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Introduction

This Supporting Information describes details of the methods for analyzing the model

and the observational data, and it describes derivations of mathematical formulas. The

text sections are organized as follows:

Text S1. Model Derivation

Text S2. Spatial Discretization

Text S3. Stationary Distribution

Text S4. Derivation of Formula for Mean Cloud Area Fraction

Text S5. Methods for Model Cloud Scenes in Figure 1

Text S6. Asymptotic Formulas for Var(qi,j), σ̄, and χ in Limit of Small ∆x

Text S7. Parameter Sensitivity Studies

Text S8. Observational Data
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Text S1. Model Derivation

The model

∂tq = b∇2q −
1

τ
q +DẆ + F (S1)

can be related to atmospheric fluid dynamics in the following way, as described by Hottovy

and Stechmann [2015a]. The water vapor mass concentration evolves according to

∂q

∂t
+ (uq)x + (vq)y + (wq)z = S, (S2)

where u, v, and w are velocity components, and S represents any source or sink such as

precipitation. Next q is decomposed as q = q̄ + q′ into a large-scale component q̄ and a

small-scale component q′. The large-scale component q̄ represents a vertical integral of

q over the depth of the atmosphere and a horizontal average over a scale similar to the

lattice grid spacing ∆x. The dynamics of q̄ is then found from (S2) to be

∂q̄

∂t
= S̄ − [(ūq̄)x + (v̄q̄)y]−

[

(u′q′)x + (v′q′)y
]

. (S3)

The relationship with (S1) can then be seen after two common simplifying assumptions for

turbulent flows: (i) the small-scale flux convergence, −(u′q′)x− (v′q′)y, is modeled as eddy

diffusion, b∇2q, and (ii) the nonlinear turbulent effects of −(ūq̄)x−(v̄q̄)y are modeled with

additional turbulent damping, −τ−1q, and stochastic forcing, DẆ [DelSole, 2004; Majda

and Grote, 2007]. With this connection to atmospheric dynamics, the terms of the model

can be identified with physical processes of precipitation, evaporation, and turbulent

advection-diffusion. The various physical processes involved are illustrated schematically

in Fig. S1.

The representation of turbulent advection-diffusion here, as in Hottovy and Stechmann

[2015a], is in a highly idealized form as eddy diffusion, stochastic forcing, and damping.
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Hottovy and Stechmann [2015a] noted that more sophisticated representations could also

be used to provide additional realism, as described, e.g., by Majda and Kramer [1999]

and Majda and Gershgorin [2013] and references therein. For instance, these more so-

phisticated models can reproduce the fat-tailed probability density functions (pdfs) that

are commonly seen in situations of turbulent advection-diffusion with a background mean

gradient, including the case of water vapor pdfs with exponential tails. With water va-

por, an added complication are the source terms due to precipitation and evaporation,

and Stechmann and Neelin [2011] and Hottovy and Stechmann [2015b] suggested that the

source terms may play a key role in accounting for the exponential tails analyzed by Neelin

et al. [2009]. It would be interesting to possibly extend the model used here to explore

the contributions of source terms versus turbulent advection-diffusion in accounting for

the exponential tails in water vapor pdfs.

Text S2. Spatial Discretization

A discrete version of (S1) is used here by dividing the two-dimensional (x, y) domain

of size L × L into a two-dimensional (i, j) lattice of size N × N , using a grid spacing

of ∆x = ∆y = L/N . Define qi,j(t) to be the discrete version of q(x, y, t) that evolves

according to the following stochastic differential equation (SDE)

dqi,j(t)

dt
= b̃ [qi+1,j(t) + qi−1,j(t) + qi,j+1(t) + qi,j−1(t)− 4qi,j(t)]−

1

τ
qi,j(t) (S4)

+ D̃Ẇi,j(t) + F,

for i, j = 1, ..., N , and Ẇi,j(t) are independent white noises. This equation arises from

(S1) upon using a standard centered discretization of the Laplacian operator, ∇2, with

b̃ = b/(∆x)2. Also note that the natural discretization of DẆ (x, y, t) is D̃Ẇi,j(t), with
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D̃ = D/(
√
∆x

√
∆y) = D/∆x. For simplicity, periodic boundary conditions are imposed

for the above equation. That is, qN+1,j(t) = q1,j(t) for all j = 1, 2, ..., N and qi,N+1(t) =

qi,1(t) for all i = 1, 2, ..., N .

Note that the continuum limit of (S4) involves some mathematical subtleties. In fact,

while we have drawn a natural connection between (S1) and (S4), the connection is only

formal, as it is well-known that the continuum model (S1) does not have a finite variance

in two spatial dimensions, and, correspondingly, the limit of (S4) for ∆x → 0 leads to

a diverging variance (see Text S6 below). Nevertheless, the discrete model (S4) is well-

defined for finite∆x, and its dependence on∆x is very weak, so it is reasonable to make the

connection between (S1) and (S4) despite these subtleties. Furthermore, the continuum

model (S1) would, in fact, be well-defined with a finite variance if the uncorrelated noise

Ẇ were replaced by a reasonable spatially correlated noise term; such a choice leads to

a slightly more complicated model, since the noise is then characterized not by a single

parameter, D, but by the entire correlation function (or Fourier spectral density) of the

noise.

Also note that slightly different notation is used here compared with Hottovy and Stech-

mann [2015a]. Here, the notation for b was chosen to be simplest for the continuum model

(S1), whereas in Hottovy and Stechmann [2015a] the notation was chosen to be simplest

for the discrete version of the model. In particular, the parameters b and b̃ here corre-

spond with b0 and b, respectively, of Hottovy and Stechmann [2015a]. Furthermore, the

parameter D̃ here corresponds with D∗ of Hottovy and Stechmann [2015a]. Also note that

Eq. 1 of Hottovy and Stechmann [2015a] includes a typo, since the D∗ in Eq. 1 there is
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not the same as the D∗ that appears in Eq. 2 there (in the same way that, here, D in

(S1) is different from D̃ in (S4)).

Text S3. Stationary Distribution

To analyze the model solutions, the stationary distribution of the model is used. As

described by Hottovy and Stechmann [2015a], the stationary state of each Fourier mode

of q(x, y) is a Gaussian distribution with mean 0 and variance D̃2/(2ck,l), where

ck,ℓ = b̃

[

4 + (b̃τ)−1 − 2 cos

(

2πk∆x

L

)

− 2 cos

(

2πℓ∆y

L

)]

. (S5)

For k = ℓ = 0, however, the mean is not 0 but is instead F τN2. The wavenumbers k

and l correspond to the x and y spatial coordinates, respectively. Therefore, to sample

the stationary distribution, one draws an independent Gaussian random variable for each

Fourier mode, with variance D̃2/(2ck,l) for Fourier wavenumber (k, l). Taking an inverse

Fourier transform then leads to the solution q(x, y) in physical space.

In short, the stationary distribution of the model is known analytically and can therefore

be sampled by drawing independent Gaussian random variables. For example, the sample

solutions in Fig. 1 are created numerically by drawing pseudorandom numbers for each

Fourier mode; in this way, no time-stepping is needed to create Fig. 1. Furthermore, the

stationary distribution can also be studied analytically, as in the formulas for σ̄ and χ in

Eqs. 3 and 4.

Text S4. Derivation of Formula for Mean Cloud Area Fraction

The mean cloud area fraction, σ̄, can be computed analytically in the following way.

First, for a single lattice site (x, y) or (i, j), the value of E[σ(x, y, t)], which we will denote
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as E[σi,j ], can be computed as

E[σi,j ] =1 · P (σi,j = 1) + 0 · P (σi,j = 0) (S6)

=P (qi,j > 0) (S7)

=

∫

∞

0

1
√

2πVar(qi,j)
exp

(

−
(ξ − F τ)2

2Var(qi,j)

)

dξ (S8)

=
1

2

[

1 + erf

(

τF
√

2Var(qi,j)

)]

. (S9)

In this calculation, we have used the definition of σi,j from Eq. 2 as a Heaviside function

in terms of qi,j, and we have used the fact that qi,j is a Gaussian random variable with

mean F τ and variance [Hottovy and Stechmann, 2015a]

Var(qi,j) = E[(qi,j − τF )2] =
1

N2

N−1
∑

k=0

N−1
∑

ℓ=0

D̃2

2ck,ℓ
, (S10)

where the form of ck,ℓ was given in (S5). Finally, the mean cloud fraction σ̄ is defined as

the average cloudiness over all lattice sites in the domain:

σ̄ = E

[

1

N2

∑

i,j

σi,j

]

=
1

N2

∑

i,j

E[σi,j ] = E[σi,j ] (S11)

which reduces to E[σi,j ], which was given above in (S9) and reported in the main text as

Eq. 3. Note that this formula corresponds to a particular finite grid spacing, with value

∆x, not to a continuum limit. The dependence of σ̄ on ∆x is through Var(qi,j), which, in

turn, depends on ∆x through ck,l, as shown in (S5) and (S10).

Text S5. Methods for model cloud scenes in Figure 1

In Fig. 1e-h, model cloudiness is illustrated, and it is computed from the model variable

q(x, y) in the following way. Rather than plotting the binary variable σ(x, y), which was

defined in Eqn. 2 as σ(x, y) = H(q(x, y)) in terms of the Heaviside functionH, a smoothed
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version of σ(x, y) is plotted to allow a more realistic transition between cloudy (σ = 1) and

cloud-free (σ = 0). For the smoothed version, we define a point (x, y) to be completely

cloudy if q(x, y) > +0.33 mm, cloud-free if q(x, y) < −0.33 mm, and partially cloudy

otherwise. Cloudy points are displayed as a bluish-white color, cloud-free points are

displayed as a bluish-black color, and partially cloudy points are displayed using a linear

transition between these two extremes in red-green-blue (RGB) space. The bluish-white

and bluish-black colors are used instead of white and black in order to be more comparable

to the colors in the satellite images in Fig. 1a-d.

The parameter values used in this figure are (e) D = 1.55 mm km h−1/2, F = 0.12

mm d−1, (f) D = 1.94 mm km h−1/2, F = 0.048 mm d−1, (g) D = 1.55 mm km h−1/2,

F = −0.12 mm d−1, and (h) D = 11.62 mm km h−1/2, F = −0.72 mm d−1. These values

are also illustrated by the four circles in Fig. 2a of the main text.

Text S6. Asymptotic Formulas for Var(qi,j), σ̄, and χ in Limit of Small ∆x

In this section, a derivation is presented for the asymptotic formula for Var(qi,j), in terms

of the model parameters, in the limit of small grid spacing ∆x. The result was presented

in the main text below Eq. 3. From this, one can then obtain simplified formulas for σ̄,

and χ, which were presented in the main text in Eqs. 3 and 4.

The starting point is the exact formula for Var(qi,j):

Var(qi,j) =
1

L2

N/2−1
∑

k=−N/2

N/2−1
∑

ℓ=−N/2

D2

2ck,ℓ
, (S12)

which was presented earlier in (S10), and where the definition of ck,ℓ is

ck,ℓ =
4b

∆x2
−

2b

∆x2
(cos(2πk∆x/L) + cos(2πℓ∆x/L)) +

1

τ
, (S13)
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which was presented earlier in (S5). These formulas have been rewritten in several ways,

compared to their presentation in (S10) and (S5), in order to facilitate the approximations

described below. For instance, the sum is now written in terms of k and l which run from

−N/2 to N/2 − 1 instead of 0 to N − 1, in order to center the sum about the origin for

the asymptotics. Also, the factor D̃2/N2 from (S10) has been rewritten here as D2/L2,

using the relations D̃ = D/∆x and L = N∆x, to explicitly show the dependence on

∆x. Similarly, we have used parameter b instead of b̃ = b/(∆x)2 to explicitly show the

dependence on ∆x.

The asymptotic derivation involves two steps: (i) a Taylor expansion of (S13) and (ii)

an approximate formula for the infinite sum in (S12).

First, a Taylor expansion of (S13), assuming ∆x/L ≪ 1, leads to

ck,ℓ ≈ b

(

2πk

L

)2

+ b

(

2πℓ

L

)2

+
1

τ
,

from which the variance can be approximated as

Var(qi,j) ≈
N/2−1
∑

k=−N/2

N/2−1
∑

ℓ=−N/2

a

c+ k2 + ℓ2
, (S14)

where

a =
D2

8π2b
, c =

L2

4π2bτ
. (S15)

Second, an asymptotic formula can be found for the infinite sum on the right-hand side

of (S14), as follows. Recall that two sequences {xN}, {yN} are called asymptotic to each

other as N → ∞ if

lim
N→∞

xN

yN
= 1.

It is denoted as xN ∼ yN . Also recall the following well-known calculus result: Let f(x)

be a continuous function which is either increasing for all large x or decreasing for all
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large x; provided f(x) ∼ f(x+ 1) as x → ∞ and
∫ N

1
f(x) dx → ∞ as N → ∞, then

N
∑

k=1

f(k) ∼
∫ N

1

f(x) dx.

Note that one can also prove two-dimensional versions of this theorem for use on two-

dimensional integrals as will be analyzed here. For the sum in (S14), an integral for

comparison is
∫ N/2

1

∫ N/2

1

a

c+ k2 + ℓ2
dx dy,

which diverges logarithmically. Specifically, one can show

∫ N/2

1

∫ N/2

1

a

c+ k2 + ℓ2
dxdy ∼

πa

2
log(N/2),

as N → ∞, where a and c are shown in (S15).

Combining these two steps and summarizing, the approximate form of the variance is

Var(qi,j) =
1

L2

N/2−1
∑

k=−N/2

N/2−1
∑

ℓ=−N/2

D2

2ck,ℓ
(S16)

≈
N/2−1
∑

k=−N/2

N/2−1
∑

ℓ=−N/2

a

c+ k2 + ℓ2
(S17)

∼
D2

4πb
log(N/2), (S18)

as N → ∞. This expression was reported in the main text, below Eq. 3, in simplified

form with log(N/2) replaced by log(N), since log(N/2) ∼ log(N).

To illustrate the accuracy of the approximation, Fig. S2 shows plots of Var(qi,j) using

the exact formula from (S16) and using the approximate formula from (S18). The plots

are essentially the same, with only some slight deviations for larger values of D. For

σ̄ and χ, based on Eqs. 3 and 4 of the main text, the plots of exact and approximate
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formulas are also essentially the same (not shown). Hence the approximate formula in

(S18) provides accurate guidance for the parameter dependence of Var(qi,j), σ̄, and χ.

Text S7. Parameter Sensitivity Studies

In this section, we discuss the sensitivity of the results to changes in model parameters.

In particular, changes in b, τ , and ∆x will be discussed, since changes in D and F are

already demonstrated in detail in the main text. In short, it will be shown that the results

here are robust over a wide range of ∆x values and over essentially any b and τ values.

Changes in ∆x have very little effect on the results here, as can be seen analytically

through the formulas in Eqs. 3 and 4 of the main text. In those equations, the dependence

of σ̄ and χ on ∆x is shown to be of the form log(L/∆x), which varies very slowly with

∆x. To illustrate this, Fig. S3 shows model snapshots with the grid spacing reduced

greatly from ∆x = 5 km to ∆x = 1 km. In this figure, the same parameters and random

numbers have been used as in Fig. 1 of the main text for all Fourier modes that are shared

in common, and the contribution of the newly resolved features have been incorporated

using higher Fourier modes to give a physical grid resolution of ∆x = 1 km. The result

shows some minor new small-scale features on scales of 1–5 km, but it looks essentially

the same as Fig. 1 of the main text because the variance of the high-frequency Fourier

modes is small.

Regarding the sensitivity of the results to changes in b and τ , note that the phase tran-

sition behavior of the present investigation is robust to changes in the model parameters.

For example, this can be seen from the analytical formulas for σ̄ and χ in Eqs. 3 and

4, which show how σ̄ and χ depend on all model parameters. For the phase transition
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behavior, the key property of Eqs. 3 and 4 is the appearance of the error function and

the exponential function, both of which are sharply varying functions, as illustrated by

the sharp variations in σ̄ and χ in certain parts of Fig. 2. Since the functional forms of

the error function and the exponential function are present in σ̄ and χ for any choice of

model parameters, the phase transition is also present for essentially any choice of model

parameters. If, for example, the values of b and τ were changed, a phase transition would

still be seen, although the locations of the phase boundaries in terms of D and F would

be different. (For example, from Eq. 3 of the main text, it is seen that the parameter

dependence is τF
√
b/D; therefore, if

√
b is increased by a factor of 2, then the phase

boundary would occur at a value of D that is twice as large.) This behavior is analogous

to the case of the Ising model [Yeomans , 1992; Christensen and Moloney , 2005], where a

phase transition occurs for essentially any choice of spatial interaction coefficient J , but

the value Tc of the critical temperature of the phase transition changes if J is changed.

Text S8. Observational Data

In the satellite images in Fig. 1a-d, each panel shows a region of 5◦ latitude x 5◦

longitude, but the aspect ratio of each panel is different because each panel is taken from

a different latitude. Specifically, panel (a) is from 5◦ West, 25◦ South, on May 8, 2015

10:15 GMT, panel (b) is from 80◦ West, 45◦ South on May 24, 2015 15:15 GMT, panel (c)

is from 95◦ West, 45◦ South on May 16, 2015 16:05 GMT, and panel (d) is from 35◦ West,

10◦ South on May 18, 2015 12:25 GMT. These latitude and longitude values describe the

lower-left corner of each panel.
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Figure S1. Schematic diagram of physical processes of the stratocumulus-topped boundary

layer.
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Figure S2. Comparison of exact (solid line) and approximate (circles) formulas for Var(qi,j)

as functions of parameter D, using (S16) and (S18), respectively.
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Figure S3. Same as Fig. 1e-h of the main text, except using a grid spacing of ∆x = ∆y = 1

km instead of ∆x = ∆y = 5 km.
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