
GEOPHYSICAL RESEARCH LETTERS, VOL. ???, XXXX, DOI:10.1002/,

Cloud regimes as phase transitions

Samuel N. Stechmann1,2 and Scott Hottovy1

Submitted on December 15, 2015

Revised on April 29, 2016

Revised on May 23, 2016

Key points

– Shallow cloud regimes fit the paradigm of a phase transi-
tion.
– This behavior can be seen in an idealized model of water
as a stochastic diffusion process.
– Cloud area fraction can be highly variable at the interface
of cloud regimes.

Abstract

Clouds are repeatedly identified as a leading source of un-
certainty in future climate predictions. Of particular impor-
tance are stratocumulus clouds, which can appear as either
(i) closed cells that reflect solar radiation back to space or
(ii) open cells that allow solar radiation to reach the Earth’s
surface. Here we show that these clouds regimes – open ver-
sus closed cells – fit the paradigm of a phase transition. In
addition, this paradigm characterizes pockets of open cells
(POCs) as the interface between the open- and closed-cell
regimes, and it identifies shallow cumulus clouds as a regime
of higher variability. This behavior can be understood using
an idealized model for the dynamics of atmospheric water
as a stochastic diffusion process. With this new conceptual
viewpoint, ideas from statistical mechanics could potentially
be used for understanding uncertainties related to clouds in
the climate system and climate predictions.

1. Introduction

Clouds display a rich variety of forms. For example, in-
tense rainfall is typically associated with deep clouds that
fill the atmosphere up to cloud-top heights of roughly 10
km above the Earth’s surface [Stevens, 2005]. On the other
hand, shallow clouds have cloud-top heights of only 1–2 km
above the Earth’s surface, and while they are not associated
with much rainfall, they have a major impact on climate
[Ramanathan et al., 1989; Hartmann et al., 1992].

The climate impact of shallow clouds is largely due to
their interactions with electromagnetic radiation. Clouds
reflect solar radiation back to space, preventing the Earth
from absorbing the radiation and thereby cooling the Earth.
Furthermore, as can be seen from Fig. 1, some shallow
clouds are more effective than others at reflecting solar ra-
diation. The differences are nicely illustrated by the two
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extreme types of stratocumulus clouds: closed-cell and open-
cell [Agee et al., 1973; Wood , 2012]. Closed-cell stratocumu-
lus clouds (Fig. 1a) cover essentially all of the underlying
Earth’s surface and can reflect a large portion of solar ra-
diation. Open-cell stratocumulus clouds (Fig. 1c), on the
other hand, have a broken cloud structure with open areas
of clear skies at the center of cells with cloudy edges. Due to
their smaller cloud fraction, open-cell stratocumulus clouds
do not block much solar radiation and hence do not have a
strong cooling effect on the Earth.

The net effect of shallow clouds on climate remains uncer-
tain [Cess et al., 1990; Bony and Dufresne, 2005]. To better
understand shallow clouds and their climate impact, several
field campaigns have been carried out to gather and ana-
lyze observational data [Albrecht et al., 1995; Stevens et al.,
2003; Bretherton et al., 2004; Rauber et al., 2007], and many
detailed computer simulations have been performed and an-
alyzed [Siebesma et al., 2003; Ackerman et al., 2004; Savic-
Jovcic and Stevens, 2008]. The detailed computer simula-
tions provide high-resolution information over limited geo-
graphic areas. Simulations of global climate, on the other
hand, cannot represent shallow clouds in such detail, due to
computational limitations. Instead, in global climate sim-
ulations, shallow clouds must be represented using simpli-
fied models [Cess et al., 1990; Bony and Dufresne, 2005].
Given the uncertainty of climate predictions, improved un-
derstanding is needed from simplified conceptual models.

One type of simplified model, long in use for studying
the cloudy boundary layer, is the mixed-layer model [Lilly ,
1968; Turton and Nicholls, 1987; Bretherton and Wyant ,
1997]. For example, Bretherton and Wyant [1997] use a
mixed-layer model to describe the transition between stra-
tocumulus and shallow cumulus clouds. An even simpler
type of model was presented by Chung and Teixeira [2012],
where the cloud fraction is the only model output; i.e., no
detailed information is included about the vertical or hori-
zontal structure of the cloudy boundary layer. On the other
hand, mixed-layer models describe the vertical structure of
the cloudy boundary layer in some detail, while the hori-
zontal structure is described only by horizontally averaged
properties. In the present paper, in contrast, the vertical
structure will be described only by vertically averaged prop-
erties, while horizontal variations are described in some de-
tail using a stochastic model. An interesting future project
is to combine these approaches to obtain a more realistic
model of the cloudy boundary layer. In the present pa-
per, however, the goal is to first investigate the horizontal
variability in the simplest setting and to characterize cloud
regimes based on horizontal structure.

In particular, here we will show that shallow cloud
regimes fit the paradigm of a phase transition. More specifi-
cally, open-cell stratocumulus and closed-cell stratocumulus
clouds correspond to two phases of cloud organization. The
basis for the phase transition is partly from the accumu-
lated knowledge from field campaigns, observational data
analysis, and computer simulations [Albrecht et al., 1995;
Siebesma et al., 2003; Stevens et al., 2003; Ackerman et al.,
2004; Bretherton et al., 2004; Rauber et al., 2007; Savic-
Jovcic and Stevens, 2008] and partly from a simplified model
that we propose here to encapsulate these physical processes
in idealized form.
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2. Idealized stochastic model of cloudy
boundary layer dynamics

We propose here a simplified model for the dynamics of
the cloudy boundary layer. The model is meant to be highly
idealized and similar in complexity to models of phase tran-
sitions in other contexts, such as the Ising model for fer-
romagnetism [Yeomans, 1992]. As such, a single variable
q(x, y, t) is used to represent the amount of total water (va-
por plus liquid) in each column of the atmospheric boundary
layer at horizontal spatial location (x, y), minus a constant
saturation value, qvs. As a measure of integrated water, the
units of q will be mm. The evolution in time is given by

∂tq = b∇2q − 1

τ
q +DẆ + F (1)

where ∇2 is the two-dimensional Laplacian, ∂2

x+∂2

y , and Ẇ
is spatiotemporal white noise. The four parameters b, τ,D,
and F are constants. The model in (1) can be related to
atmospheric fluid dynamics, as described by Hottovy and
Stechmann [2015a] and in the Supporting Information. In
brief, the premise of the model is that boundary layer clouds
can be understood in idealized form as resulting from the
stochastic diffusion of total water.

The model in Eq. 1 was previously studied in the differ-
ent context of deep convection in the tropics [Hottovy and
Stechmann, 2015a], where it was shown to reproduce prop-
erties of self-organized criticality and the background power
spectrum. In that case, the variable q represented the wa-
ter in deep atmospheric columns, from the surface up to an
altitude of O(10) km. Here, in contrast, the variable q rep-
resents only the water in the atmospheric boundary layer –
i.e., in the lowest 1 or 2 km near the Earth’s surface. The
main distinction between the two cases is in the parameter
regimes: deep convection corresponds to a specific choice
of parameter values, whereas shallow convection can take
a richer variety of forms, as illustrated in Fig. 1, and is
hence associated with a wide range of parameter values, as
described further below.

The physical interpretations of the terms on the right-
hand side of Eq. 1 are as follows, and they are illustrated
schematically in the Supporting Information, Fig. S1. The
first term, b∇2q, represents an eddy diffusion, which, as in
common practice in fluid dynamics, is used to represent the
mixing of the water due to the cumulative effects of many ed-
dies. The second and third terms, −q/τ and DẆ , represent
the simplest model for the turbulent fluctuations [Majda and
Kramer , 1999; DelSole, 2004;Majda and Grote, 2007;Majda
and Gershgorin, 2013], which are represented in idealized
form as spatiotemporal white noise, Ẇ , times the coefficient
D, along with additional dissipation, −q/τ , which allows a
statistically stationary state to be achieved. In addition,
the terms −q/τ and DẆ represent other physical processes
with a random component, such as the entrainment into the
cloud of unsaturated air from above the cloud (see Fig. S1),
which is spatially and temporally variable due to turbulent
eddies. Also note that the deterministic components of spa-
tially varying surface evaporation and precipitation are often
modeled with separate terms of the form −q/τe and −q/τp
[Neelin and Zeng , 2000; Stevens, 2006], which have been
merged together here and partially contribute to the single
term −q/τ in line with the goal of minimizing the number
of model parameters. Finally, the last term, F , is a constant
that represents a deterministic component of the net water
sources and sinks; examples from Fig. S1 include precipita-
tion and the evaporation of water from the ocean surface.
In combination, the terms τ−1(q−τF ) indicate that q̄ = τF

is the mean value of q, which can be verified by taking the
expected value of Eq. 1. In terms of qt, since q = qt − qvs,
the mean value is q̄t = qvs + τF , which indicates that qvs
and τF enter the model in essentially the same way. In fact,
one could alternatively use q̄ as the parameter instead of F ;
however, F is used here in order to facilitate the analogy
with ferromagnetism.

The relationship between the model parameters (D,F, b, τ)
and environmental conditions (e.g., sea surface temperature
(SST), lower tropospheric stability, etc.) is potentially com-
plex, and how to specify such relationships is an issue for
simplified models [Lilly , 1968; Turton and Nicholls, 1987;
Bretherton and Wyant , 1997; Chung and Teixeira, 2012;
Feingold and Koren, 2013; Ovchinnikov et al., 2013]. It
would be interesting to examine these relationships in de-
tail using observational or large eddy simulation data, and
we plan a detailed investigation of this as future work. For
the present investigation, however, we will work with some
plausible relationships based on the great deal of insight pro-
vided by numerous previous studies [Bretherton and Wyant ,
1997; Sandu et al., 2010; Sandu and Stevens, 2011; Chung
and Teixeira, 2012].

As one example, to provide a physical context for think-
ing about different model parameter values, consider the
SST. As described by the studies listed above and refer-
ences therein, changes in SST have a significant impact on
the properties of boundary layer clouds, as seen from a par-
ticular focus on the transition from stratocumulus to shallow
cumulus clouds. More specifically, increases in SST cause an
increase in surface latent heat flux (LHF), which could be
interpreted as an increase in moisture source parameter F
in the present model. However, this is not the totality of the
effect of SST because with increased LHF comes higher tur-
bulence levels (interpreted as higher values of parameter D)
and increased entrainment of warm, dry free-tropospheric
air, whose drying effect could be interpreted as a decrease in
parameter F . (The higher turbulence levels would probably
also impact the other model parameters, b and τ , although
we will mainly discuss F and D here for simplicity.) This
latter impact on F (a decrease) dominates over the former
(an increase), and the stratocumulus layer thins and evapo-
rates and gives way to shallow cumuli. Hence the net effect
of increasing SST is a decrease in F and an increase in D.

For selecting values of the model parameters (b, τ,D, F ),
a method is used similar to Hottovy and Stechmann [2015a],
except now applied to the case of shallow convection. Specif-
ically, the model parameters b and τ are related to the scales
of spatial and temporal variability in the model [Hottovy and
Stechmann, 2015a], and their values are chosen to be b = 25
km2 h−1 and τ = 100 h ≈ 4 days to give a power spectrum
consistent with observational data analyses of the variance
of boundary-layer water vapor [Comstock et al., 2005], which
roughly shows a “red” power spectrum, with largest variance
on large scales and smaller variance on smaller scales. Fur-
thermore, this value of τ ≈ 4 days is also the same value es-
timated by Bretherton et al. [1995] for the dilution timescale
due to entrainment. The value of D is related to the overall
variance of total water, and the range of D values consid-
ered here is chosen to give variance values that are com-
parable to observational estimates of the variance of total
water [Wood and Field , 2000; Larson et al., 2001] and liquid
water path [Wood and Hartmann, 2006]. Finally, the pa-
rameter F represents the sum total of all mean sources and
sinks of water, and the range of F values considered here is
consistent with observational estimates of drizzle rates and
latent heat fluxes, averaged over large scales, in the range of
0 to roughly 1 to 5 mm day−1 [Bretherton et al., 1995, 2004;
Comstock et al., 2007].

Also note that the potential spatial and/or temporal vari-
ations of the environmental conditions and hence model pa-
rameters are not considered in this first investigation, for
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simplicity. Furthermore, the model parameters could them-
selves potentially be treated as interactive quantities that
depend on the model variations in q(x, y, t); for example,
radiative cooling should perhaps be an interactive quantity
that depends on the cloud cover and hence on q(x, y, t); while
perhaps more realistic, such a formulation comes at the ex-
pense of greater model complexity.

The saturation threshold is treated here as the fixed value
q = 0, in accord with the definition of q as q = qt − qvs(T ),
as described above Eq. 1. Quantities similar to qt − qvs(T )
have also been used in previous studies [Mellor , 1977; Som-
meria and Deardorff , 1977; Lewellen and Yoh, 1993], who
describe their quantity as an extended liquid water specific
humidity. Here, the total water, qt, saturation water vapor,
qvs, and temperature, T , are interpreted as boundary-layer-
column-averaged quantities, where qvs(T ) is a function of
temperature given in terms of the Clausius–Clapeyron equa-
tion or perhaps a column-averaged version of it [Neelin et al.,
2009]. Also note that, due to the definition q = qt − qvs(T )
and the temperature-dependence of qvs, the sources and
sinks of q could potentially arise from sources and sinks of
heat. For example, the parameter F could potentially in-
clude the effects of radiative cooling, which decreases tem-
perature T and in turn qvs(T ), thereby acting as a source
of q in this model. Finally, note that spatial variations in
the saturation threshold are ignored here, for simplicity. A
more realistic alternative is perhaps to model both the to-
tal water qt(x, y, t) and the equivalent potential tempera-
ture θe(x, y, t), each of which could evolve according to a
stochastic diffusion model such as (1), and from which one
could determine spatially varying temperature T (x, y, t) and
saturation water vapor qvs(T (x, y, t)). While perhaps more
realistic, such an approach also introduces additional com-
plexity and model parameters; for this reason, we leave it
as a future research direction, and we investigate only the
simplest case here with only q and a uniform saturation
threshold q = 0.

A cloud indicator variable σ(x, y, t) is defined based on
whether or not q(x, y, t) is above the saturation threshold
q = 0 [Hottovy and Stechmann, 2015a]:

σ(x, y, t) =

{

1 if q(x, y, t) ≥ 0,
0 if q(x, y, t) < 0.

(2)

Accordingly, if q ≥ 0, then q is interpreted as liquid water,
since q = qt − qvs. The transition from the absence of liq-
uid water (q < 0) to the presence of liquid water (q > 0)
is accompanied by a significant transition in albedo. Cloud
albedo is also significantly affected by other factors such as
in-cloud variability of liquid water content, which for sim-
plicity is not indicated in the model results shown here but
is a feature of the model.

For investigating Eq. 1, a discrete spatial grid is used
with lattice spacing of ∆x = ∆y = 5 km and square domain
of side length L = 550 km, and the stationary distribu-
tion of the stochastic model is sampled as described in the
Supporting Information. This grid spacing is chosen partly
to be comparable to the pixel width of the accompanying
satellite images in Fig. 1, and partly to approximately cor-
respond to the scale of convective elements in the boundary
layer, which roughly scale with the boundary layer height
of O(1) km, as indicated in Fig. S1. Numerical sensitivity
studies with ∆x = ∆y = 1 km show essentially the same
results (see Supporting Information), and analytical results

in the next section show a functional form of
√

log(L/∆x),
which changes very slowly with changes in ∆x, indicating
robustness to changes in the grid spacing.

3. Cloud regimes as phase transitions

Examples of the model output are shown in Fig. 1e–h.
The four cases represent the same four regimes of cloud or-

ganization shown in observational data in Fig. 1a–d, respec-
tively. In addition to the cases of closed-cell and open-cell
stratocumulus, the model also represents the case of pockets
of open cells (POCs) [Stevens et al., 2005], where closed and
open cells can appear in comparable proportions. Finally,
the fourth regime, shallow cumulus [Siebesma et al., 2003;
Rauber et al., 2007], is shown in Figs. 1d and 1h and is char-
acterized by small cloud elements and hence a small cloud
area fraction. These four cloud regimes correspond to four
distinct parameter regimes of Eq. 1, as described below.

To aid the interpretation of the model parameters, note
that b, D, and F are analogous to the three parameters of
the well-known Ising model for ferromagnetism [Yeomans,
1992]: spatial interaction coefficient, J , temperature, T , and
external magnetic field strength, H, respectively [Hottovy

and Stechmann, 2015a]. The parameter τ has no analog in
the classic time-independent Ising model.

The proposed phase diagram of cloud regimes is shown
in Fig. 2. In this diagram, the mean cloud area fraction, σ̄,
is shown for each choice of the parameters D and F . The
value of σ̄ is defined as the expected value of σ(x, y, t), in
the stationary state, and it can be calculated analytically
(see Supporting Information) as

σ̄ =
1

2

[

1 + erf

(

τF
√

2Var(qij)

)]

≈ 1

2

[

1 + erf

(

τF

D

√

2πb

log(L/∆x)

)]

, (3)

where Var(qij) is the variance of the water q(x, y, t) at lattice
site (x, y) = (i, j). Note that Var(qij) was previously pre-
sented by Hottovy and Stechmann [2015a], and here, in addi-
tion, we establish asymptotically that it depends on model
parameters D and b as Var(qij) ∼ D2(4πb)−1 log(L/∆x)
(see Supporting Information for derivation assuming ∆x is
small). Moreover, σ̄ depends on

√
b and τ in the same way

that it depends on F . For this reason, and in order to have
a two-dimensional parameter space for plotting purposes,
Fig. 1 shows σ̄ as a function of D and F , with b and τ
held fixed. This is analogous to typical presentations of the
phase diagram of the Ising model, where it is common to fix
the value of J and consider a range of values of T and H
[Yeomans, 1992].

In Fig. 2, the closed-cell regime corresponds to F > 0,
and the open-cell regime corresponds to F < 0. These two
regimes correspond to cases of essentially full cloud cover
and no cloud cover, respectively. In between the open- and
closed-cell regimes, for F ≈ 0, is a sharp transition in cloud
area fraction, with POCs appearing in this sensitive param-
eter regime where cloud area fraction could take on inter-
mediate values between 0 and 1. All of these stratocumulus
cloud regimes are associated with relatively small D values
and hence relatively low turbulent variability. For higher
values of D, the water variability is higher, and clouds ap-
pear more intermittently, as in the case of shallow cumulus.

In addition to these traditional cloud regimes, many cloud
scenes fall outside of this characterization and are somewhat
disorganized [Wood and Hartmann, 2006; Wood , 2012]. For
example, one such scene is displayed here in Fig. 1d, to
the south and southwest of the yellow oval that indicates
the shallow cumulus regime. In these southern parts of the
panel, an appreciable amount of cloud cover is present, but
it is not clearly organized as closed cells or open cells. In
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Fig. 2, in the model, such cloud scenes are also present and
are labeled as “unrobust phase.”

In nature, the cellular regimes and the unrobust regime
are distinguished by the presence and lack of cellular struc-
tures, respectively. Here, in the simple model, such a dis-
tinction is not apparent, as the model does not represent
the fine-scale details of the cellular nature of the open- and
closed-cell regimes (see Fig. 1). Instead, here the cellu-
lar regimes and the unrobust regime are distinguished in
another way: by their robustness and susceptibility, respec-
tively, as described in the next section. It would be inter-
esting to modify the model to allow a representation of the
effects of individual cells [Koren and Feingold , 2011; Fein-
gold and Koren, 2013;Ovchinnikov et al., 2013], which would
prohibit the calculation of analytic formulas such as (3), but
which would allow an investigation of the roles of both fine-
scale and large-scale effects in determining cloud regimes.
The appearance of cloud regime behavior from the model in
(1) suggests that cloud regime behavior can possibly arise
due to only large-scale factors – i.e., different environmental
states (F ) and turbulent variability (D) – and the presence
of a saturation threshold.

4. Susceptibility and climate uncertainty

In this section, the sensitivity, or susceptibility, of cloud
fraction to changes in environmental parameters is inves-
tigated. The susceptibility will provide a second property,
in addition to mean cloud fraction, that characterizes the
different cloud regimes in the model. It is also a fundamen-
tal quantity of statistical mechanics [Yeomans, 1992; Chris-
tensen and Moloney , 2005; Majda et al., 2005], and, as such,
it is a natural second quantity of interest in furthering the
analogy between cloud regimes and traditional statistical
mechanical phase transitions. Finally, since susceptibility is
a measure of statistical sensitivity, it is a useful measure of
climate response or climate uncertainty.

The susceptibility is defined as

χ =
∂σ̄

∂F
=

τ
√

2πVar(qij)
exp

[

− (τF )2

2Var(qij)

]

≈ τ

D

√

2b

log(L/∆x)
exp

[

− 2πb(τF )2

D2 log(L/∆x)

]

(4)

which follows from (3) as the derivative of mean cloud area
fraction σ̄ with respect to the forcing F . This is analogous
to the susceptibility that is commonly defined for magnetic
systems [Yeomans, 1992].

A plot of the susceptibility χ is shown in Fig. 2c. The
most significant feature is the extremely high susceptibility
of the POC regime: a small change in F leads to a very
large change in cloud area fraction. On the other hand, the
closed- and open-cell regimes have extremely low suscepti-
bility and are instead robust to changes in F . Finally, we use
the term “unrobust-phase” for the remaining cloud regimes
where the susceptibility is moderate and in between these
two extremes, corresponding with the disorganized cloud
scenes seen in nature (e.g., in Fig. 1d, to the south and
southwest of the yellow oval).

Based on these features of Fig. 2c, it is seen that the sus-
ceptibility χ provides a second property, in addition to mean
cloud fraction σ̄, for the characterization of the model’s
cloud regimes. More specifically, while the model does not
resolve the details of the cellular structures that characterize
the open- and closed-cell stratocumulus regimes in nature,
it does represent the robustness of these clouds regimes in

terms of the low susceptibility of mean cloud fraction to
changes in external forcing such as SST. In other words, the
open- and closed-cell regimes are robust states in the sense
that the mean cloud area fraction σ̄ in each case is essen-
tially the same over a broad range of values of D and F ;
on the other hand, shallow cumulus clouds and unrobust-
phase or disorganized clouds have greater variability in the
cloud area fraction. This model behavior here is an idealiza-
tion, since, in nature, these properties are less clear-cut, and
even a single cloud regime such as open-cell stratocumulus
can exhibit different properties under different conditions;
for instance, Martini et al. [2014] show that the depth of
the boundary layer can influence the size of the cells which
in turn influences the cloud albedo; and such effects of the
details of individual cells are not currently included in the
present results, in which the open-cell regime is idealized as
a state with negligible cloud cover. Nevertheless, the present
idealized model provides a simple basis to which additional
physical processes could be included in the future.

The large susceptibility in some parts of Fig. 2c also indi-
cates a potentially large source of inherent variability of the
climate system. More specifically, if small changes occur in
environmental factors such as sea surface temperature, then
large changes can potentially arise in the mean cloud area
fraction of shallow clouds, with consequences for the Earth’s
radiative and energy budgets. Such large inherent variability
can cause large uncertainty in projections of future climate.
To fully understand the implications for climate uncertainty,
however, the present model would need to be coupled with a
more complete model of the climate system. An interesting
future direction, in conjunction with a more complete cli-
mate model, is to use ideas from statistical mechanics such
as the fluctuation–dissipation theorem [Leith, 1975; Majda
et al., 2005] to better understand cloud statistics and im-
plications for climate. Since the cloud indicator σ(x, y, t),
as defined in (2), is a nonlinear function of the underlying
dynamical variables, it provides a challenging quantity to
predict statistically [Gritsun et al., 2008]. It is interesting
that, at least in the simplest setup used in the present pa-
per, fluctuation–dissipation theory is not needed, and the
susceptibility can be computed analytically as in Eq. 4.

While the present model is analogous to the Ising model
in some ways, some notable differences can be seen in the
behavior of the two models. For example, whereas the two-
dimensional Ising model has a phase transition at a finite
temperature [Yeomans, 1992], the present model appears
to have a phase transition at D = 0, similar to the zero-
temperature phase transition of the one-dimensional Ising
model. Nevertheless, the large susceptibility near the criti-
cal point has important implications for climate applications
in either case. It would be interesting to consider the effect
of adding some nonlinear features [Stechmann and Neelin,
2011, 2014; Hottovy and Stechmann, 2015a, b] to Eq. 1 and
to study their effect on the phase transition.

5. Conclusions

In summary, shallow cloud regimes were shown to cor-
respond with different phases of cloud organization, in a
way that is conceptually analogous to the Ising-model rep-
resentation of ferromagnetism [Yeomans, 1992]. In particu-
lar, open- and closed-cell stratocumulus clouds represent two
opposing phases, POCs represent a type of critical phase at
the interface of the open- and closed-cell phases, and shal-
low cumulus clouds represent a type of high-temperature
phase with intermittent small-scale cloud elements. Accom-
panying this new conceptual viewpoint is the idea that the
underlying physical processes can be understood in distilled
form as the stochastic diffusion of water. In addition, this
new conceptual viewpoint could potentially allow ideas from
statistical mechanics to be used for understanding uncer-
tainties related to clouds in the climate system and climate
predictions.
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Figure 1. Four distinctive phases of shallow cloud or-
ganization, as viewed from satellite: (a) closed-cell stra-
tocumulus, (b) pockets of open-cell stratocumulus, (c)
open-cell stratocumulus, and (d) shallow cumulus (see
interior of yellow oval). Yellow rectangles demarcate ar-
eas of 5◦ longitude by 5◦ latitude. Panels (e)–(h) show
the same cloud regimes as in (a)–(d), respectively, except
from the idealized model proposed here in Eq. 1. The
model domain size is also 5◦ by 5◦. The model cloud
mask function is a smoothed version of the binary func-
tion σ(x, y). See Supporting Information.



X - 8 STECHMANN AND HOTTOVY: CLOUD REGIMES AS PHASE TRANSITIONS

D [mm*km/hr1/2]

F
 [m

m
/d

ay
]

Phase diagram of cloud regimes

Closed
cells

POCs

Open
cells

Unrobust
phase

Shallow
Cumulus

a)

0 5 10 15
−1

−0.5

0

0.5

1

0
5

10
15 −1

−0.5
0

0.5
10

0.2

0.4

0.6

0.8

1

F [mm/day]
D [mm*km/hr1/2]

C
lo

ud
 A

re
a 

F
ra

ct
io

n

b)

10
0

1

2

F [mm/day]

05

S
us

ce
pt

ib
ili

ty
 [1

0
3
 h

r/
m

m
]

D [mm*km/hr 1/2 ]

3

4

10

5

-115

c)

Figure 2. Phase diagram of shallow cloud regimes in the
stochastic model from Eq. 1. (a) Contour plot of mean
cloud area fraction, σ̄, as a function of variability, D, and
net source/sink, F . See Eq. 3. Four circles indicate the
values of D and F used for Fig. 1e–h. (b) Same as (a),
except a surface plot to highlight the phase transition.
(c) Susceptibility, χ, defined in Eq. 4 as ∂σ̄/∂F , shown
as a function of D and F .


