
Precipitating Quasigeostrophic Equations and Potential Vorticity Inversion
with Phase Changes

LESLIE M. SMITH

Department of Mathematics, and Department of Engineering Physics, University of Wisconsin–Madison, Madison, Wisconsin

SAMUEL N. STECHMANN

Department of Mathematics, and Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison,

Madison, Wisconsin

(Manuscript received 24 January 2017, in final form 3 July 2017)

ABSTRACT

Precipitating versions of the quasigeostrophic (QG) equations are derived systematically, starting from the

equations of a cloud-resolving model. The presence of phase changes of water from vapor to liquid and vice

versa leads to important differences from the dry QG case. The precipitating QG (PQG) equations, in their

simplest form, have two variables to describe the full system: a potential vorticity (PV) variable and a variable

M including moisture effects. A PV-and-M inversion allows the determination of all other variables, and it

involves an elliptic partial differential equation (PDE) that is nonlinear because of phase changes between

saturated and unsaturated regions. An example PV-and-M inversion is provided for an idealized cold-core

cyclone with two vertical levels. A key point illustrated by this example is that the phase interface location is

unknown a priori from PV and M, and it is discovered as part of the inversion process. Several choices of a

moist PV variable are discussed, including subtleties that arise because of phase changes. Boussinesq and

anelastic versions of the PQG equations are described, as well as moderate and asymptotically large rainfall

speeds. An energy conservation principle suggests that the model has firm physical and mathematical un-

derpinnings. Finally, an asymptotic analysis provides a systematic derivation of the PQG equations, which

arise as the limiting dynamics of a moist atmosphere with phase changes, in the limit of rapid rotation and

strong stratification in terms of both potential temperature and equivalent potential temperature.

1. Introduction

Quasigeostrophic (QG) equations have been an

invaluable tool for understanding midlatitude atmo-

spheric dynamics. They provide a simplified setting

for understanding a variety of phenomena, such as

baroclinic instability (Charney 1947, 1948; Eady 1949;

Phillips 1954) and geostrophic turbulence (Charney

1971; Rhines 1979; Salmon 1980), to name a few.

In their traditional form, the QG equations do not

include moisture, precipitation, or latent heat release.

Nevertheless, a moist QG framework can be useful

as a simplified setting for investigating moisture and

its effects on midlatitude dynamics. In one type of

approach (e.g., Lapeyre and Held 2004; Monteiro and

Sukhatme 2016), one can build a moist QG framework

by supplementing the dry QG equations with a moisture

variable and convective parameterization. In other QG

frameworks (Mak 1982; Bannon 1986; Emanuel et al.

1987; De Vries et al. 2010), the dry QG equations have

been supplemented by parameterizations of latent

heating without explicitly incorporating the dynamics

of a moisture variable. These formulations are sensible

in terms of their simplicity. However, in these formula-

tions, the moist component of the model is treated

somewhat as a supplement. As a result, a remaining

question is, Can a moist QG model be derived as the

limit, under rapid rotation and strong (moist) stratifi-

cation, of the comprehensive dynamics of a moist at-

mosphere? If so, then what is the form of such a moist

QG model, and what are its main properties?

The main goals of the present paper are 1) to sys-

tematically derive a precipitating quasigeostrophic

(PQG) model, starting from the equations of a cloud-

resolving model (CRM) and 2) to take first steps toward
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understanding the properties of the PQG system. One

important property of the PQG system is an energy

conservation principle. Another important property is

its formulation in terms of a potential vorticity (PV)

variable and a second variable M that accounts for

moisture effects. From these two variables, in the

simplest version of the PQG equations, a PV-and-M

inversion problem allows all other variables to be de-

termined, including moisture. The PV-and-M inversion

is formulated as an elliptic partial differential equation

(PDE) with nonlinearity entering through the effects of

phase changes. To illustrate the PV-and-M inversion

process and its key differences from dryQG, an example

with an idealized, axisymmetric, cold-core cyclone is

presented. One interesting property of PV-and-M in-

version is that the phase boundaries are unknown a priori

and are discovered as part of the inversion process.

In the future, it would be interesting to use the PQG

model to investigate both the hydrological cycle and the

effects of latent heat release on midlatitude dynamics.

As one step in these directions, meridional moisture

transport is studied in a linear analysis by Wetzel et al.

(2017, manuscript submitted to Math. Climate Wea.

Forecasting), and the effects of precipitation are seen to

impact the vertical structure ofmeridionalmoisture flux.

Many other questions could also potentially benefit

from the simplified viewpoint provided by the PQG

equations, including questions on the hydrological cycle

(Peixoto and Oort 1992; Trenberth and Stepaniak 2003;

Frierson et al. 2006; Held and Soden 2006; Schneider

et al. 2010; Laliberté et al. 2012; Newman et al. 2012;

Shaw and Pauluis 2012) and the effects of latent heating

on extratropical cyclones and eddies (Davis 1992;

Posselt and Martin 2004; Brennan and Lackmann 2005;

O’Gorman 2011; Pfahl et al. 2015). For example, the

PQG model could potentially provide insight into the

appropriate effective static stability for a moist atmo-

sphere (e.g., Lapeyre and Held 2004; O’Gorman 2011).

The remainder of the manuscript is organized as fol-

lows. In section 2, we describe the CRM used as the

starting point for the PQG analysis and introduce no-

tation. Section 3 presents the main ideas underlying the

PQG model derivation. A comparison with other prior

moist midlatitude models is also presented. Section 4

introduces 1) the moist potential vorticity PVe based on

equivalent potential temperature and 2) the new dynami-

cal variableM, which is a linear combination of equivalent

potential temperature ue and total water mixing ratio qt.

The nonlinear elliptic equation for a PVe-and-M inversion

is also derived and discussed. In section 5, the energy

conservation principle is presented and decomposed into

four contributions: kinetic, unsaturated potential, satu-

rated potential, and moist potential. Section 6 briefly

describes the changes that occur if the rainfall speed is

asymptotically large instead of order one. Alternate

choices of potential vorticity are discussed in section 7.

A semianalytic solution for an idealized, axisymmetric,

cold-core cyclone is used in section 8 to illustrate the

PV-and-M inversion, as well as determination of phase

boundaries in this simple case. Section 9 describes ex-

tension of the approach to an anelastic atmosphere and

more general cloud microphysics, and concluding re-

marks are given in section 10. The systematic asymptotic

derivation of the PQG equations is recorded in the

appendix, including nondimensionalization of the

equations, the precise distinguished limit, and asymp-

totic expansion.

2. Starting point: Cloud-resolving model and cloud
microphysics

For the cloud-resolving model and cloud microphys-

ics, we break the paper into two parts. First, in this

section and in most of the paper, we work with an ide-

alized CRM (Hernandez-Duenas et al. 2013). Second, in

section 9, we describe the generalization to other ver-

sions of cloud microphysics. The idealized CRM is

considered first, since it includes many of the essential

features of other versions of cloud microphysics and

since it allows the PV-and-M inversion to be written in

concrete form (section 4) as opposed to the more com-

plicated formulation presented in section 9.

In this section, as our starting point for the dynamics

of a precipitating atmosphere, we describe an idealized

CRMwith a minimal version of cloudmicrophysics. The

model was designed and analyzed by Hernandez-

Duenas et al. (2013) and called the fast autoconversion

and rain evaporation (FARE) model.

The inviscid FARE system is

Du

Dt
1 f ẑ3 u52=

�
p

r
o

�
1 ẑ b , (1a)

= � u5 0, (1b)

Du
e

Dt
1w

d~u
e

dz
5 0, and (1c)

Dq
t

Dt
1w

d~q
t

dz
2V

T

›q
r

›z
5 0: (1d)

The dynamical variables are the velocity u5 (u, y, w),

pressure p, equivalent potential temperature anomaly

ue, and anomalous mixing ratio of total water qt, all of

which are functions of the three-dimensional spatial

coordinate x5 (x, y, z) and time t. The buoyancy bmay

be expressed as a function of ue and qt and z as described

below. Using standard notation, D/Dt5 ›/›t1 u � = is
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the material derivative, f is the Coriolis parameter, and

VT is the fall speed of rain, taken to be a constant value

here for simplicity. All thermodynamic variables have

been decomposed into background functions of altitude

and anomalies. For example, the total equivalent po-

tential temperature is utote (x, t)5 ~ue(z)1 ue(x, t), where
~ue(z) is the background state. Similarly, the mixing ratio

of water is qtot
t (x, t)5 ~qt(z)1qt(x, t). Though we will

use constant d~qt/dz and d~ue/dz herein, extension to

nonconstant slopes is straightforward. Note that (1) has

been written using the Boussinesq approximation with

constant density ro; an analogous anelastic model is

described in section 9.

The total water qtot
t is the sum of contributions from

water vapor qtot
y and rainwater qtot

r :

qtot
t 5 qtot

y 1 qtot
r . (2)

Note that condensed cloud water qtot
c , which is com-

monly included in bulk cloud microphysics schemes

(e.g., Kessler 1969; Grabowski and Smolarkiewicz

1996), is not included in the FARE model; this is due to

the assumption of fast autoconversion of smaller liquid

droplets qtot
c to larger rain drops qtot

r . A second as-

sumption of the FAREmodel is fast rain evaporation: if

rain falls into unsaturated air, it immediately either

evaporates all rain or evaporates just enough rain to

reach saturation. As a result, the water vapor and rain-

water can be recovered from qtot
t using

qtot
y 5min(qtot

t , qtot
ys ), qtot

r 5max(0,qtot
t 2 qtot

ys ), (3)

where qtot
ys is the saturation mixing ratio. Again for

simplicity, the FARE model adopts a prescribed satu-

ration mixing ratio profile depending only on altitude:

qtot
ys (z). This is an approximation qtot

ys (p
tot, T tot)’

qtot
ys [ ~p(z),

~T(z)] of the standard Clausius–Clapeyron

relation assuming that the total thermodynamic vari-

ables ptot and T tot are close to the background state

values ~p and ~T (Majda et al. 2010; Deng et al. 2012;

Hernandez-Duenas et al. 2013).

Linearized thermodynamics have been used to derive

(1), and in particular, the equivalent potential temper-

ature is here defined as

utote [ utot 1
L

y

c
p

qtot
y , (4)

which is a linearization of the standard definition utote 5
utotexp[(Lyq

tot
y )/(cpT

tot)], where the latent heat factor

Ly ’ 2:53 106 J kg21 and specific heat cp ’ 103 J kg21 K21.

[Note that this linearized equivalent potential temper-

ature is similar to the moist entropy, which has been

used in other simplified models, e.g., the two-layer

model of Lambaerts et al. (2011).] The potential tem-

perature utot can be recovered from utote and qtot
t using

utot 5

8>>>><
>>>>:

utote 2
L

y

c
p

qtot
t if qtot

t , qtot
ys (z)

utote 2
L

y

c
p

qtot
ys (z) if qtot

t $ qtot
ys (z)

, (5)

which combines (3) and (4). This will be useful, for in-

stance, in defining the buoyancy as a function of ue and

qt below.

In what follows, the anomalies ue, qt, etc., will pri-

marily be used rather than the total thermodynamic

variables utote , qtot
t , etc. Considering an unsaturated

background state, the relationships in (2)–(5) will hold

in the same form with the superscript ‘‘tot’’ removed,

provided that one decomposes qtot
ys as

qtot
ys (z)5 ~q

ys
(z)1q

ys
(z) , (6)

with the choice of

~q
ys
(z)5 ~q

y
(z)5 ~q

t
(z) , (7)

and

~q
r
(z)5 0: (8)

In essence, this choice of ~qys allows one to write the

saturation condition qtot
t 5 qtot

ys in the same form in terms

of anomalies: qt 5 qys. As a result, in terms of the

anomalies, (2)–(5) become

q
t
5 q

y
1q

r
, (9)

q
y
5min(q

t
,q

ys
), q

r
5max(0,q

t
2 q

ys
), (10)

u
e
5 u1

L
y

c
p

q
y
, and (11)

u5

8>>>><
>>>>:

u
e
2

L
y

c
p

q
t

if q
t
, q

ys
(z)

u
e
2

L
y

c
p

q
ys
(z) if q

t
$q

ys
(z) .

(12)

Note that adoption of a saturated background state

would change the relations between the anomalies and

some details of the analysis presented below (Wetzel

et al. 2017, manuscript submitted toMath. Climate Wea.

Forecasting).

The buoyancy b is commonly written in terms of po-

tential temperature u, water vapor qy, and rainwater qr:

b5 g

�
u

u
o

1R
yd
q
y
2 q

r

�
, (13)
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with constant background potential temperature

uo ’ 300K, gravitational acceleration g’ 9:8m s22,

and Ryd 5 (Ry/Rd)2 1’ 0:61 involving the ratio of gas

constants Ry, Rd for water vapor and dry air, respectively.

Alternatively, one may write the buoyancy as a

function of ue, qt, and z, with a functional form that

changes depending on whether the phase is unsaturated

or saturated. More specifically, (13) can be written as

b5 b
u
H

u
1 b

s
H

s
, (14)

where Hu and Hs are Heaviside functions that indicate

the unsaturated and saturated phases, respectively, and

are therefore functions of qt and qys(z):

H
u
5

�
1 for q

t
, q

ys
(z)

0 for q
t
$ q

ys
(z)

, (15)

and

H
s
5 12H

u
. (16)

Following from (9)–(13), the variables bu and bs are

given by

b
u
5 g

"
u
e

u
o

1

 
R

yd
2

L
y

c
p
u
o

!
q
t

#
and (17a)

b
s
5 g

"
u
e

u
o

1

 
R

yd
2

L
y

c
p
u
o

1 1

!
q
ys
(z)2 q

t

#
, (17b)

and are both defined in unsaturated and saturated re-

gions alike. Since Ryd ’ 0:61 and Ly/(cpuo)5O(10), the

coefficients [Ryd 2Ly/(cpuo)] and [Ryd 2Ly/(cpuo)1 1]

are both negative, and thus, the buoyancies are both

smaller than gue/uo. Dry and moist buoyancy variables

such as in (14) and (17) have also been utilized in stud-

ies of nonprecipitating moist convection (Kuo 1961;

Bretherton 1987; Pauluis and Schumacher 2010). The

formulations (14)–(17) will be convenient in what fol-

lows because they separate the continuous functional

dependence within bu and bs from the discontinuous

nature of the phase change within Hu and Hs.

The FARE model has some features that make it an

advantageous option of an idealized CRM. Themodel is

similar to some earlier models (Seitter and Kuo 1983;

Emanuel 1986; Majda et al. 2010; Deng et al. 2012),

which all utilize an assumption of fast autoconversion. A

distinguishing feature of the FARE model of Hernandez-

Duenas et al. (2013) is that the evaporation of rain occurs

instantaneously in unsaturated air, in contrast to the fi-

nite rain evaporation time scales used by earlier models

(Seitter and Kuo 1983; Emanuel 1986; Majda et al. 2010;

Deng et al. 2012). One can view this as an assumption

that all, not some, of these microphysical time scales are

fast relative to the dynamical time scale of interest. Also,

the FARE model of Hernandez-Duenas et al. (2013)

has a well-defined energy principle. In prior results, the

FAREmodel was shown to reproduce the basic regimes

of precipitating turbulent convection: scattered con-

vection in an environment of lowwind shear and a squall

line in an environment with strong wind shear

(Hernandez-Duenas et al. 2013). These prior results

suggest that the FAREmodel encompasses an adequate

representation of cloud microphysics, even though its

form is highly simplified.

3. Derivation of the precipitating QG model

In this section, a PQG model is derived from the

idealized CRM in (1). (Note that PQG models can also

be derived from other CRMs with other cloud micro-

physics, as described later in section 9. The present

section provides the main ideas for the more general

derivations as well.) In what follows, we give the ideas

and derivation steps briefly and draw attention to the

differences from the dry case. In the appendix, we

present the systematic perturbation expansion approach

based on a distinguished limit.

As for dry QG, a main assumption is that appro-

priately defined Rossby and Froude numbers are

comparable and small. A key new assumption will be

that d~ue/dz is large and 2(Ly/cp)d~qt/dz may be the

same order of magnitude (with d~qt/dz, 0). In nature,

the assumption of large d~ue/dz is valid in much of the

extratropics in the zonal mean (e.g., Peixoto and

Oort 1992), and it also holds locally at many longi-

tudes; however, locally in some regions, such as in

the vicinity of fronts, assumptions of strong moist

stratification and/or classical QG scaling may

not hold.

Considering large horizontal scales at midlatitudes,

with a strongly stable stratification, one could expect the

dominant terms in (1) to satisfy a geostrophic, hydro-

static balance:

f ẑ3 u
h
52=

h
f, b

u
H

u
1 b

s
H

s
5

›f

›z
, (18)

where f5 p/ro, uh 5 (u, y) is the horizontal wind and

=h 5 x̂›/›x1 ŷ›/›y is the horizontal gradient operator.

The leading-order vertical velocity is zero, since the lone

dominant term in (1c) isw(d~ue/dz) and we have assumed

large d~ue/dz. Thus, the horizontal wind determined from

(18) satisfies an incompressibility condition =h � uh 5 0.

Upon defining the streamfunction c5f/f , the resulting

diagnostic equations may be written as
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u52
›c

›y
, y5

›c

›x
, z5=2

hc and (19a)

b
u
H

u
1 b

s
H

s
5 f

›c

›z
, (19b)

where z is the vertical component of the vorticity. The

leading-order form of the buoyancy is proportional to u,

b5 g
u

u
o

, (20)

and hence, the diagnostic relation [(19b)] looks similar

to the standard dry QG formulation, except it includes

important phase-change information. To appreciate the

latter, recall that both temperature u and buoyancy

b change their functional form in different phases ac-

cording to (12) and the asymptotic form of (17):

b
u
5 g

 
u
e

u
o

2
L

y

c
p
u
o

q
t

!
and (21a)

b
s
5 g

"
u
e

u
o

2
L

y

c
p
u
o

q
ys
(z)

#
. (21b)

Proceeding to include next-order corrections to the

diagnostic relations [(19)], one finds the equations

D
h
z

Dt
5 f

›w

›z
, (22a)

D
h
u
e

Dt
1w

d~u
e

dz
5 0, and (22b)

D
h
q
t

Dt
1w

d~q
t

dz
5V

T

›q
r

›z
. (22c)

involving the small vertical velocity w, where

Dh/Dt5 ›/›t1 uh � =h. Relation (22a) between the

lowest-order vorticity and the vertical velocity results

from combining next-order corrections in the horizontal

momentum balance of (1a) and the incompressibility

constraint [(1b)]. Starting from (1c), the balance [(22b)]

is consistent with large (positive) d~ue/dz and small

vertical velocity such that wd~ue/dz balances horizontal

advection of the anomaly ue. Similarly, (22c) suggests

relatively large jd~qt/dzj, such that wd~qt/dz balances

horizontal advection of anomaly qt and the rainfall term.

Together, (21) and (22) compose a formulation of the

PQG approximation. The main differences from dry

QGare the phase changes in the hydrostatic balance and

the need for two thermodynamic variables (e.g., ue and

qt, instead of one, e.g., u). In the next sections, the nature

of the phase change is described in more detail in the

context of potential vorticity, potential vorticity in-

version, and energetics.

To compare this PQG system to other prior moist

midlatitude systems, consider the form of the latent

heating in the PQG system:

D
h
u

Dt
1w

d~u

dz
5

8>><
>>:

0 if q
t
, q

ys
(z)

2
L

y

c
p

d~q
ys
(z)

dz
w if q

t
$ q

ys
(z) ,

(23)

which follows from the PQG system in (22b) and (22c)

and the definition of u in terms of ue and qt in (12).

The trigger for the latent heating here is the condi-

tion qt $ qys(z), which is similar to convective adjust-

ment models (e.g., Lapeyre and Held 2004; Dias and

Pauluis 2010; Lambaerts et al. 2012; Monteiro and

Sukhatme 2016) but different from wave–conditional

instability of the second kind (CISK) convective

parameterizations and others (e.g., Mak 1982; Bannon

1986; Emanuel et al. 1987; De Vries et al. 2010), which

utilize vertical velocity or horizontal convergence to

define the trigger. For the closure of latent heating,

on the other hand, these similarities are somewhat

reversed. The closure for the latent heating here is

2(Ly/cp)(d~qys/dz)w, which is proportional to vertical

velocity w, somewhat similar to wave–CISK closures

but different from convective adjustment models

where heating is related to the water content such as

qt 2qys. Despite some of these similarities in form,

notice that the PQG system here is derived under the

assumption of quasigeostrophic scaling in the absence

of convection. In contrast, many prior moist QG sys-

tems describe the latent heating as a convective pa-

rameterization arising from unresolved convection. It

would be interesting to incorporate the effects of

subsynoptic-scale convection into the PQG system in a

systematic way in the future. The present PQG system

allows a simpler form for the investigation of the effects

of phase changes in a QG system.

We close this section by noting that one might choose

to work with the buoyancies (bu, bs) instead of (ue, qt)

by combining (22b) and (22c). The algebra leads to the

equivalent PQG system

D
h
z

Dt
5 f

›w

›z
, (24a)

D
h
b
u

Dt
1N2

uw52
gL

y

u
o
c
p

V
T

›q
r

›z
, and (24b)

D
h
b
s

Dt
1N2

s w5 0, (24c)

where the asymptotic forms of the buoyancy fre-

quencies are
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N2
u 5

g

u
o

d

dz

 
~u
e
2

L
y

c
p

~q
y

!
5

g

u
o

d~u

dz
and (25a)

N2
s 5

g

u
o

d~u
e

dz
. (25b)

For consistency between (24) and (25) and their original

non-QG versions, the asymptotic form of N2
s in (25b) re-

quires an additional assumption of jdqys/dzj � jd~qys/dzj
(see the appendix). One advantage of the formulation in

(24) is that bu and bs are related tocz in a simpleway, from

hydrostatic balance, which will be utilized below.

4. Formulation in terms of two dynamical variables:
PV and M

Next, we describe how the vertical velocity w can be

eliminated from the PQG system in (22). As in the case

of dry QG dynamics, this will involve the definition of a

PV variable. In addition, here in the case of PQG

dynamics, a second variable M is also needed in order to

account formoisture.Then, givenboth aPVandM, one can

recover any other variable through PV-and-M inversion.

a. A definition of potential vorticity

To eliminate the vertical velocity w from the vorticity

equation in (22a), one option is to combine it with the

equivalent potential temperature equation in (22b). (See

section 7 below for other options.) The appropriate com-

bination is the following definition of potential vorticity:

PV
e
[ z1

f

B
e

›u
e

›z
, (26)

where Be 5 d~ue/dz. The evolution equation for PVe can

be found by combining (22a) and (22b):

D
h
PV

e

Dt
52

f

B
e

›u
h

›z
� =

h
u
e
. (27)

Notice that the right-hand side of this equation is non-

zero, and hence, PVe is not a material invariant.

b. A definition of the variable M

To eliminate the vertical velocity w from the ther-

modynamic evolution equations, notice from (22) that a

convenient combination of ue and qt is the new anoma-

lous quantity

M5 q
t
1G

M
u
e
, G

M
52

d~q
t
/dz

d~u
e
/dz

, (28)

where M has units of a water mixing ratio. Multiplying

(22b) by GM and adding the result to (22c) leads to

D
h
M

Dt
5V

T

›q
r

›z
. (29)

Hence, the variable M is transported horizontally, un-

affected by vertical velocity, and is conserved in un-

saturated regions but altered by falling rainwater in

saturated regions.

Note that this variable M is similar to a variable

called Z that has been used in prior studies (Frierson

et al. 2004; Stechmann and Majda 2006; Majda and

Stechmann 2011; Chen and Stechmann 2016).

c. Summary of dynamics in terms of PVe and M

To summarize, by eliminating the vertical velocity w,

the PQG dynamics in (22) has been rewritten in terms of

the two variables PVe andM. Their evolution equations,

from (27) and (29), are

D
h
PV

e

Dt
52

f

B
e

›u
h

›z
� =

h
u
e

and (30)

D
h
M

Dt
5V

T

›q
r

›z
. (31)

Notice the difference from dry QG theory. In dry

QG theory, the entire dynamics can be described in

terms of a single variable: the potential vorticity. In

the PQG system, in contrast, the moist variable M is

also needed.

The eigenmodes of the linearized FARE system sug-

gest that the variables PV andM are natural choices for

describing the PQG system: PV represents the ampli-

tude of the vortical mode, and M represents the ampli-

tude of the additional eigenmode that arises when

moisture is added to dry dynamics (e.g., Hernandez-

Duenas et al. 2015). The vortical mode is a non-

propagating (zero frequency) mode, and the M mode is

nonpropagating (zero frequency) when VT 5 0. There-

fore, PV and M represent the slow or low-frequency

eigenmodes, as described by the quasigeostrophic ap-

proximation, whereas the fast or high-frequency inertia–

gravity waves are filtered out. (When VT . 0, the

M mode could either be low frequency or high fre-

quency, depending on the relative magnitude of VT . For

smallerVT values, theMmode is a low-frequencymode,

as described in the present section. For largerVT values,

on the other hand, the M mode is a high-frequency

mode, and it is filtered out of the PQG system in the

saturated phase; see section 6 below.)

d. Potential vorticity inversion

Given the two variables PVe andM, all other variables

can be obtained by solving a nonlinear elliptic PDE, as

described next. Since both PVe and M are needed as
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inputs, we will refer to this as PV-and-M inversion to

distinguish it from the PV inversion of the dry

QG system.

The PDE for PV-and-M inversion follows from the

definition of PVe in (26) by writing the right-hand side in

terms of streamfunction c and also M:

=2
hc1

f

B
e

›

›z
[H

u
u
eu
(c

z
,M, z)1H

s
u
es
(c

z
,M, z)]5PV

e
,

(32)

where z5=2
hc has been used, and ue has been written

as a function of cz and M in unsaturated and saturated

regions. To write the functions ueu(cz, M, z) and

ues(cz, M, z) in concrete form, relationships between ue,

cz, and M are needed. To this end, notice that the defi-

nition M5 qt 1GMue can be used to rewrite (21) in

terms of bu, bs, ue, and M as
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Then, note that bu and bs can be replaced by fcz in

unsaturated and saturated regions, respectively, since

fcz 5 buHu 1 bsHs from hydrostatic balance. Therefore,

(33) can be used to write ue as
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(34)

where DM 5 11LyGM/cp. This expression can then be

used to write the PDE (32) in concrete form as
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Finally, this PDE can be written in terms of the buoy-

ancy frequencies, N2
u and N2

s from (25), as
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where the relations N2
u 5N2

s [11 (Ly/cp)GM]5N2
s DM

and N2
s 5 (g/u0)Be were used. This PDE defines a

PV-and-M inversion for the PQG system.

Note that the unsaturated and saturated buoyancy

frequencies,Nu andNs, appear with the cz terms of (36)

in the familiar form of f 2/N2, except here with different

values in the different phases: f 2/N2
u in unsaturated re-

gions and f 2/N2
s in saturated regions. In both phases,

additional terms arise inside the vertical derivative in

(36) because the potential vorticity variable PVe is based

on ue rather than one of the buoyancies bu or bs. In

section 7 below, we compare this (ue, M) formulation

to a formulation using (bu, M).

Solving the PDE in (36) yields the streamfunction c,

and then, all variables can be determined from c andM.

For example, as in dry QG, the velocities u and y are

recovered from geostrophic balance [(19a)], and u is

recovered from hydrostatic balance in (14), (19b), and

(20). In addition, here in PQG, additional variables such

as ue and qt can be recovered. One can find ue from (34)

and qt from qt 5M2GMue, where the choice of Hu 5 1

or Hs 5 1 in (34) is selected to be consistent with the

resulting value of qt.

Also notice that the phase interface is determined as

part of the solution of the PV-and-M inversion process.

As described in the previous paragraph, the value of qt is

known only after the streamfunction c has been found.

Therefore, similarly, the location of the phase interface,

and the values of the functions Hu and Hs, are outputs

from, not inputs to, the PV-and-M inversion. This is il-

lustrated concretely in the example solution in section 8.

Because of the dependence of Hu and Hs on c, the

elliptic PDE in (36) is nonlinear.

In summary, two variables, PV andM, are necessary and

sufficient to determine the entire state of the PQG system,

in contrast to the single variable PV for the dryQGsystem.

Just as one must add an additional water variable (e.g., qt)

for moist thermodynamics to augment the dry state vari-

ables (e.g., p and u), one must add one variable M for

precipitating QG to augment the PV variable.

5. Energetics

The PQG equations conserve the following energy:
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(37)
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where the domainV is assumed to be periodic in x and y,

and the boundary conditions are w5 0 at upper and

lower boundaries. It then follows from the PQG equa-

tions in section 3 that

dE

dt
5 0: (38)

The derivation is facilitated by many of the points of

discussion in the following paragraphs and by noting

that (d/dt)
Ð
V
GdV5

Ð
V
(DhG/Dt)dV for any function G

because of the incompressibility of uh.

The energy in (37) involves the sum of four compo-

nents: a kinetic energy KE involving j=hcj2, an un-

saturated potential energy PEu involving Huc
2
z/N

2
u, a

saturated potential energy PEs involvingHsc
2
z/N

2
s , and a

moist energy ME involving M:
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(42)

For comparison with the energy of the dry QG equa-

tions, notice the various contributions of water: 1) to the

buoyancy frequency N2
s of the saturated potential en-

ergy, 2) to the determination of the form of the potential

energy via the phase change, indicated by Hu and Hs,

and 3) to the moist energy term ME, which involves

M5qt 1GMue.

Notice that the density of the total potential energy,

PE5PEu 1PEs 1ME, is continuous across the phase

interface even though each of the densities of the

components PEu, PEs, and ME is, by itself, dis-

continuous across the phase interface. To see this,

consider fromME the quantityM2 (N2
u/N

2
s )qys, which,

in terms of qt and ue, is qt 1GMue 2 (N2
u/N

2
s )qys. Notice

that, at the phase interface, where qt 5 qys, this

quantity can be written as (N2
u 2N2

s )N
22
s (cp/Ly)u5

(N2
u 2N2

s )N
22
s (cp/Ly)(u0/g)fcz. Hence, one can see

that, at the phase interface, the integrand in the ME

definition in (42) is equal to

H
u
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s

2
f 2
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u

!
c2
z , (43)

which ensures that the total potential energy density is

continuous across the phase interface.

The energy transfers between the four components are

d
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These energy transfer equations follow from applying

d/dt to each of the four definitions in (39)–(42). Also, to

arrive at (47), the calculations leading to (43) were used.

Notice that the role of the moist energy ME is in the

exchange of unsaturated PEu and saturated potential

energy PEs, not in any direct energy transfer with kinetic

energy. In fact, transfers of moist energy ME occur

only at the location of the phase interface, as indicated

by the DhHs/Dt factor, which is proportional to a

Dirac delta function d that equals zero away from

the phase interface. Explicitly, since Hs(x, y, z, t)5
H [qt(x, y, z, t)2qys(z)], where H is the Heaviside

function, one can see that theDhHs/Dt factor is equal to

d[qt(x, y, z, t)2 qys(z)]Dhqt/Dt. Hence, the integral

over the volume V in (47) could be written as a surface

integral over the phase interface.When themoist energy

ME is transferred at the phase interface, it corresponds

to a conversion between 1) latent potential energy

that is not directly transferable to kinetic energy and

2) buoyant potential energy that is directly transferable

to kinetic energy.

Alternative definitions of theM variable are suggested

by the form of the moist energy ME in (42). Recall that

the motivation for defining the variable M5 qt 1GMue
was in eliminatingw from the PQG system (see section 4).

To this end, the key property ofM is that its equation of

motion does not include a w term, unlike the equations

of motion of, for example, ue and qt. This key property,

however, is not unique to the quantityM5qt 1GMue; it

is also satisfied by many alternative definitions ofM. For

instance, the quantity ~M5M2N2
uN

22
s qys(z) would also

suffice, since Dh
~M/Dt5DhM/Dt, and such a choice

would simplify the expression for the moist energy ME

in (42). Moreover, one could absorb additional factors

such as (g/u0)(Ns/Nu) into the definition of M to further

simplify (42). On the other hand, the present definition

M5 qt 1GMue is advantageous for its simple relation-

ship with ue and qt.
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Finally, notice that an energy loss due to hydrometeor

drag does not appear in the energy principle in (38). This

is because the hydrometeor drag term 2gqr in the

buoyancy is asymptotically small in the PQG approxi-

mation applied here, as indicated by the asymptotic

form [(20)] of the original buoyancy [(13)]. One could,

alternatively, retain the hydrometeor drag term and

hence also its dissipative effect on energy (Pauluis et al.

2000; Pauluis and Dias 2012; Hernandez-Duenas et al.

2013, 2015) as a small correction term that may be im-

portant on longer time scales; we plan to consider such

effects elsewhere in the near future.

6. The limit of asymptotically large rainfall speed

For the rainfall speedVT , a second scaling regime can

be considered by assuming that VT is relatively fast, in

contrast to the scaling regime considered above in

which VT was comparable to the reference vertical

velocity scale. For horizontal scale L; 1000 km, ver-

tical scale H; 10 km, and characteristic horizontal

velocity U; 10 m s21, the characteristic vertical ve-

locity scale is W; 0:1 m s21. Thus, the scaled rainfall

speed Vr 5 VT /W is relatively small for VT , 0:1ms21,

relatively large for VT . 0:1 ms21, and a rainfall speed

VT ; 1 ms21 is asymptotically large. (As described in the

appendix, the formal derivation of PQGuses an expansion

in powers of «, with a typical value of «’ 0:1 for standard

reference quantities and thermodynamic parameters. Thus

VT 5 1 ms21 corresponds to Vr ’ 105 «21.)

In the fast-VT limit, the dominant balance in the qt

equation [(1d)] is

w
d~q

t

dz
5V

T

›q
r

›z
, if saturated, (48)

where w and ›qr/›z are small and 2d~qt/dz and VT are

large, such that the products in (48) areO(1). In saturated

regions, qt dynamics are thus replaced by the constraint

[(48)] relating small vertical velocity w to small vertical

change in rain mixing ratio ›qr/›z. The PQG model is

otherwise unaltered, and in particular, the PQGmodel is

exactly the same in unsaturated flow regions for all values

of VT . Physically, (48) suggests that, within quasigeo-

strophic storms, the vertical velocity may be directly

proportional to the change in rainfall mixing ratio with

height. It would be interesting to investigate whether this

balance is seen in observational data.

Some interesting remarks can be made regarding the

balance [(48)]. Effectively, (48) is a closure for w in

terms of qr, which then gives the heating in terms of qr

by (23). Such a closure is reminiscent of convective pa-

rameterizations with heating proportional to water

content (Lapeyre and Held 2004; Dias and Pauluis 2010;

Lambaerts et al. 2012; Monteiro and Sukhatme 2016).

However, note the important difference in the VT /‘
PQG model: heating is proportional to the change of

rainfall mixing ratio with height, as opposed to the

rainfall mixing ratio itself. Furthermore, the PQGmodel

describes large-scale dynamics, filtering out smaller-

scale processes including convection, whereas convec-

tive adjustment models are meant to capture convection.

As a final comment, (48) suggests that it may be feasible

to find the vertical velocity through PV-and-M inversion

alone, instead of by solving an omega equation (Sutcliffe

1947; Hoskins et al. 1978), but only in saturated flow

regions. The physical implications of (48), its possible

computational advantages, and the PQG omega equa-

tion will be explored elsewhere.

7. Alternate forms of potential vorticity

a. PV based on bu

Alternate forms of the PQG model [(22)] result from

replacing the equations for ue and qt by the equations for

any two linear combinations of ue and qt. For a pre-

dominantly unsaturated background, a different sensi-

ble choice is to work with bu and M. The equivalent

PQG model combines the vorticity [(22a)] and the

M equation [(29)] with (24b) for the unsaturated buoy-

ancy bu. The unsaturated buoyancy can be written in

terms of c and M as
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(49)

where we have used the hydrostatic balance relation

[(19b)], the asymptotic forms of the buoyancies [(21)],

and the definition of M [(28)].

The unsaturated potential vorticity may be defined by

PV
u
5=2

hc1
f

N2
u

›b
u

›z
(50)

in unsaturated and saturated regions. The evolution

equation governing PVu is given by
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, (51)

and must be coupled to the M equation [(29)]. Note the

appearance of a rainfall term on the right-hand side of the

PVu equation [(51)], which does not appear in the PVe

formulation. Finally, PVu-and-M inversion follows from

(49) and (50):
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b. PV based on b or virtual potential temperature

As another choice, one could define PV based on the

virtual potential temperature utoty . Several advanta-

geous features of this choice have been discussed by

Schubert et al. (2001) in a more comprehensive model

of moist dynamics that does not assume quasigeo-

strophic scaling. In the PQG model, anomalies of vir-

tual potential temperature are proportional to the

buoyancy variable b, and a corresponding PV variable

could be defined as

PV
y
5 z1

f
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u

›b
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(53a)

5z1
f
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u
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s
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s
) . (53b)

Because of phase changes, this definition involves sev-

eral subtleties.

First, notice that PVy is discontinuous by definition. This

is because its definition in (53b) involves a ›/›z derivative

of different quantities (bu and bs) in different phases, a

consequence of the piecewise equation of state of the

buoyancy: b5Hubu 1Hsbs. With discontinuous jumps at

the phase interface, PVy is somewhat similar to vortex

patches of incompressible flow (Majda and Bertozzi 2002),

which involve discontinuous jumps in vorticity over dif-

ferent spatial regions.

Second, notice that PVy inversion is possible without

the need for M. Since b5 fcz, the definition [(53)] can

be used to define an elliptic PDE for PVy inversion:

=2
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›2c

›z2
5PV
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. (54)

One subtlety here is that PVy is discontinuous at the

phase interface; consequently, the second derivatives

such as czz are also discontinuous at the phase interface,

and numerical methods must be designed carefully with

these issues in mind. Aside from this subtlety, the form

of this PVy inversion appears superficially to be the same

as in dry PV inversion. Given PVy alone, this equation

can be solved for c, from which one can compute the

velocity uh and buoyancy b. Then, as a subsequent

step, one can useM or possibly some other variable such

as qt to determine all other variables. In contrast to

PV-and-M inversion, the location of the phase interface

is already known a priori from the locations of the dis-

continuous jumps in PVy.

Third, the evolution equation for PVy has some dif-

ferences compared to that of PVe or PVu, due in part to

the discontinuous definition of PVy. If the operator

Dh/Dt is applied to the definition in (53b), the result is

D
h
PV

y

Dt
5

f

N2
u

›

›z

�
2
d~q

ys

dz
wH

s

�
(55a)

52
f

N2
u

d~q
ys

dz

›w

›z
H

s
2

f

N2
u

d~q
ys

dz
w
›H

s

›z
, (55b)

which has some potential advantages and disadvantages.

One advantageous feature in (55a) is that the dynamics

are a conservation law with a perfect derivative on the

right-hand side. On the other hand, several complex

features are also apparent. For instance, vertical velocity

w is not completely eliminated from the dynamics; its

appearance represents a heat source term. (For the case

of large VT , however, one may be able to still eliminate

w by taking advantage of the relationship betweenw and

›qr/›z; see section 6 above.) In addition, the factor

›Hs/›z is a Dirac delta function that is supported

on the phase interface. For comparison, these fea-

tures would be represented by the term involving = _ur
in (20) and (21) of Schubert et al. (2001). Because of

these features, it is possible that the use of PVy

as a dynamical variable may be complicated despite its

potential use as a diagnostic variable for PVy inversion.

It would be interesting to investigate the advantages and

disadvantages of the many different PV definitions in

more detail in the future.

8. Example PV-and-M inversion and
determination of phase boundary

In this section, an example of PV-and-M inversion is

presented to illustrate the new effects of phase

changes, for comparison with traditional PV inversion.

In particular, here, the two variables PVu and M are

given, and the locations of phase boundaries are not

known a priori; the phase boundaries and all other

variables (streamfunction c, potential temperature u,

total water qt, etc.) are determined from the solution of

the PV-and-M inversion problem.

a. Setup

For this simple example, the PVu formulation [(52)]

is discretized using centered differences in the vertical

direction following similar discretizations for dry

QG equations (e.g., Phillips 1954). See Fig. 1. In the

case of two vertical levels, the dynamical variables

are c1 for the lower troposphere and c2 for the upper
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troposphere. For convenience, one can use vertical

modes instead of vertical levels, where the barotropic

mode is c5 (c1 1c2)/2 and the baroclinic mode is

t5 (c2 2c1)/2. One can show that the PV inversion for

the baroclinic mode is

=2
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q
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!
, (56)

where the subscript ‘‘1’’ has been dropped from

several variables to ease notation, and variables at

the upper and lower boundaries have been set to

zero for a simple choice of boundary conditions.

Nondimensional units are used here, as described in

the appendix, with Fu 5L/Ldu and Fs 5L/Lds. Note

that Hu and Hs are functions of t, so this PDE is

nonlinear.

As a simple case for illustration, consider an ideali-

zation of a cold-core cyclone by choosing a point-

potential-vorticity distribution of

PV
u
(r)5G

t
d(r) , (57)

where r5 (x2 1 y2)1/2 is the distance from the origin and

d(r) is the Dirac delta function. Furthermore, choose the

other parameters to also be axisymmetric: M5M(r)

and qys 5 qys(r). Then seek solutions that are axisym-

metric, in which case, in cylindrical polar coordinates,

the equation satisfied by t is
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(58)

where the solution is assumed to tend toward the un-

saturated background state (i.e., t/ 0) as r/‘. The
specific values of the parameters used here are Gt 5 1:0,

M5 0, qys 5 0:1, Fu 5 1:0, and Fs 5
ffiffiffi
2

p
. These values

were selected as simple nondimensional numerical

values, and it will be shown below that they lead to a

solution with somewhat reasonable physical values

as well.

b. Method for finding a solution

To find a solution to (58), consider the following

initial guess (and look forward to Figs. 2 and 3 for il-

lustrations of the final result). As an initial guess, we

suppose that the solution is saturated near the center of

the vortex at r5 0. This is consistent with (58) and

the choices Gt . 0 and M5 0, as can be seen by solving

(58) under the assumption of saturated conditions

[see (59) and Fig. 2 below]. However, the total water

qt should decrease away from the vortex center and

eventually fall below the saturation value qys. Fur-

thermore, the condition t/ 0 as r/‘ implies the

anomaly qt / 0 as r/‘, and hence, the solution

tends toward the unsaturated background state as

r/‘. Combining these pieces, one can guess that the

solution may consist of a saturated interior region

near the vortex center and an unsaturated exterior

region away from the vortex center, with a phase in-

terface at some location r5 ri.

Note that this initial guess may not be correct; that is,

it is possible, for instance, that the solution is saturated

in regions 0, r, r1 and r2 , r, r3 and unsaturated in

regions r1 , r, r2 and r. r3. The locations and numbers

of saturated and unsaturated regions are not known a

priori; they will be discovered as part of the process of

solving the nonlinear elliptic PDE in (58). Nevertheless,

one can imagine an iterative solution method for (58) in

which one makes a first guess and then continues to

update the guess until the iterations have converged.We

are currently developing such a numerical method and

will present it elsewhere in the near future. For now, for

the example considered here, it is shown below that the

first guess actually provides a solution, which has a single

phase interface at r5 ri.

Continuing in a more precise way, a solution to (58)

can be found using the intuition from the previous

paragraphs and using the method of undetermined

coefficients. First, suppose the solution is saturated

(Hu 5 0, Hs 5 1) for r, ri, where ri is an unknown in-

terface location. In this region, the solution has the

form

t
s
(r)52

G
t

2p
K

0
(k

s
r)1BI

0
(k

s
r)2

q
ys

4F
u

, (59)

FIG. 1. Variables in the two-level system.
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where k2
s 5 8F2

s , and K0(r) and I0(r) are modified Bessel

functions of the first and second kinds, respectively. The

coefficient B is to be determined via the interface con-

ditions. Second, suppose the solution is unsaturated

(Hu 5 1, Hs 5 0) for r. ri. Then the solution within this

region has the form

t
u
(r)5AK

0
(k

u
r) , (60)

where k2
u 5 8F2

u , and the coefficient A is to be de-

termined via the interface conditions. Third, the in-

terface conditions are:

q
t
(r

i
)5 q

ys
, (61)

t
s
(r

i
)5 t

u
(r

i
), and (62)

t0s(ri)5 t0u(ri) . (63)

The first two [(61) and (62)] represent the satura-

tion condition and continuity-of-pressure condition,

respectively. The third [(63)] is the ‘‘jump condition’’

(Evans 1998; LeVeque 2002) that describes the jump in

the value of ›t/›r at the interface; the jump turns out to

be zero in this case. This third condition [(63)] arises

from multiplying (58) by r, integrating from ri 2 « to

ri 1 «, and taking the limit «/ 0. Physically, (63) in-

dicates that the azimuthal velocity is continuous, since

the azimuthal velocity equals ›t/›r. Finally, note that

(61)–(63) is a system of three nonlinear algebraic

equations that can be solved to determine the unknown

parameters A, B, and ri, which in turn determine the

solution t(r).

c. Solution and illustration

We solved the system [(61)–(63)] numerically using an

iterative algorithm with the command ‘‘fsolve’’ of the

MATLAB computer software package. The solution

is A520:1291, B5 0:0056, and ri 5 0:3743, in non-

dimensional units.

FIG. 2. Semianalytic solution of a PV-and-M inversion problem. Variables plotted are (a) baroclinic stream-

function t, (b) potential temperature u, (c) total water qt , and (d) equivalent potential temperature ue, all as

functions of r, the distance from the vortex center. The saturated interior solution is denoted by solid black curve,

and unsaturated exterior solution is denoted by dashed black curve. The black cross indicates the phase interface,

r5 ri 5 0:3743. The functional form of the solution is shown in (59) and (60), and the PV-and-M inversion PDE is

shown in (58).
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The solution is illustrated in Figs. 2 and 3. The solution

is saturated (qt . qys) in the interior region (r, ri) of the

vortex, unsaturated (qt , qys) in the exterior region

(r. ri) of the vortex, and tending toward the environ-

mental state (qt / 0 as r/‘). Note the subtle discon-

tinuities in this solution: each of the variables t, u, qt, and

ue is continuous, but the derivatives dqt/dr and due/dr

have jumps at the phase interface. Such discontinuities

can present challenges for designing numerical methods

for PV-and-M inversion with high-order accuracy,

which we are currently pursuing.

In summary, in PQG, all variables can be recovered,

through an inversion process, from knowledge of PVu

and M alone. Differences from dry PV inversion in-

clude 1) the need for a second variableM in addition to

PV, 2) nonlinearity in the elliptic PDE for PV-and-M

inversion, because of phase changes, and 3) the de-

termination of unknown phase interface locations via

the inversion process.

9. Generalized cloud microphysics, more
comprehensive thermodynamics, and anelastic
version of PQG equations

A primary reason to start with the minimal FARE

model was to clearly and concretely illustrate the main

features of the PQG model and the PV-and-M in-

version with phase changes. Recall that ingredients of

the FARE mode are Boussinesq dynamics, linearized

thermodynamics, and asymptotically fast cloud mi-

crophysics. However, it is feasible to extend the

analysis to include anelastic effects, and/or more

comprehensive thermodynamics, and/or generalized

cloud microphysics; these are the topics of the present

section. These extensions show that PQG equa-

tions are not limited to idealized microphysics; PQG

equations can in fact be derived for more compre-

hensive dynamics of a moist atmosphere and, as such,

should represent the limiting dynamics of a moist at-

mosphere in the limit of rapid rotation and strong

stratification.

a. An anelastic FARE model

The anelastic version of the FARE model is given by

Du

Dt
1 f ẑ3 u52=

�
p

~r(z)

�
1 ẑb , (64a)

= � [~r(z)u]5 0, (64b)

Du
e

Dt
1w

d~u
e

dz
5 0, and (64c)

Dq
t

Dt
1w

d~q
t

dz
2

1

~r

›

›z
(~rV

T
q
r
)5 0, (64d)

where ~r(z) is the background density profile. Then a

derivation similar to that in section 3 or the appendix

leads to the anelastic version of the PQG equations,

which includes the balance relations

f ẑ3 u
h
52=

h
f, b

u
H

u
1 b

s
H

s
5

›f

›z
, (65)

where f5 p/~r(z), and c5f/f , and the dynamic

equations

D
h
z

Dt
5

f

~r

›

›z
(~rw) , (66a)

D
h
u
e

Dt
1w

d~u
e

dz
5 0, and (66b)

D
h
q
t

Dt
1w

d~q
t

dz
2

1

~r

›

›z
(~rV

T
q
r
)5 0: (66c)

At this stage, the main difference from the Boussinesq

case is in the appearance of the background density

profile ~r(z).

As a next step, as in sections 4 and 7 above, it is con-

venient to eliminatew and formulate the PQG system in

terms of PV and the variable M. For the anelastic sys-

tem, the definitions are

FIG. 3. Vector field u(x, y), y(x, y) in the upper troposphere for

the semianalytic solution of the PV-and-M inversion problem. The

gray circle indicates the radius r5 ri 5 0:3743 of the phase interface

that separates the saturated interior from the unsaturated exterior.

See Fig. 2 for corresponding plots of other variables, and see (59)

and (60) for the functional form of the solution and (58) for the

PV-and-M inversion PDE.
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PV
e
5 z1

f

~r

›

›z

 
~r

d~u
e
/dz

u
e

!
and (67)

M5 q
t
1G

M
u
e
, (68)

where GM 52(d~qt/dz)/(d~ue/dz). Again, the main dif-

ference from the Boussinesq case is in the appearance of

the background density profile ~r(z); here, it is in the

definition of PVe. The definition ofM is the same in the

Boussinesq and anelastic cases.

b. A choice of thermodynamics

To formulate the PV-and-M inversion problem, a

choice of thermodynamics is required. Specifically, one

must write ue as a function of cz and M in order to turn

(67) into an elliptic PDE for streamfunction c. To do

this, one should specify the relationships among all of

the thermodynamic variables, such as ue, qt, u, qy,

buoyancy b, or virtual equivalent potential temperature

uy. Several options are possible. One option is to use a

linearized form of thermodynamics, as in the FARE

model of section 2, with

utote 5 utot 1
L

y
~u(z)

c
p
~T(z)

qtot
y , (69)

etc. A second option would be to retain a more com-

prehensive and/or standard definition of thermody-

namics, including, for instance

utote 5 utotexp

 
L

y
qtot
y

c
p
T tot

!
. (70)

Similarly, the saturation profile could more realistically

be allowed to vary with temperature, rather than

depending only on altitude. Relation (70) is a nonlinear

relationship between thermodynamic variables, and it

results in a PV-and-M inversion that can be written

abstractly as

=2
hc1

f

~r

›

›z

(
~r

d~u
e
/dz

[H
u
u
eu
(c

z
,M, z)

1H
s
u
es
(c

z
,M, z)]

)
5PV

e
, (71)

where ueu(cz, M, z) and ues(cz, M, z) are the functions

that define ue in terms of cz and M in unsaturated and

saturated regions, respectively. Although (71) is con-

ceptually straightforward, the functions ueu and ues are

complicated if not impossible to write down analyti-

cally in closed form because of the complicated non-

linearity in (70).

c. More comprehensive cloud microphysics

One could also use more comprehensive cloud micro-

physics by relaxing the assumptions of fast autoconver-

sion and evaporation and by including more variables

such as cloud ice qi and number density and nc of cloud

droplets (e.g., Kessler 1969; Lin et al. 1983; Seifert and

Beheng 2001, 2006). Then, the PQGmodel would consist

of more equations in addition to those for ue and qt.

To illustrate, consider warm-rain bulk cloud micro-

physics with finite time scales for condensation, evapo-

ration, autoconversion, and collection but neglecting

supersaturation. In this case, the starting point is (64)

together with an equation for the mixing ratio of rain-

water qr:

Dq
r

Dt
2

1

~r

›

›z
(~rV

T
q
r
)5A

r
1C

r
2E

r
, (72)

where Ar, Cr, and Er represent, respectively, auto-

conversion of cloud water to form rainwater, collection

of cloud water to form rainwater, and evaporation of

rainwater to form water vapor. Then, through a deri-

vation similar to that in section 3 or the appendix, one

arrives at a quasigeostrophic system including (65) and

(66) together with the quasigeostrophic version of the

dynamics [(72)] of rainwater:

D
h
q
r

Dt
2

1

~r

›

›z
(~rV

T
q
r
)5A

r
1C

r
2E

r
. (73)

Notice that the only change from (72) to its quasigeo-

strophic version [(73)] is in the loss of the vertical ad-

vection term w›qr/›z. Also notice that there is no term

for vertical advection of background rainwater, since the

background rainwater ~qr(z) is zero.

This evolution equation for qr supplements the evolu-

tion equations of PVe and M. Also, the PV-and-M in-

version [(71)] is modified to become PV-and-M-and-qr

inversion, where all variables can be recovered from

knowledge of the three variables PV, M, and qr. Of

course, closures for the source terms Ar, Cr, and Er

and/or assumptions about their asymptotic quasigeo-

strophic scaling are now also required. Thus, additional

hydrometeors require additional evolution equations

and introduce complexity through source terms, but the

fundamental ideas of the PQG structure are similar for

any choice of cloud microphysics.

10. Discussion and conclusions

In summary, precipitating quasigeostrophic equations

were derived systematically. The PQG system includes

the nonlinear effects of phase changes, which arise, for
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instance, through separate buoyancy frequenciesNu and

Ns for unsaturated and saturated regions, respectively.

An energy principle was also presented, and the po-

tential energy was shown to change across phase

boundaries and to include the effects of a moist energy.

Two variables, a potential vorticity and a moist vari-

able M, were shown to be necessary and sufficient to

characterize the simplest version of the PQG system.

Given these two variables, all other variables can be

found as outputs from a PV-and-M inversion process.

The PDE for PV-and-M inversion is elliptic and non-

linear, because of the effects of phase changes. In

PV-and-M inversion, the location of the phase interface

is unknown a priori and is discovered as an output of the

inversion process.

Cases with more general cloudmicrophysics were also

considered. From a theoretical point of view, these cases

show that the PQG equations are not limited to ideal-

ized microphysics; PQG equations can in fact be derived

for more comprehensive dynamics of a moist atmo-

sphere, and they therefore represent the limiting dy-

namics of a moist atmosphere, in the limit of rapid

rotation and strong (moist) stratification. From a more

practical point of view, in cases with more general mi-

crophysics, additional variables are needed beyond a

potential vorticity and the moist variable M. For ex-

ample, the case of Kessler (1969) warm-rain micro-

physics was described in section 9. In this case, a

rainwater mixing ratio qr is also needed. For other cases

involving ice and/or double-moment microphysics, ad-

ditional variables are needed. Nevertheless, the basic

principles of the PQG system and its derivation are

similar to the case of idealized microphysics.

Finally, we end with three directions, in addition to

the linear analysis ofmeridional moisture transport (Wetzel

et al. 2017, manuscript submitted to Math. Climate Wea.

Forecasting), that will be interesting to pursue in the future.

First, numerical simulations of the PQG system can

provide a simplified setting, compared to global climate

model simulations, for investigating the hydrological

cycle and effects of latent heat release. For example, the

PQG model could potentially provide insight into the

appropriate effective static stability for a moist atmo-

sphere (e.g., Lapeyre and Held 2004; O’Gorman 2011).

We are currently designing numerical methods for the

PV-and-M inversion problem, which are needed for

simulating the dynamics of the PQG system, and results

will be presented elsewhere in the future.

Second, for simplicity in this first investigation with

phase changes, all condensational heating was assumed

to be associated with quasigeostrophic motions, and the

effects of smaller-scale convection were neglected. It

would be interesting to include mesoscale convective

effects and their impacts on the synoptic-scale QG dy-

namics in the future.

Third, precipitation introduces a potential dissipation

mechanism that is not present in dry dynamics (Pauluis

et al. 2000; Pauluis and Dias 2012; Hernandez-Duenas

et al. 2013). In the present paper, though, the dissipative

effects of precipitation were not present in the leading-

order dynamics, as the leading-order buoyancy [(20)]

was simply gu/u0 and did not include the hydrometeor

drag term 2gqr from (13). Nevertheless, it would be

interesting to retain the hydrometeor drag term in future

studies, along with other dissipation mechanisms such as

frictional drag and radiative cooling, to investigate the

relative roles of different dissipation mechanisms in a

precipitating setting.
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APPENDIX

Systematic Asymptotic Derivation of the PQG
Equations

a. The nondimensionalized FARE equations

Using the reference scales defined in Table A1, the

FARE model [(1)] may be rewritten in nondimensional

form as

D
h
u
h

Dt
1w

›u
h

›z
1Ro21u?

h 1Eu=
h
p5 0, (A1a)

A2

�
D

h
w

Dt
1w

›w

›z

�
1Eu

›p

›z
2GA2(b

u
H

u
1 b

s
H

s
)5 0,

(A1b)

=
h
� u

h
1

›w

›z
5 0, (A1c)

D
h
b
u

Dt
1w

›b
u

›z
1Fr22

u (GA2)21w

1V
r

�
12R

yd

c
p
u
o

L
y

�
›q

r

›z
5 0, and (A1d)

D
h
b
s

Dt
1w

›b
s

›z
1Fr22

s (GA2)21
w1V

r

c
p
u
o

L
y

›q
r

›z
5 0,

(A1e)
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where u?
h 5 (2y, u), and we have combined the equa-

tions for (ue, qt) into equations for (bu, bs) using the

definitions [(17)]. The nondimensional numbers are de-

fined in Table A2: the Rossby number Ro, Euler number

Eu, Froude numbers Fru andFrs, aspect ratioA, fall speed

Vr, and buoyancy parameter G. The buoyancy anomalies

[(17)] may be written in nondimensional form as

b
u
5

�
u
e
1

�
R

yd

c
p
u
o

L
y

2 1

�
q
t

�
and (A2a)

b
s
5

�
u
e
1

�
R

yd

c
p
u
o

L
y

2 11
c
p
u
o

L
v

�
q
ys
(z)2

c
p
u
o

L
y

q
t

�
.

(A2b)

The Rossby deformation scales are

L
du
5

N
u
H

f
, L

ds
5

N
s
H

f
, (A3)

where H is the height of the troposphere. The un-

saturated and saturated buoyancy frequencies Nu, Ns

are given by

N2
u 5 g

d

dz

"
~u
e

u
o

1

 
R

yd
2

L
y

c
p
u
o

!
~q
t

#
and (A4a)

N2
s 5 g

d

dz

"
~u
e

u
o

2

 
R

yd
2

L
y

c
p
u
o

1 1

!
q
ys
(z)2 ~q

t

#
. (A4b)

Note that N2
u could be thought of as the vertical de-

rivative of a background buoyancy ~bu, but this type of

interpretation is less simple for N2
s . To arrive at the

definition ofN2
s , a material derivativeD/Dt is applied to

the definition of bs in (A2b), and the resulting back-

ground terms are grouped together into the definition of

N2
s ; the term [Ryd 2Ly(cpuo)

21 1 1]qys(z) has a sign

change in comparing bs in (A2b) and N2
s in (A4), which

complicates the interpretation of N2
s as the vertical de-

rivative of a background buoyancy ~bs. In fact, the vari-

ables bu and bs were defined in terms of the anomalous

variables ue and qt in (17) without defining any corre-

sponding background states for bu and bs.

b. Derivation of the PQG equations

Similar to the dry case, we consider horizontal length

scaleL;Ldu ;Lds, andwe assume a rapidly rotating and

strongly stably stratified flow with asymptotic scalings:

Ro5Eu21 5 «, Fr
u
5

L

L
du

Ro5O(«),

Fr
s
5

L

L
ds

Ro5O(«), GA2 5Fr21
u , (A5)

which look like the same assumption as in the derivation

of dry QG except that background water profiles are

hidden in the two Froude numbers Fru and Frs and we

have two Froude numbers instead of one. (Note that

either Ro5 « or Eu21 5 « could be taken as the defini-

tion of «, since Ro and Eu21 are taken to be equal to

each other.) Introducing characteristic scales denotedQ
and Q5 cpQ/Ly, respectively, for the anomalies of po-

tential temperature and water mixing ratios, it follows

from Fru ;Frs 5O(«) that

~G
M
52

Q

Q

d~q
t
/dz

d~u
e
/dz

52
L

y

c
p

d~q
t
/dz

d~u
e
/dz

5O(1) , (A6)

which is a nondimensional version of the parameterGM

of the main text. Additional assumptions are

gQ

B
5

c
p
u
o

L
y

5C
cl
Ro5O(«), V

r
5O(1) , (A7)

where Ccl is an O(1) constant. The first relation in (A7)

says that the ratio of buoyancy anomalies gQ/B is small,

where B5 gQ/uo. On the other hand, from (A6), we

consider the normalized background slopes Q21d~qt/dz

and Q21d~ue/dz to be the same order of magnitude.

The distinguished limit [(A5)–(A7)] leads to the

equations

TABLE A2. Dimensionless quantities from the FARE model.

Symbol Definition Name (notes)

Ro U(Lf )21 Rossby number

Eu P(roU
2)21 Euler number

Fru U(NuH)21 Froude number

(unsaturated)

Frs U(NsH)21 Froude number

(saturated)

G BHW22 5 gQu21
o L2(U2H)21 (buoyancy parameter)

A HL21 Aspect ratio

Vr VTW
21 5VTL(HU)21 Rainfall speed

TABLE A1. Reference scales used for the nondimensionalization.

Variable Reference scale

x, y L

z H

t t5L/U

u(x, t), y(x, t) U

w(x, t) W5UH/L

p(x, t) P

u(x, t), ue(x, t) Q
qy(x, t), qr(x, t), qt(x, t), qys(z), M(x, t) Q5 cpQ/Ly

bu(x, t), bs(x, t), b(x, t) B5 gQ/uo
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s
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cl

›q
r

›z
5 0: (A8e)

With the values uo ’ 300K, Ly ’ 2:53 106 J kg21, and

cp ’ 103 J kg21 K21, a typical value of « would then be

«’ 0:12. The assumed scaling is consistent with poten-

tial temperature anomaly scale Q’ 3K and midlatitude

horizontal velocity scale U’ 10m s21.

Expanding all the dependent variables f (x, t) as

asymptotic series in powers of «

f 5 f (0) 1 «f (1) 1 «2f (2) 1⋯ (A9)

leads to the dominant balance of (A8) at O(«21):

(u(0))
?
h 52=

h
p(0), =

h
� u(0)h 5 0, w(0) 5 0,

›p(0)

›z
5

L
du

L
(b(0)u H

u
1b(0)s H

s
) . (A10)

Thus, the lowest-order pressure p(0) is a streamfunction

p(0) 5c, with lowest-order horizontal velocity u
(0)
h 5

(u(0), y(0)), vorticity z(0) 5 ›y(0)/›x2 ›u(0)/›y, and buoy-

ancy given by, respectively,

u(0) 52
›c

›y
, y(0) 5

›c

›x
, z(0) 5=2

hc, and (A11a)

b(0)u H
u
1b(0)s H

s
5

L

L
du

›c

›z
. (A11b)

Using the nondimensional forms of the expressions for

bu and bs given by (17), one finds the lowest-order

buoyancy terms

b(0)u 5 u(0)e 2 q
(0)
t (5u(0) 1 q(0)y 2 q(0)y 5 u(0)) and

(A12a)

b(0)s 5 u(0)e 2 q
ys
(z) [5u(0) 1 q

ys
(z)2 q

ys
(z)5 u(0)] .

(A12b)

The lowest-order buoyancy is the potential temperature

in both unsaturated and saturated regimes consistentwith

the assumption gQ/B in (A7). However, phase change

information is nevertheless encapsulated in the different

dependence on ue and qt. As in the dry case, given the

pressure p(0), the lowest-order FARE equations [(A10)–

(A12)] diagnostically determine (u(0), y(0), u(0)).

Now one may proceed to the next-order balances

arising from (A8). The O(1) balances of the continuity

condition [(A8c)] and the curl of the horizontal mo-

mentum equation [(A8a)] lead to

D
(0)
h z(0)

Dt
5

›w(1)

›z
, (A13)

whereD
(0)
h /Dt5 u(0) � =h. TheO(1) balances from (A8d)

and (A8e) are, respectively,

D
(0)
h b(0)u

Dt
1

L
du

L
w(1) 1V

r

›q(0)r

›z
5 0 and (A14a)

D
h
b(0)s

Dt
1

L
ds

L
w(1) 5 0: (A14b)

Equations (A13) and (A14) are the PQGmodel in terms

of the buoyancies bu and bs, and they are presented in

the main text in dimensional form in (24).

As noted in the main text, consistency of (A12b),

(A14b), and (22) requires an additional restriction on

the change in anomalous saturation profile with altitude:

(dqys/dz)(d~qys/dz)
21 5O(«). This can be seen by com-

paring the form ofN2
s that would arise as the asymptotic

limit of (A4) and the form ofN2
s that arises algebraically

in moving from (22) to (24) and (25).
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