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Abstract8

The Madden-Julian oscillation (MJO) skeleton model is a low-order model for intraseasonal oscillations
that, in an extended form, includes off-equatorial and antisymmetric components. Previous studies of
this extended model have used an idealized background state and forcing terms. In the current study,
observation-based estimates of these forcing terms and background state are used. Linear solutions to the
extended model with this observation-based forcing consist of both equatorially-symmetric convective
events and events with a meridional tilt reminiscent of composites of the boreal summer intraseasonal
oscillation (BSISO) in observational studies. Solutions to a nonlinear stochastic form of the model
exhibit realistic precipitation mean and variance and intraseasonal variability throughout much of the
tropics. These solutions contain several types of events, including meridionally-tilted convective activity
that moves both northward and eastward. Solutions to both forms of the model also indicate that this
BSISO-like convective activity is coupled to activity over the eastern Pacific. A discussion of these
features and their agreement with previous observational studies of the BSISO is given.
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1. Introduction10

The primary features of tropical intraseasonal oscillations have been shown to be largely dependent11

on the season. During boreal winter, the Madden-Julian oscillation (MJO) is a planetary-scale equatorial12

wave that consists of an envelope of convective activity, approximately symmetric about the equator,13

that propagates eastward from the Indian ocean to the western Pacific ocean (Madden and Julian, 1971;14

Hendon and Salby, 1994; Wheeler and Hendon, 2004; Zhang, 2005).15

During boreal summer, the focus of the current study, intraseasonal oscillations typically exhibit16

different features than their wintertime counterparts. Observed events have been examined by means17

of many data analysis techniques, including lag-regression composites (Lawrence and Webster, 2002;18

Ajayamohan and Goswami, 2007), empirical orthogonal functions (EOFs) (Lee et al., 2013), extended19

EOFs (EEOFs) or singular spectrum analysis (Kikuchi et al., 2012), and nonlinear Laplacian spectral20

analysis (Szekely et al., 2015, 2016). While each of these techniques draws attention to slightly dif-21

ferent features of the spatial and temporal characteristics of boreal summer intraseasonal oscillations22

(BSISOs), there are common features that have been clearly identified by all these techniques including23

(i) the prevalence of meridionally-tilted (northwest-southeast) convective events organizing in the Indian24

ocean and moving both across the maritime continent and into the Bay of Bengal and India, and (ii) the25

northward and eastward propagation of convection associated with the BSISO. It is important to note26

that of course while these features are clearly identifiable in composites, there is a large degree of variabil-27

ity in the propagation characteristics of individual events during both boreal winter and summer (Wang28

and Rui, 1990).29
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General circulation models (GCMs) have traditionally struggled to produce realistic magnitude and30

location of tropical intraseasonal variability in these regions, both in boreal winter (Lin et al., 2006;31

Sperber and Kim, 2012) and summer (Ajayamohan and Goswami, 2007), though recent studies have32

shown that including more sophisticated convective parameterization schemes results in more realistic33

variability; see, e.g., Ajayamohan et al. (2014). These difficulties extend to other regions of the tropics like34

the eastern Pacific (Jiang et al., 2013), where convective activity and hurricane formation has been shown35

to be connected to intraseasonal variability in the eastern hemisphere (Maloney and Hartmann, 2000;36

Maloney and Kiehl, 2002; Jiang et al., 2014). This underrepresentation of intraseasonal variability is one37

of the motivations for the creation and study of low-dimensional models for intraseasonal oscillations like38

the MJO and BSISO.39

One of these low-dimensional models is the MJO skeleton model first introduced by Majda and40

Stechmann (2009, 2011). The model is a nonlinear oscillator model which depicts the MJO as a neutrally-41

stable planetary-scale wave envelope forced by background latent heating and radiative cooling; no42

dissipation is included in the model, and the synoptic-scale convective activity is not explicitly resolved.43

A stochastic birth-death process was added to the model by Thual et al. (2014) to allow for interaction44

between the resolved planetary-scale dynamics and the unresolved synoptic-scale convective activity. In45

the simplest form of this model, the model is truncated to a system of four coupled PDEs governing the46

evolution of the leading meridional mode symmetric about the equator. This produces events with the47

large-scale structure and propagation of observed MJOs (Hendon and Salby, 1994; Wheeler and Hendon,48

2004; Zhang, 2005); see also Stachnik et al. (2015) for a discussion of the model’s ability to capture MJO49

initiation and termination.50

Extended forms of the model that include both equatorially symmetric and antisymmetric components51

may be constructed by truncating the model at higher meridional mode number. Solutions to these52

‘extended’ models produce a greater variety of types of intraseasonal oscillations (Thual et al., 2015).53

Some of these solutions exhibit structure and behavior similar to the BSISO, including northwest-to-54

southeast meridional tilts, convective activity centered off the equator, and propagation in both the55

zonal and meridional direction (Lawrence and Webster, 2002).56

Most previous studies of the skeleton model, including all studies of the extended form of the model,57

have used idealized forcing terms. Specifically, equal latent heating and radiative cooling terms have been58

prescribed as constants or simple sinusoids representing an idealized warm pool (Majda and Stechmann,59

2009, 2011; Thual et al., 2014). In contrast, Ogrosky and Stechmann (2015a) calculated observation-60

based estimates of the forcing terms for the single-mode skeleton model using reanalysis latent heat net61

flux, precipitation, and outgoing longwave radiation (OLR) data. In addition to features of previously62

found solutions, the observation-based model solutions also exhibited a realistic wave envelope of activity63

centered over the Pacific warm pool. This method was motivated in part by the success of Stechmann64

and Ogrosky (2014) in using OLR to estimate total diabatic heating in a study of the Walker circulation.65

In the current study we provide an observation-based estimate of the extended model’s forcing terms66

using methods similar, though not identical, to those of Ogrosky and Stechmann (2015a) and study the67

behavior of solutions to both the linear deterministic and nonlinear stochastic versions of the model.68

It will be shown that the resulting solutions exhibit several of the key features of the BSISO discussed69

above. Specifically, the model produces (i) convective activity that has reasonably realistic intraseasonal70

variability throughout much of the tropics, especially the Asian monsoon region, (ii) meridionally-tilted71

(northwest-southeast) events, and (iii) both northward and eastward propagation of intraseasonal rainfall72

anomalies. These features will be shown to exist in both linear and (nonlinear) stochastic model solutions.73

In addition, the nonlinear stochastic simulations produce climatological statistics of precipitation mean74

and variance that have many features in common with observed statistics.75

The rest of the paper is organized as follows: in Sect. 2, the skeleton model and some solutions are76

reviewed. The data and methods used in the current study are discussed in Sect. 3. Solutions to the77

nonlinear stochastic extended skeleton model are discussed in Sect. 4, and solutions to the linearized78

deterministic version are discussed in Sect. 5. A brief discussion of the sensitivity of the results to79

parameter choices is given in Sect. 6, and conclusions and acknowledgments are in Sect. 7.80

2. Model81

We first briefly review the skeleton model in its deterministic nonlinear, deterministic linearized, and82

stochastic nonlinear forms.83
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2.1. Deterministic skeleton model84

The MJO skeleton model is a simple nonlinear oscillator model coupling a Matsuno-Gill-like model85

for winds and potential temperature with no damping to an evolution equation for lower tropospheric86

moisture and an evolution equation for the wave envelope of convective activity. The model uses a87

vertical truncation with only the first baroclinic mode retained, i.e. u(x, y, z, t) =
√

2u∗(x, y, t) cos(z),88

etc., so that (dropping stars for ease of notation)89

ut − yv − θx = 0, (2.1a)

yu− θy = 0, (2.1b)

θt − ux − vy = H̄a− sθ, (2.1c)

qt − Q̃(ux + vy) = −H̄a+ sq, (2.1d)

at = Γqa, (2.1e)

where (u, v, θ, q, a) represent zonal and meridional winds, potential temperature, lower tropospheric90

moisture, and the planetary-scale wave envelope of convective activity, respectively. The equations (2.1)91

have been nondimensionalized by standard reference scales; see, e.g., Stechmann and Majda (2015).92

Equations (2.1a)-(2.1c) are the equatorial long-wave equations and represent the dry dynamics, while93

the variables q and a are included to represent moist convective processes. Equations (2.1d)-(2.1e)94

govern the model interaction between moisture anomalies and convective activity. Equation (2.1e) is the95

simplest equation that encapsulates the observation that anomalies in lower tropospheric moisture tend96

to lead anomalies in convective activity (Myers and Waliser, 2003); this equation was originally proposed97

by Majda and Stechmann (2009). Note that the only nonlinearity in the model is the qa term in (2.1e).98

There are a minimal number of dimensionless model parameters: H̄ ≈ 0.22 is a constant heating rate99

prefactor, Q̃ = 0.9 is a background vertical moisture gradient, Γ is a growth/decay rate of the wave100

envelope of convective activity, sθ(x, y) is the radiative cooling rate, and sq(x, y) is a moistening term.101

The model (2.1) can be simplified further by expressing each of the variables and forcing functions102

as a linear combination of parabolic cylinder functions, e.g.,103

u(x, y, t) =

∞∑
m=0

um(x, t)φm(y), (2.2)

where φm is the m-th parabolic cylinder function, the first few of which are104

φ0(y) =
1

π1/4
e−y

2/2, (2.3a)

φ1(y) =
1

π1/4

1√
2

2ye−y
2/2, (2.3b)

φ2(y) =
1

π1/4

1

2
√

2
(4y2 − 2)e−y

2/2. (2.3c)

These parabolic cylinder functions comprise a natural set of basis functions in the meridional direction.105

Substituting (2.2) and analogous expressions for the other variables and forcing terms into (2.1) results106

in an infinite set of systems of equations for the spectral coefficients um, vm, etc., with each system107

coupled to the others only through the nonlinear qa term. As with the Matsuno-Gill model, solutions108

to these systems are readily found by defining characteristic variables rm = (um − θm)/
√

2 and lm =109

(um + θm)/
√

2 (Matsuno, 1966; Gill, 1980; Majda, 2003). Here, we will take the additional step of110

defining wave variables K and Rm by111

K = r0, Rm =
√
m+ 1rm+1 −

√
mlm−1, (2.4)

where K represents the amplitude of the Kelvin wave, and Rm represents the amplitude of the m-th112

Rossby wave. The model equations and results shown here will be given in terms of either wave variables113

K, Rm, etc., or the primitive variables (u, v, θ, q, a).114

The model (2.1) can now be truncated at any desired meridional mode. The simplest form of the115

3



skeleton model can be found by using a meridional truncation retaining only K, R1, q0, and a0:116

Kt +Kx = − 1√
2

(H̄A− Sθ), (2.5a)

Rt −
1

3
Rx = −2

√
2

3
(H̄A− Sθ), (2.5b)

Qt +
Q̃√

2
Kx −

Q̃

6
√

2
Rx =

Q̃

6
(H̄A− Sθ)− H̄A+ Sq, (2.5c)

At = ΓQA, (2.5d)

where we have used R to denote R1 for simplicity, Q = q0, A = a0, Sθ = sθ0 and Sq = sq0. The117

radiative cooling term Sθ appears in the moisture equation due to the Q̃vy term in (2.1d). This model118

has solutions that are symmetric about the equator, and some of its solutions have been shown to exhibit119

many features of the boreal winter MJO (Majda and Stechmann, 2009, 2011).120

Recently the model was studied with a truncation that retained both symmetric and antisymmetric121

components (Thual et al., 2015). Using the notation and scaling used in Majda and Stechmann (2009),122

the expanded model may be written as123

∂tK + ∂xK =− 1√
2

(
H̄A0 − Sθ0

)
, (2.6a)

∂tRm −
1

2m+ 1
∂xRm =− (m+ 1)

√
2m

2m+ 1

(
H̄Am−1 − Sθm−1

)
− 2m

√
m+ 1

(2m+ 1)
√

2

(
H̄Am+1 − Sθm+1

)
, 1 ≤ m ≤MR + 1,

(2.6b)

∂tQ0 +
Q̃√

2
∂xK −

Q̃

6
√

2
∂xR1 =−

(
H̄A0 − Sq0

)
+
Q̃

6

(
H̄A0 − Sθ0

)
− Q̃

3
√

2

(
H̄A2 − Sθ2

)
,

(2.6c)

∂tQm +

(
− Q̃

2
√

2m+ 2
+

Q̃
√
m+ 1√

2(2m+ 3)

)
∂xRm+1 +

(
Q̃

2
√

2m
− Q̃

√
m√

2(2m− 1)

)
∂xRm−1

=−
(
H̄Am − Sqm

)
+

(
Q̃m

4m− 2
+
Q̃(m+ 1)

4m+ 6

)(
H̄Am − Sθm

)
− Q̃
√
m
√
m− 1

4m− 2

(
H̄Am−2 − Sθm−2

)
− Q̃
√
m+ 1

√
m+ 2

4m+ 6

(
H̄Am+2 − Sθm+2

)
, 1 ≤ m ≤MA,

(2.6d)

∂tAm =Γ

MA∑
i=0

MA∑
j=0

φ̃ijmQiAj , 0 ≤ m ≤MA, (2.6e)

where MR + 1 is the number of Rossby modes R1, ..., RMR+1 retained, MA + 1 is similarly the number124

of Q’s and A’s retained, i.e. Q0, ..., QMA
and A0, ..., AMA

, and where R0 in (2.6d), Ri for i > RM + 1125

and Aj for j > MA in (2.6b) and (2.6d) are all understood to be zero. The study of Thual et al. (2015)126

showed results for the case MA = 4 and MR = 2. Here, in order to allow for more refined meridional127

structures, we present results for MA = MR = 9. Finally, the coefficients of the components of the128

nonlinear term in (2.6e) are given by129

φ̃ijm =

∫ ∞
−∞

φiφjφm dy. (2.7)

We note that φ̃ijm 6= 0 if and only if i + j + m is even, and we also note that the scaling used here is130

slightly different than that of Thual et al. (2015).131
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2.2. Deterministic model solutions and linearized model132

Next, steady-state Walker circulations and linear solutions to the extended skeleton model (2.6) are133

discussed. As with the single-meridional-mode truncation case considered in Ogrosky and Stechmann134

(2015a), each of the variables K, Rm, and Am may be expressed as the sum of a background component135

and anomalies, i.e.136

K = K̄(x) +K∗(x, t), Rm = R̄m(x) +Rm∗(x, t), Am = Ām(x) +Am∗(x, t), (2.8)

where an overbar above a function denotes the steady-state, time-independent component of the variable.137

Lower tropospheric moisture Q is here taken to represent anomalies only, i.e. Q = Q∗(x, t), though138

inclusion of a background state is not inconsistent with the model. In order for a steady-state solution139

to exist in the absence of dissipative mechanisms, it must be the case that140 ∫ PE

0

H̄Ām dx =

∫ PE

0

Sθm dx =

∫ PE

0

Sqm dx, (2.9)

for every m (Majda and Klein, 2003), where PE is the dimensionless circumference of the Earth. Each141

mode of the resulting background state of convective activity is given by142

H̄Ām(x) =
Sqm(x)− Q̃Sθm(x)

1− Q̃
; (2.10)

the total background state can be recovered by H̄Ā(x, y) =
∑M̄A

m=0 H̄Ām(x)φm(y), and the background143

Kelvin and m-th Rossby waves may be recovered by integrating the appropriate meridional modes of144

the background convective state according to (2.6a)-(2.6b). This background flow represents the model’s145

Walker circulation.146

To obtain a linearized system, one can remove the background state from the equations, and the147

anomalies are then governed by (dropping stars hereafter) equations (2.6a)-(2.6d) and148

∂tAm = Γ

MA∑
i=0

MA∑
j=0

φ̃ijmQi(Āj +Aj), 0 ≤ m < MA, (2.11)

so that the background state affects the anomalies only through the nonlinearity in the Am equations.149

Note that increasing the background convective state Āj in the linearized model thus has the same effect150

as increasing the growth/decay rate Γ; a brief discussion of the sensitivity of model results to different151

values of Γ is given in Section 6. As long as the anomalies are small compared with the background state152

at all times and locations, i.e. Am � Ām, then the nonlinear terms QiAj may be neglected, resulting in153

a system of linear equations, namely (2.6a)-(2.6d) and154

∂tAm = Γ

MA∑
i=0

MĀ∑
j=0

φ̃ijmQiĀj , 0 ≤ m < MA, (2.12)

where MĀ ≥ 0 gives the truncation of the background state. The solutions to (2.6a)-(2.6d) and (2.12)155

will be discussed in Sect. 5.156

2.3. Stochastic skeleton model157

The deterministic formulation of the skeleton model just discussed produces planetary-scale intrasea-158

sonal variability and leaves details of the synoptic-scale convective activity unresolved. To account for159

the effects of smaller-scale convective processes on the intraseasonal variability modeled here, the skele-160

ton model has recently been updated to include a stochastic parameterization of these processes (Thual161

et al., 2014, 2015). Specifically, a stochastic birth–death process that governs the evolution of the wave162

envelope A was added to the model by defining a random variable a = ∆a η where η is a non-negative163

integer and ∆a is a fixed step size. The probability of a given state η evolves according to the master164

equation165

∂tP (η) =[λ(η − 1)P (η − 1)− λ(η)P (η)] + [µ(η + 1)P (η + 1)− µ(η)P (η)], (2.13)
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where λ and µ are the upward and downward rates of transition and have been chosen so that the dynam-166

ics of the original model are essentially recovered on average. In addition, a multi-cloud version of the167

skeleton model that also includes the effects of congestus and stratiform clouds has been recently devel-168

oped by Thual and Majda (2015), though we focus here on the original first-baroclinic mode formulation169

that focuses on deep convection.170

Solutions to the extended stochastic skeleton model were found numerically by Thual et al. (2015)171

with an idealized seasonally-varying warm pool background state. These solutions were found to exhibit172

several types of realistic convective events. In particular, three types of model convective events that173

correspond to observations were studied in detail: symmetric, half-quadrupole, and meridionally-tilted174

events; these tilted events were reminiscent of the BSISO.175

All of these extended model solutions were found using idealized and equal forcing functions, i.e.176

Sθ = Sq. The rest of this paper will be concerned with observation-based solutions to the extended177

model with Sθ(x) 6= Sq(x).178

3. Data and Methods179

We next construct estimates of the necessary background state Ā and forcing terms Sθ and Sq for180

the linear deterministic equations and the nonlinear stochastic model, respectively. The datasets and181

methods used here are similar to those of previous studies by the authors; additional details may be182

found in Stechmann and Majda (2015) and Ogrosky and Stechmann (2015a,b, 2016).183

3.1. Datasets184

NCEP/NCAR reanalysis daily surface latent heat net flux (Kalnay et al., 1996) and GPCP daily185

and monthly precipitation data (Huffman et al., 2012) are used to estimate the forcing terms Sθ and Sq186

and the background state Ā. The latent heat net flux has a spatial resolution of 1.875◦ × 1.875◦ and187

the GPCP data has a spatial resolution of 1◦ × 1◦. Both datasets are interpolated here to a 2.5◦ × 2.5◦188

spatial resolution.189

The monthly precipitation data is available beginning in 1979, while the daily data is available190

beginning in October 1996. Since monthly data is available for a longer time period, the steady-state191

forcing functions used in the stochastic model were estimated using monthly data from 1 January 1979192

through 31 December 2013. For all other uses here, including estimating observed variability, the daily193

data was used from 1 January 1997 through 31 December 2013. The seasonal averages of each variable194

are constructed for the June-July-August (JJA) season during the entire time periods used.195

3.2. Estimating Sq and Sθ for the nonlinear stochastic model196

The moistening term Sq may be prescribed as in Ogrosky and Stechmann (2015a), where seasonal197

averages of reanalysis daily latent heat net flux were used. Specifically, this time-averaged latent heat198

flux data LHF(x, y) is projected onto the first ten meridional modes φm(y) resulting in LHFm(x) for199

0 ≤ m ≤ 9; each meridional mode LHFm(x) may be calculated by200

LHFm(x) =

∫ ∞
−∞

LHF(x, y)φm(y) dy, (3.1)

and the total latent heating approximated by the truncated expansion201

LHF(x, y) ≈
9∑

m=0

LHFm(x)φm(y). (3.2)

Each mode is made dimensionless using a scale factor as in Ogrosky and Stechmann (2015a),202

Sqm = HLHFm
· LHFm, (3.3)

where203

HLHFm ≈
∫ PE

0
H̄Ām dx∫ PE

0
LHFm dx

. (3.4)
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The data may also be smoothed in x by retaining only the first kmax Fourier modes and by reducing the204

amplitude of zonal variations through introduction of a parameter β,205

Sqm = Ŝq(0) + β

kmax∑
k=1

[
Ŝqm(k) exp

(
2πikx

PE

)
+ Ŝqm(−k) exp

(
−2πikx

PE

)]
, (3.5)

as in Ogrosky and Stechmann (2015a). The parameter β has been added to ensure that local differences206

between Sq and Sθ are small enough to produce a positive background state of convective activity in the207

model at every longitude; further discussion of the model’s sensitivity to the value of this parameter is208

given in Ogrosky and Stechmann (2015a) for a single-meridional-mode truncation of the model.209

One option for estimating Sθ is to use the method of Ogrosky and Stechmann (2015a), which relied210

on OLR being a good estimate of total diabatic heating H̄Ā−Sθ. This method was successfully used on211

both a model of the MJO and a model of the Walker circulation (Stechmann and Ogrosky, 2014). Here,212

however, the data is being considered over a wider range of latitudes than in these previous studies, and213

it is not clear whether OLR is a suitable proxy for convection over this range; for this reason we turn to214

a different approach.215

We will estimate Sθ with a crude method that makes use of our estimate of Sq and an estimate of216

H̄Ā. Specifically, solving the steady-state model solution (2.10) for Sθm yields217

Sθm =
(Q̃− 1)H̄Ām + Sqm

Q̃
. (3.6)

An estimate of the background state of convective activity H̄Ā may be found in the following way.218

GPCP precipitation data is seasonally averaged resulting in a background state of precipitation P̄ (x, y)219

measured in mm day−1. To estimate Ā we note that the energy released by precipitation at a given220

location may be expected to increase the temperature of the surrounding column of air at a rate (in K221

day−1) of222

H̄Ā =

(
gρwLv
p0cp

)
P̄ , (3.7)

where g = 9.8 m s−2 is acceleration due to gravity, ρw = 103 kg m−3 is the density of water, Lv = 2.5×106
223

J kg−1 is the latent heat of vaporization, p0 = 1.013× 105 kg m−1 s−2 is the mean atmospheric pressure224

at mean sea level, cp = 1006 J kg−1 is the specific heat of dry air at constant pressure, and where P̄225

has been converted to have units of m day−1. Next, this background state Ā(x, y) is projected onto the226

meridional modes φm(y); an approximation of the background state may be made by truncating this227

expansion at m = MĀ and by including multiplicative factors γm,228

Ā(x, y) ≈
MĀ∑
m=0

γmĀm(x)φm(y). (3.8)

The factors γm ≤ 1 have been added since the smoothing with γm = 1 for 0 ≤ m ≤ MĀ can create229

locations (x, y) with locally negative mean background state, something that is clearly unphysical and230

an artifact of the spectral truncation; here we take γ0 = 1 and γm = 0.6 for 1 ≤ m ≤ MĀ. Fig. 1(a)231

shows the JJA seasonal background state after this truncation with MĀ = 9; Fig. 1(b) shows the232

same background state but after a zonal Fourier mode truncation where only the first kmax = 10 Fourier233

modes were retained. We note that topography is not explicitly taken into consideration in the model; the234

underlying map in figures like Fig. 1 simply shows the geographic location of anomalies of precipitation,235

heating, cooling, etc.236

Fig. 2 shows the resulting estimate of Sq and Sθ during JJA using the background state shown237

in Fig. 1(b) and with kmax = 10 and β = 0.1 in (3.5); this small value of β results in meridional238

variations appearing more prominently than zonal variations despite retaining wavenumbers |k| ≤ 10 in239

the Fourier filtering. Of course, prescribing Sθ in this fashion should result in the model’s mean state240

closely resembling the observed background state; it will be shown in Sect. 4 that this is indeed the case.241

We note that the difference between Sq and Sθ at any one location is small due to the factor (1− Q̃)−1
242

in (3.6), consistent with previous studies of the skeleton model (Ogrosky and Stechmann, 2015a). We243
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Figure 1: (a) Background state Ā estimated from GPCP data during the June-July-August (JJA) season with meridional
mode truncation MĀ = 9; γ0 = 1 and γm = 0.6 for 1 ≤ m ≤ MĀ in (3.8), and kmax = 71 and α = 1 in (3.9). (b) Same
as (a) but truncated in the zonal direction for the nonlinear stochastic model with kmax = 10 and α = 1. (c) Same as (b)
but with kmax = 3 and α = 0.2.
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Figure 2: (a) Background Sq estimated from latent heat flux. (b) Background Sθ estimated from latent heat flux and
precipitation (see text).

also note that other methods could be used to estimate Sθ (see, e.g., L’Ecuyer and McGarragh (2010)).244

Finally, kmax = 5 was used to generate the stochastic model results presented throughout the paper.245

3.3. Estimating forcing in the linear model246

For the linear theory, the forcing functions are present in the model equations only through their247

effects on the background state Ā. Thus, we may either prescribe the forcing functions, or directly248

prescribe a background state Ā. Here we choose the latter approach and introduce one modification to249

the estimate of Ā obtained above.250

Prior to use in the linearized model, an additional smoothing of Ām in x was performed by retaining251
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only the first kmax = 3 zonal Fourier modes, i.e.252

Ām(x) = ˆ̄Am(0) + α

kmax∑
k=1

[
ˆ̄Am(k) exp

(
2πikx

PE

)
+ ˆ̄Am(−k) exp

(
−2πikx

PE

)]
, (3.9)

where ˆ̄Am(−k) = [ ˆ̄Am(k)]∗ due to having a real-valued background state. The factor α ≤ 1 reduces253

zonal variations in the background state and is added for two reasons. For one, as with the meridional254

truncation, Fourier filtering with α = 1 can again create locations with a negative mean background255

state. Second, as in Ogrosky and Stechmann (2015a), the eigenvectors of some of the linear solutions are256

very sensitive to zonal variations in the background state; using α < 1 results in solutions with a more257

realistic wave envelope. We note that linear solutions are much more sensitive to zonal variations than258

meridional variations which is why values of α are taken here to be considerably smaller than values of259

γm for m ≥ 1. We use α = 0.2 in the results presented here unless specified otherwise; this smoothed260

background state is shown for the JJA season in Fig. 1(c).261

3.4. Space-time filtering and power spectra262

The stochastic model results will be analyzed using space-time filtering. This filtering will be used263

to isolate small zonal wavenumbers and intraseasonal frequencies; unless specified otherwise, only zonal264

wavenumbers |k| ≤ 3 and frequencies ω with 1/90 ≤ ω ≤ 1/10 day−1 are retained.265

The logarithm of the wavenumber–frequency power spectrum of each model variable at a given266

latitude may be calculated using standard techniques as in, e.g., Wheeler and Kiladis (1999). After267

removing the mean from each variable at each spatial gridpoint, the ends of each time series are tapered268

to zero; the Fourier transform is then taken in both space and time, and the log of the square of the269

amplitude of the resulting Fourier coefficients is displayed for each (k, ω) combination.270

4. Stochastic model results271

Next, the stochastic form of the skeleton model is studied. In Thual et al. (2015) the model was272

solved using equal forcing terms, i.e. Sθ = Sq. Several forms of these forcing functions were studied273

including a warm pool with and without a seasonal cycle. Here, we use the estimates of JJA Sθ and274

Sq shown in Fig. 2, and the use of Sθ 6= Sq allows the formation of a Walker circulation, providing a275

conceptual improvement over previously studied versions of the extended skeleton model.276

The results presented here were produced with Γ = 1.66. The extended model was solved using the277

numerical procedure described in Thual et al. (2015) and Thual and Majda (2015); no damping was278

added to the model. The solver was run for 20,000 days, allowing for the model to settle into a statistical279

steady state.280

4.1. Convective activity281

Fig. 3 shows the mean and standard deviation of both the model convective activity H̄A for a282

10,000 day period of the simulation and GPCP precipitation data from 1 January 1997 through 31283

December 2013. Both the simulation results and GPCP data were filtered so that only the first ten zonal284

wavenumbers k, i.e. |k| ≤ 10, were retained prior to calculating the mean and standard deviation; the285

data was also filtered to retain only frequencies 1/90 ≤ ω ≤ 1/10 day−1 prior to calculating the standard286

deviation. The model mean convection agrees well with the observed mean precipitation, with a pattern287

correlation of 0.97; this agreement, of course, may be anticipated due to the method used for estimating288

Sθ.289

The standard deviation of the model’s intraseasonal convective activity is also in reasonably good290

agreement with observed standard deviation, with a pattern correlation of 0.85, though the model ex-291

hibits higher-than-observed variability over the eastern Pacific and the Congo, and lower-than-observed292

variability over the western Pacific in a region centered around 130E and 15N. We note that it is possible293

that the relatively low observed variability present in the eastern Pacific may be due to strong shallow294

convection.295

Fig. 4 shows a longitude-time Hovmoller diagram of anomalies of the model variables u, θ, q and H̄a296

for a 2,500 day period at 5N. The data have been filtered so that only wavenumbers k = ±1,±2,±3 have297

been retained, and only frequencies 1/90 ≤ ω ≤ 1/30 day−1 have been retained. The coupling between298

moisture and convection is apparent in Fig. 4. While both eastward and westward-moving events can299
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Figure 3: (a) Long-time mean of model convective activity H̄A with JJA forcing. (b) Model convective activity standard
deviation with JJA forcing. (c) 1997-2013 mean JJA observed precipitation. (d) Observed standard deviation in daily JJA
GPCP precipitation. All data filtered to retain zonal wavenumbers |k| ≤ 10; prior to calculating standard deviations, data
filtered to retain frequencies 1/90 ≤ ω ≤ 1/10 day−1.
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Figure 5: Power spectrum for model (a) zonal winds, (b) potential temperature, (c) lower tropospheric moisture, and (d)
convective activity at 5N for the time period depicted in Fig. 4(top). Dashed black lines indicate frequencies of 1/30,
1/60, and 1/90 day−1, from top to bottom, respectively. Light grey lines denote dispersion relations of dry Kelvin and
dry long-wave Rossby waves (m = 1 − 10). Black circles denote the MJO and moist Rossby modes as in Ogrosky and
Stechmann (2015a). Note that the colorbar has a different scaling for each variable.

be seen along with standing oscillations, eastward movement appears to occur more frequently than300

westward movement in both q and H̄a. The dry variables u and θ also exhibit both eastward and301

westward movement, but westward-moving anomalies appear to dominate their evolution, due perhaps302

in part to dry Rossby waves; see Chen et al. (2015) for a related model of interaction between dry Rossby303

waves and intraseasonal variability.304

Fig. 5 shows the power spectrum of each variable and confirms the dominance of westward movement305

of zonal winds and potential temperature and eastward movement of moisture and convective activity306

apparent in Fig. 4. Zonal winds exhibit peaks lying along both moist Rossby and dry Rossby dispersion307

curves, with some eastward low-wavenumber intraseasonal power as well. Potential temperature anoma-308

lies occur primarily along dry Rossby dispersion curves. We note that previous studies of the skeleton309

model have also contained ‘almost’ dry Rossby waves that propagate at approximately the speeds of dry310

wave theory and contain very little convective activity; see, e.g., Majda and Stechmann (2009) or Fig. 1311

of Thual et al. (2014). In these prior results centered on the equator, both dry Kelvin and dry Rossby312

waves can be seen along with the generation and termination of boreal winter MJO events; here, in the313

extended model with more meridional modes, a larger number of dry Rossby modes are present and314

may be excited by the off-equatorial BSISO events. Moisture and convective activity exhibit primarily315

eastward-moving intraseasonal anomalies, with westward-moving power of weaker magnitude.316

At subtropical latitudes, the dynamics are dominated by dry Rossby waves rather than intraseasonal317

convective activity. Fig. 6 shows the power spectrum of each variable at 24S. Moisture, zonal winds, and318

potential temperature all exhibit spectral peaks lying along dry Rossby curves, with potential temper-319

ature exhibiting much stronger anomalies at these latitudes than near the equator. There is much less320

power at all scales in convective activity at this latitude.321

Next we examine meridional movement of convection. Fig. 7 shows a latitude-time Hovmoller diagram322

of the model’s convective activity H̄a at 90E for an 8000-day period; the data have been filtered with323

zonal wavenumbers |k| ≤ 3 and intraseasonal frequencies 1/90 ≤ ω ≤ 1/30 day−1 retained. The strongest324

anomalies are contained exclusively in a band of latitudes ranging from approximately 10S to 20N,325

consistent with the region of strongest moisture forcing. Both northward and southward moving events326
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Figure 6: Same as Fig. 5 but for model variables at 24S.

can be seen, though a slight preference appears to exist for northward-moving events, with the strongest327

of these occurring between day 9800 and day 9900; other instances of northward movement can be seen,328

e.g., during days 8500 through 8600 and days 10,500 through 10,600. This slight preference can be329

quantified by examining the ratio of the power of northward-moving information to southward-moving330

information; this ratio is 1.17 for the convective activity data in Fig. 7.331

4.2. Individual events332

We next examine a few individual cases of strong convective events in the model. While not exhaus-333

tive, these cases present some of the primary types of anomalies seen in model solutions. In particular,334

we discuss (i) a meridionally-tilted event with convection propagating both northwards and eastwards,335

(ii) an event with convection propagating primarily northwards, and (iii) an event propagating primarily336

eastwards.337

Fig. 8 shows six snapshots of the model’s convective activity beginning at day 7700 and ending at338

day 7725; the data has been filtered to retain only zonal Fourier coefficients |k| ≤ 3. At day 7700, a339

strong convective event has formed along the equator centered in the Indian Ocean at approximately340

90E. Between day 7700 and day 7715 the convective center strengthens and propagates both northwards341

and eastwards over parts of the maritime continent. From day 7715 to day 7725 the convective event342

center moves primarily eastward, lying north of the equator. A meridional tilt (northwest-southeast)343

somewhat similar to that seen in observations (Lawrence and Webster, 2002) is apparent throughout the344

evolution of this event. The northward and eastward movement of this event is consistent with Figs. 4345

and 7.346

A second event is also depicted in Fig. 8 with six snapshots of the model’s convective activity beginning347

at day 9840 and ending at day 9859. At day 9840, a strong convective event exists in the eastern Indian348

Ocean and across the maritime continent with some weaker anomalies extending west-northwest from349

this center. Over the next twenty days, this convective event moves northward, reaching the Bay of350

Bengal and the subcontinent by day 9859. Some meridional tilt exists in the anomalies here as well,351

though the convective activity’s movement is primarily northwards throughout this twenty day period;352

this movement is again consistent with Figs. 4 and 7. In addition, there is significant intraseasonal353

convective activity occurring in the Eastern Pacific and propagating eastward across Central America.354

A third event is depicted in Fig. 9, which shows six snapshots of the model’s convective activity355

beginning at day 7741 and ending at day 7766. At day 7741, a center of convective activity is forming356
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Figure 7: Latitude-time Hovmoller plot for model convective activity H̄A at 90E for an 8,000 day period. Data filtered
with |k| ≤ 3 and 1/90 ≤ ω ≤ 1/30 day−1.

in the northern Indian Ocean. This center strengthens and moves primarily eastward at a latitude of357

approximately 10N, crossing the maritime continent and reaching the Date line by day 7766. While some358

meridional tilt can be seen in some of the snapshots, it is not a primary feature of the event, and its359

eastward movement with no corresponding northward movement is again consistent with Figs. 4 and 7.360

5. Linear theory361

The previous three examples of individual events are characteristic of much of the variability seen in362

the model. We next turn to the linear version of the model to explore the structure of its solutions.363

Solutions to the linear version of the extended deterministic model given in (2.6a)-(2.6d) and (2.12)364

are found next for the truncation MR = MA = MĀ = 9. Each variable K, Rm, Qm, and Am may be365

expressed as366

K(x, t) = e−iωt
km∑

k=−km

K̂ke
2πikx/PE , (5.1)

where km is a chosen maximum wavenumber retained (km ≥ 40 in all results presented here). Note that367

km is the maximum zonal wavenumber calculated for the linear model variables, while kmax (introduced368

in equation (3.5)) refers to the maximum wavenumber retained in filtering the background state of369

convective activity. Substitution of (5.1), similar expressions for each of the Rm, Qm, and Am, and the370

background state (3.9) into the linear equations results in a single system of (4 + MR + 2MA)(2km +371

1) equations for the Fourier coefficients K̂k, R̂m,k, etc. The large number of equations to be solved372

simultaneously is due to the coupling across zonal wavenumbers through the background state Ām in373

(2.12). We note that if MR = MA = 0, the equatorially-symmetric system considered in Ogrosky and374

Stechmann (2015a) is recovered.375

The results presented here are for the value of Γ = 0.6. While this value of Γ is lower than that used376

in the nonlinear section (Γ = 1.66), both of these values are consistent with values used for the stochastic377

and linear models in previous studies, respectively. In addition, it has been shown previously that the378

nonlinear stochastic form of the model tends to produce lower-frequency variability than the linear form379

of the model for identical parameter choices (Thual et al., 2014); here, in order to produce oscillations380

with similar frequencies to the nonlinear results, we opt to use Γ = 0.6.381
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Figure 8: (a)-(f) Tilted event with both northward and eastward propagation: Model convective activity H̄A filtered by
retaining zonal wavenumbers |k| ≤ 3 for six snapshots beginning on (f) day t = 7700 and ending on (a) day t = 7725.
(g)-(l) Northward propagation: Same as (a)-(f) but beginning on (l) day t = 9840 and ending on (g) day t = 9859.

The low-frequency (less than 1/20 day−1) eigenvalues of the linear system associated with a positive382

(eastward) phase speed are shown in Fig. 10, where the background state of Fig. 1(c) has been used. The383

system also has eigenvalues corresponding to dry Kelvin and Rossby modes with higher frequency as well384

as westward-moving low-frequency moist Rossby modes, but as the focus here is on intraseasonal vari-385

ability which exhibits primarily eastward and northward movement, we will examine the low-frequency386

eastward-moving modes. The eigenvalues are here shown as a function of ‘average wavenumber’, where387

the average wavenumber of an eigenvalue’s associated eigenvector is defined as388

k̄ =

km∑
k=−km

|k|

(
K̂2
k +

MR+1∑
m=1

R̂2
m,k +

MA∑
m=0

Q̂2
m,k +

MA∑
m=0

Â2
m,k

)1/2

. (5.2)

In Fig. 10, the two modes (out of the first eight) with lowest average wavenumber k̄ that exhibit significant389

tropical convective activity are denoted by blue circles. The other six modes out of the first eight exhibit390

convective activity primarily well outside the tropics. As the focus of the current study is tropical391

intraseasonal variability, we focus on modes with significant tropical convective activity and discuss their392

properties next.393

Fig. 11 shows a snapshot of the anomalies in convective activity and moisture associated with each394
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Figure 9: Eastward propagation: Same as Fig. 8(a)-(f) but beginning on (f) day t = 7742 and ending on (a) day t = 7767.
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Figure 11: The two slow eastward-moving modes with lowest average wavenumber k̄ that exhibit significant tropical
convective activity. Convective anomalies are depicted by shading; positive (negative) moisture contours are depicted by
solid (dashed) lines. For mode 7, ω = 0.024 cycles day−1, k̄ = 2.7; for mode 8, ω = 0.023 cycles day−1, k̄ = 2.7.

of these modes. Consistent with the skeleton model’s premise and solutions found previously, lower-395

tropospheric moisture anomalies lead convective anomalies in these eastward-moving modes. Both modes396

show convective anomalies between 10N and 20N and 90E and 150E, near the area where the BSISO is397

most active. A meridional (northwest-southeast) tilt can be seen in the convective activity of mode 7;398

this tilt is somewhat reminiscent of the tilt seen by Lawrence and Webster (2002). Very slight tilts can399

also be seen in mode 8. Additional convective anomalies can be seen in each mode between 10N and400

20N near Latin America.401

We next consider the propagation of each mode’s tropical convective anomalies. Fig. 12 shows the402

evolution of mode 7. Convective anomalies can be seen forming in the Indian ocean just north of the403

equator at approximately 90E. These anomalies grow into a meridionally-tilted band which propagates404

eastward reaching maximum strength near 120E. Due to both the expansion of the region of convective405

activity and its tilt, precipitation at a fixed longitude (e.g., 90E) appears to move northward from Day406

0 to 16, similar to many observed BSISO events in, e.g., Lawrence and Webster (2002). Convective407

anomalies are also seen over the eastern Pacific and Latin America, strongest between 10N and 20N and408

120W and 60W, and their eastward movement is similar to that seen in composites of intraseasonally-409

filtered rainfall and OLR in this region (Maloney and Kiehl, 2002; Jiang et al., 2013, 2014). The 15-day410

lag between convective activity over the Indian ocean and over the eastern Pacific found by Yu et al.411

(2011), however, is not seen in mode 7, where the convection in the two regions is close to being in-phase.412

The evolution of mode 8 is shown in Fig. 13. The convective activity that grows and decays primarily413

between 60E and 180 is somewhat reminiscent of the boreal winter MJO, only displaced northwards so414

that the strongest anomalies occur between 10N and 20N. As with mode 7, there is significant variability415

located over the eastern Pacific and Latin America with propagation similar to observations but without416

the observed lag correlation with variability in the eastern hemisphere.417

Next we consider the degree to which convection associated with each of these modes propagates in a418

north-south direction. A latitude-time Hovmoller plot of these modes each at three different longitudes419

is shown in Fig. 14. Mode 7 shows evidence of northward movement of convection at all three longitudes420

considered (approximately 80E, 100E, and 125E). The northward movement of this activity occurs at421

approximately 1 m s−1, which is within the 1-2.5 m s−1 northward phase speed range found in Lawrence422

and Webster (2002). Mode 8 shows much less north-south propagation of convection, though some423

evidence of northward movement of convection from 20N to near 30N can be seen at 124E.424

Lastly, we examine east-west propagation of convection in each mode. A longitude-time Hovmoller425

plot of convection at three latitudes, EQ, 10N, and 20N, is shown in Fig. 15. Not surprisingly, both426
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Figure 12: Propagation of eastward mode 7 from Fig. 11; (a) t = 0, (b) t = 8 days, (c) t = 16 days, (d) t = 24 days, (e)
t = 32 days.
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Figure 13: Propagation of eastward mode 8 from Fig. 11; (a) t = 0, (b) t = 8 days, (c) t = 16 days, (d) t = 24 days, (e)
t = 32 days.

modes show eastward movement, though at different speeds. Mode 7 propagates at approximately 5 m427

s−1, in good agreement with eastward moving variability seen in Lawrence and Webster (2002), though428

we note that the strongest convective activity here occurs at a higher latitude range (10N to 15N) than429

found in their study (0 to 5N). Mode 8 propagates more slowly at approximately 2.5 m s−1.430

6. Parameter sensitivity study431

Before concluding, we briefly discuss the sensitivity of the results presented here to choices in the432

model’s parameter values and mode truncation.433

There are several choices that must be made in truncating the linear model: MA, the number of434

meridional modes of convective activity to retain; and MĀ and kmax, the number of meridional and435

zonal modes of the background state to retain, respectively. The model was solved for various values of436
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Figure 14: Latitude-time Hovmoller plots of convective anomalies H̄a of modes 7 and 8 from Fig. 11 at (left) 79E, (middle)
101E, and (right) 124E.
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Figure 15: Longitude-time Hovmoller plots of convective anomalies H̄a of modes 7 and 8 from Fig. 11 at (left) the equator,
(middle) 10N, and (right) 20N.

each of these truncation parameters, including every combination of 0 ≤MA ≤ 9 and 0 ≤MĀ ≤ 9 with437

kmax = 0. For a fixed value of MĀ, increasing MA results in (i) slight modification of existing eigenvalues438

and their associated eigenvectors, and (ii) the introduction of additional eigenvalues. Likewise, for a fixed439

value of MA, increasing MĀ results in eigenvalues and eigenvectors that are only slightly modified. Thus440

none of these changes were found to significantly alter the structure and propagation of the solutions of441

interest. For kmax > 0, the changes to the eigenvalues remain small, but the eigenvectors corresponding442

to intraseasonal frequencies undergo significant changes due to the coupling between zonal wavenumbers443

through the background state. The same behavior was observed with MA = MĀ = 0 in Ogrosky444

and Stechmann (2015a), and is one of the reasons for the parameter α introduced in (3.9). We note445

that the meridional truncations presented here result in forcing functions with a wide meridional base of446

support, including some latitudes that lie outside of the tropics. While this provides reason for exercising447

some caution in interpreting the results, the sensitivity study suggests that the resulting structure and448

propagation of the part of solutions lying in the tropics is somewhat robust.449

As the skeleton model was designed to describe the planetary-scale dynamics, all of the results450

presented here have made use of only a few zonal wavenumbers of the background state and forcing451

functions; for the linear model, kmax = 3, while for the nonlinear stochastic model, kmax = 10. We452
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Figure 16: Same as Fig. 3 but with data filtered to retain zonal wavenumbers |k| ≤ 30.

next discuss stochastic model results for higher values of kmax which push the limits of the validity of453

the planetary-scale skeleton model, but are perhaps worth trying due to the smaller spatial scale of the454

BSISO than its boreal winter counterpart, the MJO. Fig. 16 shows the mean and standard deviation455

for model convective activity with kmax = 30 and the corresponding observed quantities. The model456

mean and observed mean exhibit very good agreement. The model standard deviation and observed457

standard deviation exhibit similar spatial patterns, though the model has larger standard deviation than458

the observations almost everywhere.459

Results have been presented here for the linear model with Γ = 0.6 and for the stochastic model460

with Γ = 1.66; both the linear and stochastic versions of the model were run with other values of the461

growth/decay rate parameter Γ as well. When the stochastic model is run with Γ = 0.6, for example,462

the results are largely identical, at least qualitatively, to those given here, though the model’s slight463

preference for northward propagation of convection appears to be weaker, if it exists at all, with this464

smaller value of Γ.465

7. Conclusions466

To conclude, an extended form of the skeleton model for intraseasonal variability has been studied467

using observation-based estimates of the JJA background state and forcing terms. The model produces468

reasonably realistic intraseasonal variability throughout the tropics, and solutions to two forms of the469

model, a linear deterministic version and a nonlinear stochastic version, are able to produce convective470

events reminiscent of the BSISO.471

The stochastic model produces a wide variety of convective events, including meridional tilts and472

propagation similar to the BSISO. The spatial pattern of some of these events, and their propagation,473

are reminiscent of the observed BSISO. Solutions to the linearized model contain events that exhibit a474

meridional (northwest-southeast) tilt as well as northward and eastward propagation of convection. Both475

the eastward and northward movement occurs at speeds lying within the range established by previous476

observational studies (Lawrence and Webster, 2002). This convective activity is also associated with477

convection in other parts of the tropics including over the eastern Pacific in reasonable agreement with478

observational studies (Maloney and Kiehl, 2002; Jiang et al., 2013, 2014).479

In comparison to other studies with the skeleton model, the present study uses the most realistic480

background state and forcing, which is estimated from observational data and segregated by season481

rather than annually averaged. While a previous study by Thual et al. (2015) has shown that the model482

exhibits events similar to those in Figs. 8 and 9, those results were obtained using idealized forcing483

functions meant only to represent a crude seasonal cycle and warm pool distribution of heating. Here,484

a more refined estimate of the background forcing functions is used. These observation-based estimates485

result both in events like those in Figs. 8 and 9 and also realistic mean background convective activity486

and convective variability across the tropics; the latter result is not possible with the idealized forcing487

functions used previously. Also in contrast to previous studies, the linearized solutions presented here488

exhibit intraseasonal variability localized in regions of the tropics where the BSISO is observed.489

Many mechanisms have been investigated for the northward propagation of the observed BSISO and490

an important contribution has been seen from barotropic vorticity lying to the north of the BSISO’s491

convective center; see, e.g., Jiang et al. (2004); DeMott et al. (2013), as well as Liu et al. (2015) for a492

simple model of the role of convective momentum transport in contributing to barotropic vorticity. It493
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is noteworthy that the skeleton model considered here does not include this barotropic vorticity effect,494

and its absence may contribute to the smallness of the model’s preference for northward movement. The495

interaction between the dry dynamics, convection, and water vapor are what contribute to northward496

propagation in the skeleton model. It is interesting that the interaction between convection and moist497

stability has been identified as a component in creating realistic oscillations in a zonally-symmetric498

GCM (Goswami and Shukla, 1984), though the behavior and mechanisms of zonally averaged dynamics499

and zonally varying dynamics can differ substantially (Frenkel et al., 2015).500

It would be interesting to examine the skeleton model’s ability to reproduce other types of intrasea-501

sonal oscillations; this question is left to future work.502
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