heating that will be used here unless

otherwise stated represents a combination of deep con-

vective and stratiform heating with

S
1
(x) 5 a

1
e�x2/2s2

1 and S
2
(x) 5 a

2
e�x2/2s2

2 . (8)

The standard values used here will be a1 5 200 K day21,

2a2 5 250 K day21, s1 5 20 km, and s2 5 40 km, unless

otherwise specified. These values are chosen to represent

the mesoscale-filtered convective heating of a squall line

or mesoscale convective system, and they are similar to

the values used in previous studies (Nicholls et al. 1991;

Mapes 1993; Pandya and Durran 1996; Mapes 1998); in

fact, the ratio of total deep convective to stratiform

heating is equivalent to that used by Mapes (1993), as

explained below. This standard heating S(x, z), given by

these standard parameter values and (7)–(8), is shown in

Fig. 2. In the time-dependent numerical simulations

shown below, this heating profile is turned on at the start

of the simulation at time t 5 0 and maintained thereafter.

A delta function approximation to the zonal heating

profile (8) will be used for approximate analytical solu-

tions as described later:

ae�x2/2s2

5 as
ffiffiffiffiffiffi
2p
p

(2ps2)�1/2 e�x2/2s2

’ as
ffiffiffiffiffiffi
2p
p

d(x). (9)

Notice that the magnitude of the delta function, which

will be denoted by Sj*, is determined by the Gaussian

profile’s amplitude and standard deviation by

FIG. 2. Contour plot of the heat source Su(x, z) from (7) and (8)

used to represent deep convective and stratiform heating. Contours

are drawn from 50 to 300 K day21 with a contour interval of

50 K day21; an additional contour at 20 K day21 is also shown. The

minimum heating is 223 K day21 near x 5 50 km, z 5 4 km, but no

negative contours are shown. This is the standard heat source used

unless otherwise specified.

FIG. 1. Vertical profiles for the first few modes of (a) velocity and

(b) potential temperature, as described in (1).
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S
j
(x) ’ a

j
s

j

ffiffiffiffiffiffi
2p
p

d(x) 5 S
j
* d(x) (10)

for j 5 1, 2. Notice that sj, the standard deviation of the

Gaussian profile, is just as important to the delta func-

tion magnitude as aj, the amplitude of the Gaussian

heating. When this is taken into account, the delta func-

tion form of the standard heating used here is equivalent

to that of Mapes (1993) because the larger width of the

stratiform heating compensates for its weaker amplitude.

c. Exact linear solutions

When linearized about the sheared background state

u 5 (u1, 0, u2, 0)T, the simplified model in (5) becomes

›
t
u 1 A(u)›

x
u 5 S*d(x), (11)

where a delta function source term is also included.

When this linear system is forced by a delta function

source term, four discontinuous waves are excited and

propagate away from the source. These propagating fronts

are what Mapes (1993) referred to as ‘‘pulses’’ or ‘‘buoy-

ancy bores.’’ The jumps associated with these propagating

fronts can be found using the so-called Rankine–Hugoniot

jump conditions (Evans 1998; LeVeque 2002). In addition,

there can also be discontinuities in the variables at the

location of the source, x 5 0, and the jumps associated

with this discontinuity can also be found by using a form of

the Rankine–Hugoniot jump conditions (LeVeque 2002):

A[u] 5 S*, (12)

where A 5 A(u) is the background advection matrix

from (11) and [u] 5 u12u2 is the jump in u across the

location of the source, where u1 and u2 are the values of

u just to the right and left of the source, respectively.

This is a simple linear system of equations. Therefore,

given the background wind shear u, the barotropic wind

u0, the source propagation speed s, and the magnitude

S* of the convective heating, one can use the Rankine–

Hugoniot jump conditions in (12) to easily determine

[u], which measures the difference in the variables on

the east and west sides of the heat source. (Exact solu-

tions to the complete linear problem with shear can also

be readily found as shown in appendix A.)

In particular, if there is a jump in u1 and/or u2 across

the location of the source, this represents a difference in

the thermodynamic state (and therefore a difference in

favorability for convection) between the western and

eastern sides of the source. Determining how this dif-

ference in the thermodynamic state depends on u, u0,

and s is the main purpose of the present paper. In ad-

dition to numerical simulations of the equations in (3),

analytical solutions to the jump conditions in (12) will

also provide insight. Comparisons are shown below to

demonstrate that the linear approximation in (11) is

accurate in most cases.

One way to think of the jump conditions in (12) is to

recall the relationship wj 5 2›xuj/j from the continuity

equation in (2). If the jump [uj] is interpreted as a de-

rivative, then [uj] can be thought of as being propor-

tional to the vertical velocity at the location of the

source. The source initially excites four waves that

subsequently propagate away from the source, and the

state [u] is the steady balanced state left behind after the

adjustment process, with the source term partially bal-

anced by the ‘‘vertical velocity’’ [uj]. For an interpreta-

tion in terms of the physical vertical coordinate z instead

of vertical modes, see section 4.

3. Results

The results in this section will be of two types: (i) nu-

merical solutions to the nonlinear equations in (3) and (ii)

analytical solutions to the jump conditions in (12). First

the simplest case with initially motionless wind is de-

scribed, after which the effect of wind shear is considered,

then barotropic wind, and then both effects combined.

a. Simplest case with initially motionless wind

As an initial illustration of the gravity wave response

to diabatic forcing, consider the simplest case of initial

conditions with motionless, shear-free winds and a lo-

calized heat source that is turned on at time t 5 0 and

maintained thereafter. The heat source used here is the

standard source shown in Fig. 2 except with the deep

convective and stratiform heatings widened by factors

of 2 and 4, respectively, in order to broaden the propa-

gating fronts for illustration purposes. The amplitudes aj

of the heatings were reduced by factors of 2 and 4 to

keep the total heating magnitudes Sj* fixed at their

standard values.

The resulting gravity wave response to this heating is

shown in Fig. 3 at time t 5 4 h. The first baroclinic mode

response can be seen near x 5 6720 km. Its signature is

subsidence and adiabatic warming through the depth of

the troposphere, which tend to suppress the formation of

new convection. This component of the response prop-

agates away from the source at 50 m s21, whereas the

second baroclinic mode response propagates at only

25 m s21 and reaches only x 5 6360. This slower re-

sponse has low-level ascent and adiabatic cooling as its

signature, and these effects tend to favor the formation

of new convection (Mapes 1993; Tulich and Mapes

2008). In a more realistic situation with water vapor, the
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subsidence (ascent) would be accompanied by drying

(moistening), which accentuates the dry effects on the

favorability for new convection. In short, the effect of

the fast wave is to initially suppress the formation of new

convection, and the effect of the slow wave is to create a

nearby neighborhood of the preexisting convection that

is favorable for the formation of new convection. These

basic physical mechanisms of the gravity wave response

have been described in earlier work (Bretherton and

Smolarkiewicz 1989; Nicholls et al. 1991; Pandya et al.

1993; Mapes 1993), and the role of the slower, shallow

second baroclinic mode response in triggering convec-

tion has been documented in several numerical simula-

tions (Lac et al. 2002; Tulich and Mapes 2008). This

mechanism, whereby the second baroclinic mode pre-

conditions the lower troposphere for convection, has

also been included in models of convectively coupled

waves that agree well with observations (Mapes 2000;

Majda and Shefter 2001; Khouider and Majda 2006).

Note that in addition to the important effects of sub-

sidence or ascent at the location of the front on the trig-

gering of new convection, the resulting changes in the

thermodynamic state after the passage of the front

should also be important because they set up an envi-

ronment that is favorable or unfavorable for the for-

mation of new convection. In terms of elementary parcel

stability theory (Emanuel 1994), regions with Q(x, z) , 0

(.0) should be favorable (unfavorable) environments

for rising parcels and convection. In addition, the ver-

tical velocity is a less reliable variable in this model

because it must be computed numerically as the deriv-

ative of horizontal velocity through (2). For these rea-

sons, the thermodynamic state Q(x, z) will be used

throughout this paper as a measure of the favorability

for the formation of new convection.

As demonstrated below, the presence of wind shear or

barotropic wind can substantially alter the east–west

symmetry of this picture, with important implications

for the organization of convection. One way in which the

east–west symmetry can be broken is through differ-

ences in the strength of the subsidence (or the low-level

ascent) to the east and west of the source. Other mech-

anisms can also cause east–west asymmetries, as de-

scribed below.

b. Effect of different wind shears

The numerical response of the nonlinear model (3) to

the standard heat source (7) is shown in Fig. 4 for four

FIG. 3. Numerical solution of the simplified nonlinear model (3) with motionless initial

conditions. Snapshots are shown at time t 5 4 h for (a) potential temperature Q(x, z) and

(b) vertical velocity W(x, z). Solid (dashed) contours denote positive (negative) values, and

the zero contour is not shown. The contour intervals for Q and W are 0.25 K and 10 cm s21,

respectively.
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different initial shear profiles U(z). All of these cases

have zero barotropic wind, and the potential tempera-

ture plots in the middle and right columns are snapshots

at time t 5 4 h.

Figures 4a–c show results with a shearless initial

condition, which can be identified with the contour plots

in Fig. 3. Figure 4b shows the potential temperature

Q(z) just to the west and east of the source. Each side of

FIG. 4. Numerical simulation of waves generated by the localized heat source in Fig. 2 using the simplified nonlinear model (3). (left)

Shear profile used as the initial conditions. (middle) Vertical profile of potential temperature Q(z) to the west (east) of the heat source at

x 5 2100 km (x 5 1100 km) shown with a dashed (solid) line at time t 5 4 h. (right) First baroclinic mode potential temperature u1 at time

t 5 4 h.
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the source has the same Q(z), with Q(z) , 0 in the lower

troposphere, representing favorable conditions for the

formation of new convection (cf. Fig. 3). This east–west

symmetry can also be seen clearly in Fig. 4c, which shows

the first baroclinic mode potential temperature u1 at

time t 5 4 h.

Figures 4d–f show results with a jet shear initial con-

dition that roughly resembles the shear profiles of the

westerly wind burst phase of the Madden–Julian oscil-

lation (Lin and Johnson 1996; Biello and Majda 2005).

In terms of vertical baroclinic modes, this case uses

initial conditions of u1 5 10 m s21 and u2 5 210 m s21.

For this case there is a large difference in the gravity

wave response to the west and east of the source. As

shown in Fig. 4e, Q(z) is more negative to the west of the

source by roughly 1.5 K through most of the tropo-

sphere. This asymmetry is also clear in the snapshot of

u1 in Fig. 4f, which shows that the west (east) of the

source has become more (less) favorable for the for-

mation of new convection in comparison to the shearless

case in Figs. 4a–c. This is in agreement with actual ob-

servations of the formation of new convection in this

type of shear profile (Wu and LeMone 1999).

These results, when considered in terms of organized

convection, provide predictions for the preferred prop-

agation direction of wave trains of convective systems

(i.e., convectively coupled waves). In a particular back-

ground wind shear, if new convection is repeatedly

formed on the more favorable side of preexisting con-

vection, then a wave train of convective systems will

take form. For the westerly wind burst–like shear in

Figs. 4d–f, such a convectively coupled wave should then

propagate westward because the west side of preexisting

convection is more favorable. Notice that squall lines in

this wind shear would be expected to propagate east-

ward (LeMone et al. 1998; Wu and LeMone 1999), which

is in the opposite direction of the expected propagation

of the convectively coupled wave. In fact, this arrange-

ment, with the envelope propagating in the opposite di-

rection of the convective systems within it, is what tends

to be seen in observations and simulations (Nakazawa

1988; Grabowski and Moncrieff 2001; Tulich et al. 2007);

the results shown here suggest that jet shears provide an

ideal environment for this type of behavior. This pre-

ferred propagation direction of explicitly resolved con-

vectively coupled waves in different wind shears was also

captured in the recent model of Majda and Stechmann

(2009), which uses a convective parameterization and

does not resolve the squall lines in detail.

Figures 4g–i show results with a jet shear initial

condition that roughly resembles the shear profiles of

the westerly onset phase of the Madden–Julian oscilla-

tion (Lin and Johnson 1996; Biello and Majda 2005). In

terms of vertical baroclinic modes, this case uses initial

conditions of u1 5 25 m s21 and u2 5 10 m s21. The

results in this case are qualitatively similar to the case in

Figs. 4d–f, except the east side of the source is now more

favorable for convection because an easterly jet is used

for this case.

Figures 4j–l show results with an initial shear that

roughly resembles those associated with midlatitude

squall lines (Pandya and Durran 1996; Fovell 2002). In

terms of vertical baroclinic modes, this case uses initial

conditions of u1 5 29 m s21 and u2 5 23 m s21. Figure 4k

shows that Q(z) is nearly identical to the immediate west

and east of the source, signifying that each side is nearly

equally favorable for the formation of new convection,

although Fig. 4l shows that the entire gravity wave re-

sponse is not identical to the west and east of the source.

In such a situation with equal favorability on each side,

one would not expect wave trains of convective systems

to develop because convection should form sometimes

to the east and sometimes to the west of preexisting

convection. This is consistent with the absence of wave

trains of convective systems in the midlatitudes where

shears like this are common, although rotational effects

also suppress wave trains of squall lines in midlatitudes

(Liu and Moncrieff 2004).

In summary, the results of Fig. 4 demonstrate that

wind shear can (but does not necessarily) cause the east

and west of the source to be unequally favorable for the

formation of new convection. Notice that this asymme-

try comes from two parts. In Fig. 4f, for example, there

is greater warming by the 150 m s21 wave than by

the 250 m s21 wave, and there is warming (cooling) in

u1 due to the 125 m s21 (225 m s21) wave. Both of these

TABLE 2. Numerical (num.) and analytical (anal.) predictions of

the jump [u1] for different wind shears and different amplitudes of

stratiform heating.

u
1

(m s21)

u
2

(m s21)

22a2

(K day21)

[u1]

(num.) (K)

[u1]

(anal.) (K)

0 0 50 0 0

10 210 50 1.29 1.42

25 10 50 21.03 21.14

29 23 50 20.16 20.15

0 0 50 0 0

5 25 50 0.65 0.71

10 210 50 1.29 1.42

15 215 50 1.93 2.14

20 220 50 2.59 2.85

25 225 50 3.29 3.56

10 210 200 2.05 2.85

10 210 100 1.59 1.90

10 210 50 1.29 1.42

10 210 25 1.13 1.19

10 210 12 1.04 1.07
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effects involve interactions between the vertical modes

and are not seen in the motionless case in Figs. 4a–c.

A comparison of these nonlinear numerical results

with linear theory results using (12) is shown in Table 2.

The numerical and theoretical values of [u1] are within

10% of each other for each of the cases from Fig. 4, in-

dicating that linear theory provides a good estimate of

the nonlinear results. The reason for this is that the wave

and source amplitudes are weak in a suitable sense.

Although a jump in u1 of 1–2 K is large in the sense that

its impact on the formation of new convection is very

important, it is small in a nondimensional sense with

respect to the reference temperature a 5 15 K. This

response is ultimately determined by the strength of the

source terms; and while the amplitude of the heating is a

typically large value of O(300 K day21), this heating is

actually weak in terms of the nondimensional form of

S
j
* 5 a

j
s

j

ffiffiffiffiffiffi
2p
p

. This heating magnitude also includes the

effect of the heating width sj, which is small in compar-

ison to the longer far-field length scales of interest here.

Also shown in Table 2 are results of further nonlinear

simulations with varying shear strength and varying

stratiform heating strength (and corresponding results

using linear theory). The jump [u1] varies approximately

linearly with the strength of the wind shear for the cases

like the westerly jet of Figs. 4d–f, with [u1] reaching

values larger than 3 K for the strongest winds consid-

ered, and the linear theory values are again within 10%

of the numerical values. As the strength of the stratiform

heating decreases, with fixed deep convective heating,

the jump [u1] decreases and linear theory agrees better

with the nonlinear results.

Many of the results from Fig. 4 and Table 2 (and other

results in this paper) can be seen directly from the exact

linear formulas for the jumps, which are found by solv-

ing the system of equations in (12):

where the denominator (denom) for these fractions is

2� 3u2
1 1 3u2

2. These formulas show that [u1] 5 0 for the

shearless case of u1 5 u2 5 0, which represents balance

between the vertical velocity [uj] and the heating Sj*.

Also notice that [u2] 5 0 for any shear (although [u2] 6¼ 0

for nonzero barotropic winds or for shears with higher

vertical resolution, as shown below).

c. Effects of barotropic wind and propagating
source

Several interesting effects emerge with a nonzero

barotropic wind or a propagating heat source [which are

equivalent, as discussed in (6)]. Figure 5 shows results of

nonlinear simulations with u1 5 u2 5 0 initially and with

varying barotropic winds of u0 5 0, 25, 210, and

215 m s21. (Cases with u0 . 0 are mirror images about

x 5 0 for this case with u1 5 u2 5 0 initially.) The left

column shows Q(z) just to the west and east of the

source, and the middle and right columns show snap-

shots of u1 and u2, respectively, at time t 5 4 h. Notice

that the headwind confines the eastward-moving waves

to the neighborhood of the source, and it helps the

westward-moving waves travel farther from the source.

Thus, the barotropic wind may affect whether the gravity

waves are able to propagate far enough away from a

preexisting convective system to excite a new convec-

tive system, or whether the gravity waves are held close

enough to an individual convective system to excite new

convective cells. Also notice that the barotropic wind

creates a large jump in u2. The large value of [u2] cor-

responds to a state to the east of the source that is very

favorable for convection in the lower troposphere, as

shown in the left column of Fig. 5 at x 5 1100 km by the

solid lines. If the easterly barotropic wind is interpreted

as an eastward-propagating heat source, then this rep-

resents a preconditioning of the upstream environment,

which has been observed and studied in numerical

simulations of squall lines (Fovell 2002; Fovell et al.

2006).

The large increase in [u2] as the barotropic wind

becomes stronger is due to near-resonant forcing of the

second baroclinic mode, which has a propagation speed

of 25 m s21. This can be seen in the exact linear theory

solutions to (12) for this case of zero baroclinic back-

ground winds and varying barotropic wind:

[u
1
] 5� 1

1� u2
0

S
1
*, [u

2
] 5� 1

1

4
� u2

0

S
2
*,

[u
1
] 5�

u
0

1� u2
0

S
1
*, and [u

2
] 5�

u
0

1

4
� u2

0

S
2
*.

(14)

The jumps [uj] are zero for u0 5 0, but [u2] becomes large

as u0 approaches 25 m s21 (which is ½ in nondimensional

[u
1
] 5�2� 3u2

1

denom
S

1
* 1

6u
1
u

2

denom
S

2
*, [u

2
] 5�

6u
1
u

2

denom
S

1
*� 8 1 12u2

2

denom
S

2
*,

[u
1
] 5�

3
ffiffiffi
2
p

u
2

denom
S

1
*�

6
ffiffiffi
2
p

u
1

denom
S

2
*, and [u

2
] 5 0,

(13)
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units). Notice that this effect is also significant in the

u1 response, with Fig. 5 showing clear differences in the

warming of u1 to the east and west of the source.

One nonlinear feature in Fig. 5k is the overshooting

front that appears in u1 near x 5 500 km as the barotropic

wind becomes stronger. At the same time, the down-

stream-propagating front in the region 21000 km , x ,

2500 km is depressed as the barotropic wind becomes

stronger. These same trends have also been observed

in numerical simulations of density currents (Liu and

FIG. 5. As in Fig. 4, but with shearless initial conditions with different barotropic wind u0 5 0, 25, 210, and 215 m s21 from top to

bottom. (left) Vertical profile of potential temperature Q(z) to the west (east) of the heat source at x 5 2100 km (x 5 1100 km) shown

with a dashed (solid) line at time t 5 4 h; (middle), (right) u1 and u2, respectively, at time t 5 4 h.
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Moncrieff 1996). If there is a resultant change in the ver-

tical velocity at the front, then this could change the trig-

gering or suppressing effect of the front.

A comparison of the nonlinear numerical results with

linear theory is shown in Table 3. The jumps in u2 are in

agreement to within 10%, and the jumps in u1 show the

same trends as u0 varies but differ quantitatively, prob-

ably because of the nonlinear overshooting front dis-

cussed in the previous paragraph.

d. Effects of both wind shear and barotropic wind

The effect of wind shear in combination with a baro-

tropic wind is shown in Fig. 6. The westerly wind burst–

like shear from Figs. 4d–f, with u1 5 10 and u2 5

210 m s21, is shown with three values of the barotropic

wind: u0 5 210, 0, and 10 m s21. These cases can also be

interpreted in terms of different propagation speeds of

the heat source. For instance, if a squall line formed in

the wind shear in Fig. 6e and propagated eastward at the

jet max speed of roughly 10 m s21, then the wind U(z) in

Fig. 6a would be that seen in a reference frame moving

with the squall line. This case displays a combination of

the results from Figs. 4d–f and Figs. 5g–i, which showed

the separate effects of a jet shear and an easterly baro-

tropic wind, respectively. The upstream environment

(x . 0) is much less favorable than the downstream

environment (x , 0) for the formation of deep convec-

tion (because [u1] 5 1.77 K), but the upstream environ-

ment is favorable for low-level convection because Q(z) ,

21 K in the lower troposphere (Fig. 6b), which is a phe-

nomena studied by Fovell (2002) and Fovell et al. (2006).

Another important effect of the barotropic wind in

Fig. 6c is that it helps the downstream waves more

quickly leave the environment of the preexisting con-

vective system and reach locations where new convec-

tive systems could form. At the same time, it prevents

the upstream waves from leaving the vicinity of the

preexisting convection, which could prevent any new

convection from forming a new convective system that is

distinct from the preexisting system. These effects are

likely important in the formation of wave trains of

convective systems, which typically show a succession of

distinct convective systems propagating transverse to

the envelope of the wave train (Oouchi 1999; Shige and

Satomura 2001; Tulich et al. 2007).

The case in Figs. 6i–l, with u0 5 10 m s21, is possibly a

more realistic approximation to a westerly wind burst than

the case in Fig. 6e because it has nonzero westerly winds at

the lowest levels of the free troposphere (Lin and Johnson

1996; Biello and Majda 2005). The western side of the

source in this case is much more favorable for convection

than the eastern side (Figs. 6j–l), which is in agreement

with observations of the actual formation of new con-

vection in similar wind shears (Wu and LeMone 1999).

These nonlinear results with the jet shear and varying

barotropic wind are compared with linear theory solu-

tions of (12) in Table 4. The results agree to within about

10% except for the cases with strong easterly barotropic

wind, which appear to exhibit nonlinear overshooting

fronts (Fig. 6c near x 5 500 km). Interestingly, the cases

with easterly (westerly) barotropic wind are more (less)

nonlinear than the u0 5 0 case with this jet shear, pos-

sibly due to the difference in the strength of the fast

u1 fronts near x 5 2900 and 1700 km in this jet shear

in Fig. 6g.

Cases with the midlatitude squall line–like shear with

different barotropic winds are shown in Fig. 7. The case

that most resembles the reference frame moving with

the squall line would be the left column of Fig. 7. In this

case, the upstream side of the source is much more fa-

vorable at low levels (because of near-resonant forcing)

and less favorable at upper levels. This type of thermo-

dynamic environment is consistent with the formation of

new low-level convective cells in the upstream envi-

ronment as studied by Fovell (2002) and Fovell et al.

(2006); because of the reduced speed of the upstream-

propagating waves, these effects are confined to the

neighborhood of the preexisting convection, which al-

lows the new convective cells to become part of the

preexisting convective system.

e. Optimal shears

Given that different wind shears lead to different

values of [u1], as shown in Fig. 4, two questions come

to mind: Which wind shears give the largest jump

[u1]? Which wind shears give [u1] 5 0? To answer these

questions, the jump [u1] was computed using the exact

formula from (13) for the family of two baroclinic mode

wind shears satisfying u2
1 1 u2

2 5 (10 m s�1)2. Results

are shown in Fig. 8 for three cases of the stratiform

heating with the deep convective heating held fixed at

its standard value. The jump [u1] is maximized for a jet

shear (Fig. 8b) and is zero for midlatitude squall line–

like shears (Fig. 8c). These results can also be seen from

TABLE 3. Numerical and analytical predictions of the jumps [u1]

and [u2] across the location of the source. Initial conditions are

shearless with varying values of barotropic wind u0.

u0

(m s21)

[u1]

(num.) (K)

[u1]

(anal.) (K)

[u2]

(num.) (K)

[u2]

(anal.) (K)

0 0 0 0 0

25 0.12 0.23 20.25 20.23

210 0.23 0.47 20.57 20.53

215 0.27 0.73 21.09 21.03
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the linear theory formulas in (13). Assuming Sj* 5 24S2*

as for the standard heating profile used here, and as-

suming that the u2
j terms in the denominator are negli-

gible, the formula in (13) for [u1] is approximately

[u
1
] ’ (2u

2
� u

1
)6

ffiffiffi
2
p

S
1
*. (15)

This will be largest when u
1

and u
2

have different signs

(as in the jet shears in Fig. 4) and it will be smallest

in magnitude when u
1

and u
2

have the same sign (as in

the midlatitude squall line–like shear). In the next sec-

tion, these results are discussed in terms of the physical

vertical coordinate z rather than vertical modes.

FIG. 6. As in Fig. 4, but using initial jet shears with u0 5 210, 0, and 10 m s21 from left to right. (top)–(bottom) Wind profile used as the

initial conditions; vertical profile of potential temperature Q(z) to the west (east) of the heat source at x 5 2100 km (x 5 1100 km) shown

with a dashed (solid) line at time t 5 4 h; u1 at time t 5 4 h; and u2 at time t 5 4 h.
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4. Physical mechanisms

In this section the physical mechanisms of the east–

west asymmetries are summarized in terms of vertical

baroclinic mode behavior. Then these mechanisms are

discussed in terms of the physical vertical coordinate z

rather than vertical modes, and the link with advection

by the background wind can be seen more clearly.

The results in the previous section with two baroclinic

modes clearly demonstrate the effects of wind shear and

barotropic wind on diabatically forced gravity waves.

The effect of wind shear is mainly to create east–west

asymmetries in u1. This asymmetry comes from two

effects: (i) differences in the deep warming of the

50 m s21 waves to the east and west of the source and (ii)

differences in the u1 contributions to the 25 m s21 waves.

The effects of barotropic wind are mainly (i) to increase

the low-level cooling on the upstream side due to near-

resonant forcing, (ii) to create east–west asymmetries in

the u1 response, and (iii) to slow down (speed up) the

propagation of upstream (downstream) waves. These

effects have important implications for the formation of

organized convection (both new convective cells and

new convective systems), and these effects were high-

lighted throughout the previous section. Because these

effects are captured well by linear theory, the underlying

mechanisms are presumably due to advection by the

background wind, which is described in the following

discussion.

To see more clearly how the background wind creates

east–west asymmetries in diabatically forced gravity

waves, consider the steady-state linear setup of (11)–(12)

in terms of the physical vertical coordinate z instead of

vertical modes. The horizontal momentum and poten-

tial temperature equations take the form

�U(z)
dW*

dz
1 W*

dU

dz
1 [P] 5 0, and (16)

U(z)
d[P]

dz
1 W* 5 S*(z), (17)

after applying the hydrostatic and continuity equations,

[Q] 5 d[P]/dz and [U] 5 2dW*/dz. This setup is de-

scribed in more detail in appendix B. These two equa-

tions can be combined to give a single second-order

ordinary differential equation for [P](z):

U
2 d2[P]

dz2
1 [P] 5 U

dS*

dz
� S*

dU

dz
. (18)

This can be thought of as the physical space analog of

the jump conditions in (12) for the vertical modes.

In fact, if one assumes vertical structures with only two

baroclinic modes, the right-hand side of (18) is equiva-

lent to the leading-order terms (ignoring the u2
j terms)

of the formulas for [u1] and [u2] in (13). This sug-

gests that the leading-order part of (18) is the simple

formula

[P] ’ U
dS*

dz
� S*

dU

dz
, (19)

which is a concise description of the east–west asym-

metry of diabatically forced gravity waves due to back-

ground wind shear.

There is an equivalent, alternative way to arrive at

(19) that draws the connection with advection. If the

dominant balance in (17) is W* 5 S*(z), then (19) is

simply the horizontal momentum Eq. (16). Thus, �USz*

and S*Uz are simply the terms for advection of dia-

batically forced horizontal momentum by the back-

ground wind U(z).

While the simplified Eq. (19) appears to capture the

leading-order effects of the solutions with truncated

vertical structures, one must be careful about taking the

limit of small U
2

in (18); this is a singular limit, and the

limiting equations could thus have qualitatively differ-

ent solutions than the original equation. In fact, this

appears to be the case in this situation: the equation in

(18) allows for the possibility of critical layers when

U(z) 5 0 at some height, but the simplified formula in

(19) does not. The absence of critical layer effects also

seems to be a property of the jump conditions (12) for

the vertically truncated system. This is likely due to the

model’s low vertical resolution, since critical layer ef-

fects typically occur on small vertical length scales

and are associated with high-frequency gravity waves

with significant vertical energy propagation (Booker and

Bretherton 1967; Lindzen and Tung 1976; Lin 1987; Shige

and Satomura 2001).

In short, the simplified Eq. (19) and the truncated model

(11)–(12) effectively filter out critical layer effects by

considering only low-frequency, horizontally propagating

TABLE 4. As in Table 3, but initial conditions include a jet shear

with u
1

5 10 and u
2

5 �10 m s21.

u0

(m s21)

[u1]

(num.) (K)

[u1]

(anal.) (K)

[u2]

(num.) (K)

[u2]

(anal.) (K)

215 2.02 3.29 21.15 21.44

210 1.77 2.31 20.69 20.68

25 1.50 1.78 20.30 20.28

0 1.29 1.42 0 0

5 1.14 1.18 0.28 0.27

10 1.06 1.02 0.62 0.59

15 1.03 1.00 0.98 1.15
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waves. These are useful approximations for the purposes

of the present paper, since the main focus is on the far-

field response to diabatic forcing. Critical layer effects

could be studied in the future using (18) and the associ-

ated forced Taylor–Goldstein equation shown in appen-

dix B. Diabatically forced Taylor–Goldstein equations,

both nonhydrostatic and hydrostatic, were also recently

derived by Majda and Xing (2009).

In terms of implications for organized convection, it

was found by Shige and Satomura (2001) that critical

layers play an important role by creating a wave duct,

beneath which high-frequency gravity waves can prop-

agate without losing too much energy to the strato-

sphere. This is not inconsistent with the results of the

present paper; here the focus is on the far-field effects

of low-frequency gravity waves that are forced by the

FIG. 7. As in Fig. 6, but using initial shear similar to the environment of a midlatitude squall line with u0 5 (left) 210, (middle) 0, and

(right) 10 m s21.
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mesoscale filtered heating of a convective system rather

than on the high-frequency waves forced by fluctuations of

convective cells. Both high- and low-frequency gravity

waves are important for triggering or favoring the forma-

tion of new convection, with high- (low) frequency waves

probably most important for triggering (favoring). Low-

frequency gravity waves, unlike high-frequency waves, can

propagate long distances horizontally without losing too

much energy to the stratosphere (Shige and Satomura

2001). Several studies have shown that the tropopause

itself is enough to trap low-frequency waves in the tro-

posphere (Mapes 1993, 1998; Xue 2002; Liu and Mon-

crieff 2004), and the use of an upper rigid lid in this paper

is meant to be an approximation of this effect, but it

could also be a stand-in for a wave duct. In summary,

both high- and low-frequency waves are important for

convective organization, but the main focus of the pre-

sent paper is on low-frequency waves, in which case critical

layers are not an essential effect.

Many other assumptions were made in the models

here that should be kept in mind when interpreting the

results, such as hydrostatic balance, two-dimensional

flow, and the simple imposed form of the convective

heating. These assumptions have been commonly used

in the earlier studies mentioned in the introduction as

well; the reader is referred to these references for fur-

ther discussion. The effects of higher vertical modes are

also not studied in detail here (but some results are

shown in the next section). Other studies have shown

that the third baroclinic mode may play an important

role in convective organization (Lane and Reeder 2001;

Tulich and Mapes 2008). This might be explained by

convective forcing of the third baroclinic mode due to

convection with lower cloud-top heights. It is also pos-

sible that the effect of the higher baroclinic modes, in the

context of wave trains of convective systems, is limited

by their slow propagation speeds, which confine them to

the close neighborhood of the source.

In any case, the simplified model used here is not

meant to capture every detail of this problem; it is meant

to isolate a few important effects and demonstrate the

basic effects of wind shear and barotropic wind in a

simplified setting. Indeed, one important strength of this

model is its simplicity, which allows clear, inexpensive

computation of a wide range of possibilities as well as

analytical understanding. This simplified model and the

results shown here should help guide further studies that

include additional physical effects.

5. Sensitivity studies with higher vertical resolution

In this section results are shown using the linear the-

ory from (12) extended to include the effects of the third

and fourth baroclinic modes.

a. Sensitivity to number of vertical modes

Earlier results in this paper emphasize that wind shear

and/or nonlinearities lead to interactions between ver-

tical modes. One might then expect that higher vertical

modes beyond the first two modes would be excited even

if the source term includes contributions from only the

first two modes. For instance, the 25 and 50 m s21 waves

might include contributions from higher vertical modes,

or wind shear could cause the 12 and 17 m s21 waves to

be excited in the presence of wind shear even if the

source term includes contributions from only the first

two modes.

To check that the results of section 3 do not change

much when the gravity wave response is allowed to in-

clude more vertical modes, several cases are repeated

here with the same wind shears and source terms with

only two vertical modes, but with a wave response that

can include contributions from the third and fourth

vertical modes. This is done by computing the jumps [uj]

using the linear theory (12) with an advection matrix

A(u) that is 6 3 6 and 8 3 8 for the cases including

FIG. 8. Linear theory calculations of [u1] for the family of wind shears with u0 5 0 and u2
1 1 u2

2 5 (10 m s�1)2; (a) [u1] as a function of u
1
;

(b) wind shear U(z), which maximizes [u1]; (c) wind shear U(z) for which [u1] 5 0. Plots are shown for three different values of the

stratiform heating amplitude: 2a2 5 225 (dashed–dotted), 250 (dashed), and 275 K day21 (solid).
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responses in modes up to the third and fourth, respec-

tively. These larger advection matrices are given in ap-

pendix A. Table 5 shows a comparison of linear theory

results with two, three, and four baroclinic modes for the

westerly wind burst–like wind shear with u1 5 10 and

u2 5 �10 m s21. Although the jumps [uj] change de-

pending on the number of modes, the changes are not

drastic. Similar results for the wind shear that resembles

conditions for midlatitude squall lines (with u1 5 29 and

u1 5 23 m s21) are shown in Table 6. Again, although

the jumps [uj] change depending on the number of

modes, the changes are not drastic. These results suggest

that the simple case with two modes provides a rea-

sonable approximation to [Q](z) when the wind shear

and source term are composed of two modes.

b. Sensitivity to jet height

Up to this point, the wind shear and source term in-

cluded contributions from only the first and second

vertical modes. However, the wind shear profiles asso-

ciated with squall lines typically have lower tropospheric

shear that cannot be adequately represented by the first

two baroclinic modes (Pandya and Durran 1996; Fovell

2002; Majda and Xing 2009). In this section, background

wind shears will be used with contributions from the

third and fourth baroclinic modes, so wind shear profiles

with jets in the lower troposphere can be used. The heat

source, however, will still be the standard case from Fig. 2

with contributions from only two vertical modes. As in

the previous subsection, the linear theory results (12)

will use the advection matrix A(u) with four vertical

modes, which means that the gravity wave response in-

cludes contributions from the third and fourth vertical

modes.

The top row of Fig. 9 illustrates three families of

background shears. These families are the projections

onto four baroclinic modes of wind profiles with constant

shear of 2.5 m s21 km21 in the lower troposphere up to

heights of 8, 6, or 4 km. The mid- and upper-tropospheric

winds above this height also have constant shear, and

results are computed for a range of upper-tropospheric

shears that includes jet shears, midlatitude squall line–

like shears, and constant shears. These shear profiles are

similar to those used by Liu and Moncrieff (2001).

Whereas the top row of Fig. 9 shows U(z) including a

barotropic component, the calculations of [uj] use zero

barotropic wind.

The middle row of Fig. 9 shows the jumps j[uj] for

these different wind shears. [The factor j is included in

j[uj] to give each mode’s vertical structure function an

amplitude of 1; see the expansion in (1).] The circles

represent the values of j[uj] corresponding to the shear

profiles in the top row of Fig. 9. For each shear family,

[u1] . 0 for the jet shear, [u1] ’ 0 for the midlatitude

squall line–like shear, and [u1] , 0 for the constant

shear. These results are consistent with the two-mode

results with similar shears in Fig. 4. The jumps 2[u2] and

4[u4] are relatively small for all of these shears, and

they do not vary much for the different shears consid-

ered here. The jump 3[u3] also changes little except for

the different jet profiles; it is negative for the mid-

tropospheric jet in Fig. 9b and positive for the lower-

tropospheric jet in Fig. 9h. Although there are some

changes as the jet height changes, the jumps [Q](z) are

generally determined by [u1], as shown in the middle

row of Fig. 9. No matter what the jet height is, it is ap-

proximately true that [Q](z) . 0 for the jet profiles,

[Q](z) ’ 0 for the midlatitude squall line–like profiles,

and [Q](z) , 0 for the linear profiles, which is the trend

shown in [u1].

6. Conclusions

The effects of wind shear and barotropic wind on

gravity waves were studied with a focus on the implica-

tions for organized convection. It was shown that because

of advection by a background wind shear or barotropic

wind, eastward- and westward-propagating gravity waves

can have different properties, and this asymmetry can

create differences in the environments to the east and

west of a heat source. Therefore, because of wind shear

or barotropic wind, one side of preexisting convection

can be more favorable for the formation of new con-

vection than the other side. These effects were discussed

in the context of two settings for convective organiza-

tion: the formation of new convective systems near a

TABLE 5. Linear theory calculations with two, three, and four

baroclinic modes for the case of a jet shear with u
1

5 10 and

u2 5 �10 m s21. All values are in K.

Num. of

modes [u1] [u2] [u3] [u4]

2 1.42 0 — —

3 1.58 20.14 20.10 —

4 1.69 20.22 20.07 20.10

TABLE 6. As in Table 5, but for the case of a midlatitude squall

line–like shear with u
1

5 �9 and u
2

5 �3 m s21.

Number of

modes [u1] [u2] [u3] [u4]

2 20.15 0 — —

3 20.19 20.01 20.25 —

4 20.21 20.04 20.34 20.01
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preexisting convective system and the formation of new

convective cells of a single convective system.

Nonlinear and linear models showed that the greatest

difference in favorability between the two sides is cre-

ated by jet shears, and little or no difference in favor-

ability is created by wind profiles with shear at low levels

and no shear in the upper troposphere. These results did

not appear to be sensitive to the height of the jet,

whether it is in the lower or middle troposphere. The

cases with jet shear similar to the westerly wind burst

phase of the Madden–Julian oscillation were in agree-

ment with actual observations of the formation of new

convection during that period. These processes should

play an important role in the organization of wave trains

of convective systems. For instance, they provide pre-

dictions for the preferred propagation direction of wave

trains of convective systems in different background

wind shears. Also, midlatitude squall lines typically

propagate in an environment with shear at low levels

and no shear in the upper troposphere (Pandya and

Durran 1996; Fovell 2002) and are often isolated.

The results here are broadly consistent with these facts,

although the effect of rotation also suppresses wave trains

of squall lines in midlatitudes (Liu and Moncrieff 2004).

A nonzero barotropic wind (or, equivalently, a prop-

agating heat source) was shown to also affect the fa-

vorability on each side of the preexisting convection.

The barotropic wind was shown to amplify the strength

of upstream gravity waves that are known to trigger new

convective cells within a single convective system. The

strong amplification of these waves seemed to be the

result of near-resonant forcing as the source propaga-

tion speed approached the speed of second baroclinic

mode gravity waves. The barotropic wind also had the

effect of advecting downstream waves farther away from

the source, where they have a greater chance of triggering

FIG. 9. Linear theory calculations of j[uj] for three different families of wind shears with jet heights of 8, 6, and 4 km from the left column

to the right column. (top) Sample wind shears from each family; (middle) j[uj] for a range of upper tropospheric wind shears: [u1] (solid),

2[u2] (dashed), 3[u3] (dashed–dotted), and 4[u4] (dotted); (bottom) [Q](z) for the cases of a jet profile (solid) and linear U(z) (dashed).
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or favoring a new convective system, and confining up-

stream waves to the vicinity of the source, where they

have a greater chance of triggering a new convective cell

that will merge with the preexisting convective system.

In addition, the nonlinear simulations revealed over-

shooting fronts in the presence of a barotropic head-

wind, which has also been seen in two-dimensional

simulations of density currents.

All of these effects are captured in a two-dimensional

model that is further simplified by including only the first

two vertical baroclinic modes. Numerical results were

shown with a nonlinear model, and linear theory results

were in good agreement with the nonlinear model for

most cases. One important advantage of the vertically

truncated model used here is that it is much less expensive

computationally than models with full vertical resolution,

and, in some cases, conceptually simpler as well.
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APPENDIX A

Model Details

a. Model in matrix form

For the nonlinear model in matrix form (5), the ad-

vection matrix is

A(u) 5

u
0

1
3ffiffiffi
2
p u

2
�1

3

2
ffiffiffi
2
p u

1
0

1 1 2
ffiffiffi
2
p

u
2

u
0
� 1ffiffiffi

2
p u

2
� 1

2
ffiffiffi
2
p u

1

ffiffiffi
2
p

u
1

0 0 u
0

�1

� 1

2
ffiffiffi
2
p u

1

1

2
ffiffiffi
2
p u

1
�1

4
u

0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

.

(A1)

Similarly, for the case with three baroclinic modes in

section 5, the advection matrix is

These matrices are derived by projecting the equations of

motion onto the different baroclinic modes, as explained

by SMK08. The 8 3 8 advection matrix for the case with

four baroclinic modes can be derived in the same way; its

explicit form is available from the authors upon request.

b. Representation of convective heating

The use of a delta function heating in (9) is essentially

a far-field approximation; that is, we are interested in the

state of the model variables far away from the source,

relative to certain length and time scales as discussed

below. Quantitatively, this approximation can be illus-

trated by considering the model in (5) with a source term

S(x) that varies with the length scale x. The state of the

system far from the source is described in terms of larger

distances and longer times x9 5 «x and t9 5 «t, where

0 , «� 1. Rewriting (5) with source term S(x) in terms

of these longer scales gives

›
t9
u 1 A(u)›

x9
u 5 «�1S(«

�1x9). (A3)

In the limit « / 0 for far-field length and time scales, this

source term has the appearance of a delta function:

«�1S(«
�1x9) ’ S*d(x9), (A4)

where S* 5
Ð

S(x) dx, as in (9).

A(u) 5

u
0

1
3ffiffiffi
2
p u

2
�1

3

2
ffiffiffi
2
p u

1
1

5

2
ffiffiffi
2
p u

3
0

5

3
ffiffiffi
2
p u

2
0

�1 1 2
ffiffiffi
2
p

u
2

u
0
� 1ffiffiffi

2
p u

2
� 1

2
ffiffiffi
2
p u

1
1

9

2
ffiffiffi
2
p u

3

ffiffiffi
2
p

(u
1
� u

3
) �2

ffiffiffi
2
p

3
u

2

3ffiffiffi
2
p u

2

2
ffiffiffi
2
p

u
3

0 u
0

�1
2
ffiffiffi
2
p

3
u

1
0

� 1

2
ffiffiffi
2
p u

1
1

9

2
ffiffiffi
2
p u

3

1

2
ffiffiffi
2
p (u

1
� u

3
) �1

4
u

0
� 1

6
ffiffiffi
2
p u

1

3

2
ffiffiffi
2
p u

1

� 1ffiffiffi
2
p u

2
0

1

2
ffiffiffi
2
p u

1
0 u

0
�1

�2
ffiffiffi
2
p

3
u

2

1

3
ffiffiffi
2
p u

2
� 1

6
ffiffiffi
2
p u

1

ffiffiffi
2
p

3
u

1
�1

9
u

0

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

. (A2)
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The relevance of this approximation to the model

used here can be seen by considering the model’s space

and time scales. The largest length scale of the source

term in (8) is the standard deviation s2, and the impor-

tant time scale is s2/c2, where c2 is the second baroclinic

mode gravity wave speed (the slowest gravity wave

speed of the model). These scales characterize how long

it takes gravity waves to propagate sufficiently far from

the source, leaving behind the far-field state of interest.

As illustrated in all of the figures here, the length and

time scales of interest are always sufficiently large rela-

tive to s2 and s2/c2 (with the possible exception of cases

when u0 approaches c2). If higher baroclinic modes were

included, this approximation could become question-

able because of the slower propagation speed of these

modes.

Note that the far-field approximation also clusters

nearby heat sources into one heat source at a single lo-

cation. If the heat source is the sum of two phase-lagged

heat sources, S 5 S(x) 1 S(x 1 x0), then these heat

sources would be located at the same location in the

limit « / 0 if x0 is a small phase shift (i.e., if x0 � s).

Therefore, the deep convective and stratiform parts of

the convective heating are at the same location in the

far-field approximation. This ignores the circulations

produced by variations in the heat sources as studied by

Pandya and Durran (1996) and only reveals the jumps in

the variables across the location of the entire heat source.

The far-field approximation allows simple computa-

tion of the jumps [u] from (12), which is an exact formula

for the far-field jumps for linear dynamics in the limit

« / 0. For nonlinear dynamics, however, the approxi-

mation is less exact because of breaking waves and the

associated energy dissipation, which is illustrated in

Tables 3 and 4.

c. Exact linear solutions

In section 2c the linearized system with a delta function

source term in (11) was considered, and the Rankine–

Hugoniot jump conditions for the jumps across the lo-

cation of the source were given in (12). For this system, it

is also possible to compute the entire exact solution in-

cluding the speeds and amplitudes of the propagating

discontinuities (Evans 1998; LeVeque 2002). One way to

find the solution is to decompose the matrix problem in

(11) into scalar problems associated with each of the

eigenvectors ep of A, where p 5 1, 2, 3, 4. The solution

u(x, t) can be written as u(x, t) 5 S4
p51a

p
(x, t)e

p
, where

ap(x, t) satisfies the scalar problem ›tap 1 lp›xap 5

Sp*d(x), where lp is the pth eigenvalue of A and Sp* is the

projection of S* onto ep. The solution to this scalar

problem is

a
p
(x, t) 5

0 if x , 0,

1

l
p

S
p
* if 0 , x , l

p
t,

0 if x . l
p
t,

8>>>><
>>>>:

(A5)

if lp . 0 and similarly if lp , 0. Therefore, the state

u(x, t) at a particular space–time location (x, t) is the sum

of ap ep for each wave that has passed location x before

time t.

APPENDIX B

Arbitrary Vertical Structure

Throughout this paper, truncated vertical structures

were used with only a few vertical modes. Linear theory

for these cases had the form of Rankine–Hugoniot jump

conditions in matrix form, as shown in (12). In this ap-

pendix, instead of using a finite number of vertical modes,

we derive the jump conditions for arbitrary vertical struc-

tures as functions of the physical coordinate z. Instead of

matrix equations, the jump condition will be an ordinary

differential equation for [Q](z).

Our starting point is the steady-state linearized hydro-

static Boussinesq equations with a source term whose x

dependence takes the form of a delta function:

U(z)U
x

1 W
dU

dz
1 P

x
5 0

U(z)Q
x

1 W 5 S*(z)d(x)

P
z

5 Q

U
x

1 W
z

5 0.

(B1)

Assume a solution to these equations of the form

U(x, z) 5 �dW*

dz
H(x), W(x, z) 5 W*(z)d(x),

Q(x, z) 5
d[P]

dz
H(x), and P(x, z) 5 [P](z)H(x),

(B2)

whereH(x) is the Heaviside function and the hydrostatic

and incompressibility equations were used to phrase these

solutions in terms of W*(z) and [P](z) alone.

With this solution form, and dropping the common d(x)

from each term, the W*(z) and [P](z) equations become

�U(z)
dW*

dz
1 W*

dU

dz
1 [P] 5 0

U(z)
d[P]

dz
1 W* 5 S*(z).

(B3)
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These two equations can be combined to give a single

second-order ordinary differential equation for [P](z):

U
2 d2[P]

dz2
1 [P] 5 U

dS*

dz
� S*

dU

dz
. (B4)

From this equation, [Q](z) could then be computed us-

ing (B2). Alternatively, one could write a single differ-

ential equation for W*(z), which takes the form of a

forced Taylor–Goldstein equation (Hazel 1972):

U
2 d2W*

dz2
1 1�U

d2U

dz2

 !
W* 5 S*. (B5)

Other versions of forced nonhydrostatic and hydrostatic

Taylor–Goldstein equations were also recently studied

by Majda and Xing (2009). Although some discussion of

physical mechanisms is provided in section 4, deeper

examination of these equations is beyond the scope of

this paper, but they should be useful for further studies.
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