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The MJO skeleton model, a nonlinear oscillator model, has previously been shown
to have solutions that exhibit several features in common with observed MJOs.
In prior studies, model solutions have been found using mathematically simple
(constant or sinusoidal) identical moistening and radiative forcing functions. Here
we investigate whether this model can also produce realistic regional variability. To
do this, observation-based forcing functions are prescribed for latent heat flux and
radiative cooling, and model solutions–both linear and nonlinear–are studied. In the
stochastic nonlinear model, solutions reproduce the climatological mean convective
activity well and the climatological variance reasonably well for such a simple model. In
the linearized model, the solutions are found to contain additional structure including
a realistic wave envelope of convective activity centered over the warm pool. These
linear solutions are then used to identify and compare significant MJO activity in
both reanalysis data and stochastic model solutions. Additional potential uses for these
analytical and numerical solutions are discussed.
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1. Introduction

The Madden-Julian oscillation (MJO) has been studied exten-
sively since its discovery by Madden and Julian (1971, 1972).
The MJO, sometimes referred to as the 30-60 day oscillation, has
been detected in many atmospheric variables including, e.g., zonal
winds, pressure, potential temperature, precipitation, and outgoing
longwave radiation (OLR), among others, at locations around the
globe (Madden and Julian 1994). The effects of the MJO are far-
reaching as not only is it connected with other weather systems
in the tropics, e.g. the Indian monsoon, but it also affects medium
and long-range global weather forecasts (Zhang 2005; Lau and
Waliser 2012). Given these wide-ranging effects, creating models
capable of producing a realistic MJO is an important and ongoing
challenge.

As the MJO is the dominant component of intraseasonal
variability in the tropical atmosphere, one important test of
how well a model produces a realistic MJO is whether it
exhibits realistic tropical convective variability on intraseasonal
timescales. Some general circulation models (GCMs), especially
those which include the effects of small-scale convective
processes within the larger wave envelope of convective activity,
have recently shown some success in producing realistic
variability (see, e.g., Benedict and Randall (2009), Khouider et
al. (2011)), but this has generally been a difficult test for most
GCMs (Lin et al. 2006; Kim et al. 2009; Waliser et al. 2009;

Gottschalck et al. 2010; Sperber and Kim 2012). This test must
of course also be applied to low-dimensional models of the MJO
which attempt to provide insight into the structure of the MJO
while containing as little complexity as possible.

One such low-dimensional model, developed by Majda and
Stechmann (2009, 2011), has successfully reproduced several
primary features of the Madden-Julian oscillation: slow eastward
phase speed ≈ 5 m s−1, dispersion relation dω/dk ≈ 0, and
horizontal quadrupole vortex structure. The simplest form of the
model describes the interaction between the first baroclinic mode
of winds and potential temperature, lower tropospheric moisture,
and the planetary scale wave envelope of convection in the tropics.
Motivated by the stochastic nature of tropical convection, the
model has been updated recently to include stochastic convective
activity (Thual et al. 2014, accepted). The model contains a
minimal number of parameters including two prescribed forcing
functions: one for latent heat flux and one for radiative cooling.

Solutions to this model have previously been found with
mathematically simple (either constant or sinusoidal) forcing
functions. Also, the radiative cooling and moisture forcing
have previously been chosen to be equal for the sake of
simplicity; equal forcing terms do not allow for a Walker
circulation, however, even when these prescribed functions
have zonal variations. Here we prescribe forcing functions
which are motivated by reanalysis datasets. Based on recent
results suggesting that outgoing long wave radiation (OLR) is
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proportional to diabatic heating (Stechmann and Ogrosky 2014),
radiative cooling is estimated by a weighted difference of OLR
and precipitation data. For latent heat flux, daily reanalysis data
is used. Using these observationally-based forcing functions,
we examine how well the stochastic skeleton model solutions
exhibit realistic (i) climatological mean convective activity and
(ii) climatological variance.

Another important test for low-dimensional models such as
the skeleton model is whether the theoretical description they
offer of the MJO’s structure is discernible in reanalysis and/or
observational data during periods of significant MJO activity.
Models that pass this test offer a means for identifying MJOs
which share a common structure with the theory, providing an
additional contribution to the ongoing conversation about how
best to identify the MJO (Wheeler and Hendon 2004; Kiladis et
al. 2005; Straub 2013; Kiladis et al. 2014).

To this end, linear solutions to the deterministic form of
the skeleton model have previously been found in the presence
of a uniform radiative-convective equilibrium. Their signal has
recently been identified in periods of significant observed MJO
activity through a method of data projection (Stechmann and
Majda 2015). Here, the zonally-varying background state created
by the forcing functions described above is used to find linear
solutions that contain additional structure, including a wave
envelope centered over the warm pool. We then examine the
degree to which the signal of these extended linear solutions is
seen in anomalies from a seasonal cycle using reanalysis data.
Using anomalies isolates the behavior of the model structures in
reanalysis data on intraseasonal or shorter timescales, in contrast
to the long-time average used to estimate the model parameters.

The rest of the paper is thus organized as follows. Section 2
contains a review of the different forms of the skeleton model
and their solutions previously reported in the literature. Section 3
describes the data and methods used, and contains a comparison
of the steady-state solution of the model with reanalysis data.
Linear solutions to the model are found in Section 4 using an
observationally-motivated background state; these solutions are
then used to identify the MJO in observational and reanalysis
data. Solutions to the stochastic model are found in Section 5 and
compared with observations. Discussion of the results is given
in Section 6 and a summary of the main findings of the paper
is given in Section 7. Some details of the procedure used to
calculate the linear solutions and additional comments regarding
these solutions are given in the appendix.

2. MJO skeleton model

We first review the different forms of the skeleton model and their
solutions previously studied in the literature.

2.1. Deterministic skeleton model

The MJO skeleton model, originally proposed by Majda
and Stechmann (2009), is a simple nonlinear oscillator
model which couples a Matsuno-Gill type model, without
damping, to two additional evolution equations: one for lower-
tropospheric moisture, and one for the wave envelope of
convective activity. The model uses a vertical truncation so that
only the first baroclinic mode is retained, i.e. u(x, y, z, t) =√

2u∗(x, y, t) cos(z), etc., so that (dropping stars for ease of
notation)

ut − yv − θx = 0, (1a)

yu− θy = 0, (1b)

θt − ux − vy = H̄a− sθ, (1c)

qt − Q̃(ux + vy) = −H̄a+ sq, (1d)

at = Γ(q − qa)a, (1e)

where (u, v, θ, q, a) represent zonal and meridional winds,
potential temperature, lower-tropospheric moisture, and the
planetary scale envelope of convective activity, respectively.
The equations (1) have been nondimensionalized by standard
reference scales, see, e.g., Stechmann and Majda (2015).
Equations (1a)-(1c) are the equatorial long-wave equations and
represent the dry dynamics, while the variables q and a are
included to represent moist convective processes. Equations (1d)-
(1e) govern the model interaction between moisture anomalies
and convective activity. Equation (1e) is the simplest equation that
encapsulates the observation that anomalies in lower tropospheric
moisture tend to lead anomalies in convective activity (Myers and
Waliser 2003); this equation was originally proposed by Majda
and Stechmann (2009). Note that the only nonlinearity in the
model is the qa term in (1e).

There are a minimal number of model parameters: H̄ ≈ 0.22 is
a constant heating rate prefactor, sθ(x, y) is the radiative cooling
rate, Q̃ = 0.9 is a background vertical moisture gradient, sq(x, y)

is a moistening term, qa is a background moisture state (often
taken to be 0 for simplicity), and Γ is a growth/decay rate of the
wave envelope of convective activity.

The model (1) can be simplified further by expressing each
of the variables and forcing functions as a linear combination of
parabolic cylinder functions, e.g.,

u(x, y, t) =

∞∑
m=0

um(x, t)φm(y), (2)

where φm is the m-th parabolic cylinder function. Substituting
(2) and analogous expressions for the other variables and forcing
terms into (1) results in an infinite set of systems of equations
for the spectral coefficients um, vm, etc. This system is best
solved by defining characteristic variables rm = 1√

2
(um − θm)

and lm = 1√
2

(um + θm), see, e.g. (Matsuno 1966; Gill 1980;
Majda 2003); these variables can further be transformed into wave
variables K and Rm by

K = r0, Rm =
√
m+ 1rm+1 −

√
mlm−1, (3)

where K represents the amplitude of the Kelvin wave, and Rm
represents the amplitude of the m-th Rossby wave.

The model (1) can now be truncated at any desired meridional
mode. The simplest form of the skeleton model can be found by
using a meridional truncation retaining only K, R1, q0, and a0,

Kt +Kx = − 1√
2

(H̄A− Sθ), (4a)

Rt −
1

3
Rx = −2

√
2

3
(H̄A− Sθ), (4b)

Qt +
Q̃√

2
Kx −

Q̃

6
√

2
Rx =

Q̃

6
(H̄A− Sθ)− H̄A+ Sq, (4c)

At = Γ(Q−QA)A, (4d)

where we have used R to denote R1 for simplicity, Q = q0,
A = a0, Sθ = sθ0 and Sq = sq0, and Γ = 0.6 will be the prescribed
growth/decay rate. The presence of the radiative cooling Sθ in the
moisture equation is due to the Q̃vy term in (1d).

The only model parameters whose values have not yet been
specified here are the cooling and moistening rates Sθ and Sq .
In most previous studies these terms were taken to be constants,
i.e. Sθ = Sq = const. (Majda and Stechmann 2009, 2011; Chen
and Stechmann submitted; Thual et al. 2014, accepted). The case
where these terms are equal and vary sinusoidally with longitude
was also considered by Majda and Stechmann (2011) and Thual
et al. (2014, accepted). A brief overview of the model solutions
previously found with equal Sθ and Sq is given next.
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2.2. Solutions to the deterministic model

Each of the four variables K, R, Q, and A in the model (4) can be
decomposed into a steady background component and anomalies,
i.e.

K = Ks(x) +K∗(x, t), R = Rs(x) +R∗(x, t),

Q = Qs(x) +Q∗(x, t), A = As(x) +A∗(x, t). (5)

After substituting (5) into (4), the background state is determined
by

∂xKs = − 1√
2

(H̄As − Sθ), (6a)

∂xRs = 2
√

2(H̄As − Sθ), (6b)
Q̃√

2
∂xKs −

Q̃

6
√

2
∂xRs =

Q̃

6
(H̄As − Sθ)− (H̄As − Sq), (6c)

Qs = QA. (6d)

As pointed out by Majda and Klein (2003), it follows that for a
steady-state solution to exist in such a model without damping, it
must be the case that

H̄As = Sθ = Sq, (7)

where f =
∫ L
0
f dx; here L is the circumference of the earth.

Note that this condition is not required for solutions to exist
in the traditional Matsuno-Gill model because of the damping
used there. Also, the Matsuno-Gill model is frequently solved
on the real line in the literature (see, e.g., Gill (1980); Gill and
Rasmusson (1983)), while here the model at hand is solved on the
periodic domain [0, L]. Combining (6a)-(6c) leads to

H̄As(x) =
Sq(x)− Q̃Sθ(x)

1− Q̃
. (8)

Thus the model background amplitude of convective activity
is a weighted sum of the prescribed cooling and moistening
rates. If these rates are prescribed as constants with longitude,
the background convective state is also constant. If they are
prescribed by zonally varying functions but still equal to one
another, the background convective state is also zonally varying,
but no background Walker circulation can exist; this can be seen
by setting Sq(x) = Sθ(x) in equations (8) and (6).

If these rates are taken as equal but varying with longitude,
i.e. Sθ(x) = Sq(x), (8) reduces to the background state H̄As =

Sθ = Sq considered by Majda and Stechmann (2011) and Thual
et al. (2014, accepted). Substitution of (8) into (6a) and (6b) yields
zonally-varying background K and R. This background state was
studied by Stechmann and Ogrosky (2014). It was shown that
the background state of K and R could be accurately predicted
when outgoing longwave radiation (OLR) was used as a proxy
for H̄As − Sθ , i.e., the sum of latent and radiative heating. While
other heat sources certainly contribute to the total heating, e.g.
eddy sensible heat fluxes, these are neglected here (as they are
in some other simple models of the tropical atmosphere, see,
e.g., Khoudier and Majda (2006)) due to the dominant role played
by latent and radiative heat processes in the tropics. For this
reason, the phrase ‘total diabatic heating’ will sometimes be used
here to describe the sum of latent and radiative heating.

After removing the background state from (4), the anomalies
are governed by

∂tK∗ + ∂xK∗ = − H̄√
2
A∗, (9a)

∂tR∗ −
1

3
∂xR∗ = −2

√
2H̄

3
A∗, (9b)

∂tQ∗ +
Q̃√

2
∂xK∗ −

Q̃

6
√

2
∂xR∗ =

(
Q̃

6
− 1

)
H̄A∗, (9c)

∂tA∗ = ΓQ∗(A∗ +As), (9d)

where the effects of the background state are felt entirely through
the As term in (9d). If the anomalies remain small compared to
the base state at all times and locations, i.e. A∗ � As, then the
nonlinearity Q∗A∗ in (9d) can be neglected, making (9) a linear
model. The linear solutions to (9) with As = const. were studied
by Majda and Stechmann (2009), one of which bears a striking
resemblance in phase speed, dispersion relation, and structure to
the observed MJO.

When the nonlinear term Q∗A∗ is retained in (9), the solutions
contain additional features also seen in observations of the
MJO. Transient solutions to the nonlinear model (4) were found
numerically by Majda and Stechmann (2011) for both the trivial
and zonally-varying background state. These solutions contain
all the features of the linear solutions, and also exhibit localized
standing oscillations and interactions between the MJO and dry
Kelvin and Rossby waves reminiscent of observations. Analytical
traveling wave solutions to the nonlinear model (9) were found
by Chen and Stechmann (submitted). In addition to the features
seen in the linear solutions, these nonlinear solutions exhibit
intense active convective phases followed by longer suppressed
convective phases.

2.3. Stochastic skeleton model and its solutions

While the deterministic skeleton model (4) produces an MJO with
the planetary envelope A of synoptic convective activity, details
of the convective activity are left unresolved. These synoptic-
scale processes can impact the MJO; in order to account for
their effects, the skeleton model has recently been updated to
include a stochastic parameterization of these synoptic-scale
processes (Thual et al. 2014). Specifically, a stochastic birth-death
process that governs the evolution of the wave envelope A was
added by defining a random variable

a = ∆aη, (10)

where η is a nonnegative integer and ∆a is a fixed step size.
The probability of a given state η evolves according to the master
equation

∂tP (η) = [λ(η − 1)P (η − 1)− λ(η)P (η)]

+[µ(η + 1)P (η + 1)− µ(η)P (η)], (11)

where λ and µ are the upward and downward rates of transition
and have been chosen so that the dynamics of the original model
(4) are essentially recovered on average.

Solutions to the stochastic model were found numerically
by Thual et al. (2014) with both a trivial and a zonally-varying
background state. These solutions were found to exhibit realistic
convective variability, and individual MJO events occurred in the
context of intermittent wavetrains similar to those seen in nature.
Solutions to the model truncated at five meridional modes in
the presence of a seasonal cycle were recently found as well,
and exhibit meridionally asymmetric events reminiscent of the
seasonal behavior of observed MJOs (Thual et al. accepted).

All of these previous studies of the skeleton model found
solutions using equal forcing functions, i.e. Sθ = Sq . The rest of
this paper will be concerned with solutions to the model when
Sθ(x) 6= Sq(x).

3. Data and Methods

We next seek to construct estimates for each of the model variables
K, R, Q, and A, and the model parameters Sθ and Sq through use
of reanalysis and observational data.
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3.1. Data

For the dry variables and lower tropospheric moisture,
NCEP/NCAR reanalysis daily zonal winds, geopotential height
and specific humidity are used, respectively (Kalnay et al. 1996).
GPCP daily precipitation data is used to estimate the strength of
convective heating (Huffman et al. 2012). For the moistening rate
Sq , NCEP/NCAR reanalysis daily latent heat net flux is used,
and for total diabatic heating H̄A− Sθ , NOAA daily interpolated
outgoing longwave radiation (OLR) is used (Liebmann and Smith
1996). All of these datasets have a horizontal spatial resolution of
2.5◦ × 2.5◦ except for the latent heat net flux which has a spatial
resolution of 1.875◦ × 1.875◦ and the GPCP data which has a
spatial resolution of 1◦ × 1◦. The time period used in this study
is from 1 January 1997 to 31 December 2013, which coincides
with the availability of the GPCP precipitation data.

In order to construct observed values for the model variables
and parameters, we rely heavily on the approach outlined
by Stechmann and Majda (2015); this method will be summarized
next.

3.2. Model variables K and R

The model variables K and R are constructed from zonal winds
and geopotential height in three steps: (1) a vertical mode
truncation to move from 3D (x, y, z) to 2D (x, y), (2) a meridional
mode truncation to move to 1D (x), and (3) conversion of
primitive variables u and θ to equatorial wave variables K and
R.

The first step, a vertical mode truncation, is achieved by
associating the pressure levels of 850 hPa and 200 hPa with the
bottom, z = 0, and top, z = π, of the troposphere, respectively.
When the velocity is expressed as the sum of the barotropic mode
uBT and a first baroclinic mode uBC, the first baroclinic component
can be approximated by

uBC(x, y, t) =
u(850 hPa)− u(200 hPa)

2
√

2
(12)

Geopotential height Z can be used to estimate θ by use of
hydrostatic balance, ∂Z/∂p = −θ, so that

θBC(x, y, t) = −Z(850 hPa)− Z(200 hPa)

2
√

2
. (13)

All variables have been made dimensionless through the scales
in Stechmann and Majda (2015).

Next, to achieve the meridional projection, the parabolic
cylinder functions φm(y) are used. These functions form an
orthonormal basis; the first three are

φ0(y) =
1

π1/4
e−y

2/2, (14a)

φ1(y) =
1

π1/4

1√
2

2ye−y
2/2, (14b)

φ2(y) =
1

π1/4

1

2
√

2
(4y2 − 2)e−y

2/2. (14c)

The first baroclinic variables uBC(x, y, t) and θBC(x, y, t) can be
expanded in terms of the basis functions φm(y), as in, e.g., (2),
where the spectral coefficients um(x, t) are found by projecting
uBC onto each basis function φm(y):

um(x, t) =

∫ ∞
−∞

uBC(x, y, t)φm(y) dy. (15)

Similar formulas apply for θ.
The final step in identifying the model variablesK and R in the

data is achieved through the definitions of K and R in terms of

um and θm:

K(x, t) =
1√
2

(u0 − θ0), (16a)

R(x, t) = − 1√
2

(u0 + θ0) + (u2 − θ2). (16b)

The derivation of the definitions (16) is summarized in Stechmann
and Majda (2015) and Majda (2003). The Kelvin wave amplitude
K is thus proportional to exp(−y2/2) and decays away from the
equator, while the first Rossby wave amplitude R includes off-
equatorial gyres that arise due to the φ2(y) terms in (16b).

3.3. Model variables Q and A

The variable Q represents the lower tropospheric anomalies q
in water vapor. To estimate Q, anomalies in reanalysis specific
humidity data are first nondimensionalized by the reference scale
Lv/cpα̃, where Lv = 2.5× 106 J kg−1 is the latent heat of
vaporization, cp = 1006 J kg−1 K−1 is the specific heat of dry
air at constant pressure, and α̃ = 15 K is the reference potential
temperature scale. Next, a weighted average of the dimensionless
specific humidity at three levels near the bottom of the troposphere
is calculated to move from 3D (x, y, z) to 2D (x, y), and a
meridional mode truncation is calculated to move to 1D (x). The
weighted average is given by

qLT(x, y, t) =
1

4
q(925 hPa) +

1

2
q(850 hPa) +

1

4
q(725 hPa). (17)

This lower tropospheric moisture is then projected onto the
meridional modes by the same approach as (15), and the model
variable Q is taken as

Q(x, t) =

∫ ∞
−∞

qLT(x, y, t)φ0(y) dy. (18)

We note that the weights and levels used here are meant to identify
lower free tropospheric moisture, consistent with the observations
which motivated development of the model, see, e.g., Myers and
Waliser (2003). Adding boundary layer moisture to the model is
an area of ongoing research.

Before constructing an estimate of A, a comment on the
meaning of A is in order. The variable A represents the
planetary-scale envelope of convective activity; the A equation
is a phenomenological equation based on the observation that
deep convection tends to lag positive anomalies in lower
tropospheric moisture, see, e.g., Myers and Waliser (2003). With
this viewpoint, a measure of convective heating is needed to
construct A; while there are multiple ways this could be done,
one method would be to use an estimate of tropical rainfall, such
as GPCP precipitation data.

However, a second viewpoint arises if theA equation is taken to
represent the idea that positive anomalies in total diabatic heating
lag positive anomalies in lower tropospheric moisture. With this
viewpoint in mind, the model equations (4) would take the form

Kt +Kx = − 1√
2
H̄Ã, (19a)

Rt −
1

3
Rx = −2

√
2

3
H̄Ã, (19b)

Qt +
Q̃√

2
Kx −

Q̃

6
√

2
Rx =

(
Q̃

6
− 1

)
H̄Ã+ Sq − Sθ, (19c)

H̄Ãt = Γ(Q−QA)(H̄Ã+ Sθ), (19d)

where H̄Ã = H̄A− Sθ represents total diabatic heating in
contrast to the convective heating only which is represented by
H̄A. If this viewpoint of the model is adopted, OLR or any other
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Figure 1. Time-averaged (a) background convective state H̄As(x) calculated from
GPCP data, (b) diabetic heating H̄As(x)− Sθ(x) calculated from OLR, (c) Sθ

estimated from H̄As − (H̄As − Sθ), and (d) Sq calculated from latent heat
flux. Data averaged from 1 January 1997 through 31 December 2013; annual,
DJF, and JJA data shown in black, red, and blue, respectively. All quantities are
dimensionless.

dataset which is often used as a proxy for total diabatic heating
would be a logical choice for constructing A.

For the rest of this study, we adopt the first viewpoint, and use
GPCP data to estimate H̄A in the following way. Precipitation
data is recorded in units of mm d−1. The energy released by
m mm d−1 of precipitation at a given location increases the
temperature of the surrounding column of air at a rate

H̄A =

(
gρwLv
p0cp

)
m, (20)

where p0 = 1.013× 105 kg m−1 s−2 is the mean atmospheric
pressure at mean sea level, ρw = 103 kg m−3 is the density of
water, g = 9.8 m s−2 is acceleration due to gravity, and (20)
has units of K d−1. An average precipitation of 1 mm d−1 thus
corresponds to a heating rate of ≈ 0.24 K d−1, or a dimensionless
heating rate of H̄A ≈ 0.0054 when scaled by the characteristic
heating rate of 45 K d−1. This 2D (x, y) heating rate is converted
to 1D (x) by projecting onto the meridional modes in the same
manner as the primitive variables u, θ, etc.; A is estimated by the
leading meridional mode, i.e.

H̄A(x, t) = H̄A0(x, t). (21)

3.4. Estimating As, Sθ , and Sq

In order to solve the linearized system in (9), an estimate of the
background state H̄As is needed. We estimate H̄As by taking
a long-time average of precipitation data. Figure 1(a) shows
the annual, December-January-February (DJF), and June-July-
August (JJA) dimensionless estimated H̄As(x) from averaging
GPCP data from 1997 through 2013. The region of highest
precipitation occurs over the maritime continent and western
Pacific ocean (≈80E-180), while local maxima also exist near the
Amazon (≈80W-50W, most pronounced during the DJF season)
and the Congo (≈20E-30E). The standard deviation (with respect
to longitude) of the annual H̄As is 0.0141.

In the full model equations (4) and their stochastic version,
we instead must specify the radiative cooling and latent heating
functions, Sθ and Sq , respectively. In a recent paper (Stechmann
and Ogrosky 2014), the authors found that when OLR was used
to estimate H̄As − Sθ , the Kelvin wind response given by (6a)
was predicted over various timescales with remarkable accuracy.

We here adopt the same approach, and use OLR to estimate
dimensional H̄As − Sθ by

H̄As − Sθ = −HOLR ·OLR0a, (22)

where OLR0a is understood to represent leading meridional mode
anomalies from the zonal mean, and where

HOLR = 0.056 K d−1 (W m−2)−1. (23)

One reason for not considering the zonal mean component of
heating here is that we have an accurate estimate of total diabatic
heating variations (via OLR variations), but not the zonally
uniform component of diabatic heating. The annual, DJF, and JJA
averages of dimensionless H̄As − Sθ are shown in Figure 1(b).
While the overall pattern is similar to precipitation in Figure 1(a),
there is higher local variation in OLR near the Congo region
(and Amazon to a lesser extent) relative to the maritime continent
than is seen in precipitation. The standard deviation of annual
H̄As − Sθ is 0.0247.

To estimate Sθ , one could use an algorithm such as
the Hydrologic Cycle and Earth’s Radiation Budget (HERB)
algorithm (L’Ecuyer and McGarragh 2010). Here, as an
alternative, we estimate radiative cooling in the following way:
Sθ is estimated by the difference between total diabatic heating
and convective heating, i.e.

Sθ = H̄As − (H̄As − Sθ); (24)

the result is shown in Figure 1(c). Note that this is not a residual
of two poorly estimated quantities as total diabatic heating can be
accurately estimated from OLR (Stechmann and Ogrosky 2014).

The zonal variations in estimated radiative cooling Sθ are
similar in magnitude to those in the estimated convective heating
HAs; annual Sθ has a standard deviation of 0.0129. While it may
seem surprising that this estimate of radiative heating variations is
the same order of magnitude as condensational heating variations,
independent estimates of radiative heating have also identified
large zonal variations (L’Ecuyer and McGarragh 2010). For the
stochastic model, the annual curve will be used to inform Sθ after
smoothing by retaining only the first 8 Fourier modes.

For Sq , we use reanalysis latent heat flux data, averaged over
the same time period and projected onto the leading meridional
mode,

Sq = HLHF · LHF0. (25)

The proportionality constant HLHF is estimated by noting that in
the model the convective heating represented by H̄As should, in
the zonal mean, approximately balance the mean cooling due to
evaporation, so that

HLHF ≈
H̄As

LHF0
≈ 0.0088 K d−1 (W m−2)−1, (26)

where LHF0 is the zonal mean of the leading meridional mode
of LHF. The annual, DJF, and JJA averages of Sq are shown in
Figure 1(d). The zonal variations of the latent heating source term
Sq are smaller in magnitude than the estimates for radiative and
convective heating; annual Sq has a standard deviation of 0.0061.
For the stochastic model, the annual curve will be used to inform
Sq after smoothing by retaining only the first 8 Fourier modes. A
summary of the datasets used to construct the steady-state model
variables and forcing functions is given in Table 1.

Before finding model solutions, we pause to see how well the
steady-state described by (8) holds with the datasets used here.
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Figure 2. (a) Left-hand side (LHS) and right-hand side (RHS) of equation (27)
averaged from 1 January 1997 through 31 December 2013. (b) Same as (a) but
smoothed to retain 3 Fourier modes only. LHS is estimated from GPCP precipitation
data using (20). RHS is computed using LHF and OLR data.

Model variable/ Observational
forcing function surrogate Relationship

H̄As GPCP precipitation (20)
H̄As − Sθ OLR (22)
Sθ OLR, GPCP precipitation (24)
Sq LHF (25)

Table 1. Datasets used as surrogates for model variables and forcing functions.
Equation numbers describe how the model variables and forcing functions
were estimated by the datasets.

Equation (8) can be rearranged to

H̄As(x) = Sq(x) + Q̃
[
H̄As(x)− Sθ(x)

]
. (27)

Figure 2(a) compares the left-hand and right-hand sides of
(27) which represent observed precipitation and a weighted
combination of observed latent heating and OLR, respectively;
they have a root-mean-square error (RMSE) of 0.0123 and pattern
correlation of 0.96. These have been smoothed in Figure 2(b)
by retaining only the mean and first three Fourier modes; this
smoothed version will be used in Section 4. We note that while
OLR and GPCP precipitation data are highly correlated on their
own (with a pattern correlation of 0.92) the introduction of LHF
to the right-hand side does improve the agreement slightly.

4. Linear theory

Next, linear solutions are found to (9) using a varying background
state of convective activity, As(x). In this case, each linear
eigenmode is not a perfect sinusoid but an oscillation that is
localized near the western Pacific warm pool region. As an
example application, these eigenmodes will be used to identify
the MJO in reanalysis and OLR data.

4.1. The linearized equations

Each of the quantities K∗, R∗, Q∗, and A∗ in the linearized form
of (9) can be expressed as a superposition of plane-waves, e.g.,

K∗(x, t) =

km∑
k=−km

K̂ke
i( 2πkx

L −ωt), (28)

with similar expressions for R∗, Q∗, and A∗, while the steady
background state estimated in Section 3.4 can be decomposed into
its Fourier modes

As(x) = Ŝ0 +

km∑
k=1

α
[
Ŝke

i( 2πkx
L ) + Ŝ−ke

−i( 2πkx
L )

]
, (29)

where α ≤ 1 is a parameter introduced to decrease the magnitude
of the zonal variations in As relative to the mean of As; the
significance of this parameter will be discussed in Section 4.2.

0 60E 120E 180 120W 60W 0

0.02

0.025

0.03

0.035

0.04

0.045

0.05

HAs(x)

 

 

 

 

α=0

α=0.1, N=1

α=0.5, N=1

α=0.1, N=3

Figure 3. Background convective state H̄As(x) used in Section 4.

Substitution of (28) and (29) into (9) yields a system of 8km +

4 equations due to the four variables that are each expanded in
terms of 2km + 1 wavenumbers k with −km ≤ k ≤ km. This is
a single system of equations where each wavenumber is coupled
to every other wavenumber through the background state As(x).
In practice, the background state is smoothed to retain only the
first N Fourier modes, so that Ŝj = 0 for |j| > N ; in all cases
presented below, N = 1 or 3.

The case of a constant background state studied by Majda and
Stechmann (2009) is recovered if we take N = 0, i.e. if Ŝj = 0

for j 6= 0. In this case a system of 4 equations for wavenumber
ki1 decouples from the system for ki2 , with i1 6= i2, so that
the problem becomes 2km + 1 eigenvalue problems, each for a
different wavenumber; each of these can then be solved separately,
and the resulting eigenvectors each contain contributions from
one wavenumber only. Here, in contrast, N > 0 and each system
of four equations is coupled to the other systems through the
background state As. Additional details and further discussion of
the problem and solution procedure are given in the Appendix.

Figure 3 shows the background state for the four combinations
of α and N values used to generate the results discussed here:
the constant background state α = 0 and three zonally-varying
background states. Other combinations of parameter values were
studied as well, but these four combinations appear sufficient to
demonstrate both the effects of a zonally-varying background state
and the sensitivity of solutions on the parameters α and N .

4.2. MJO eigenmodes

The solutions to (9) are linear modes of 4 types: dry Kelvin
modes, dry Rossby modes, moist Rossby modes, and MJO
modes (Majda and Stechmann 2009). Each MJO mode has an
averaged-wavenumber, k̄, which can be calculated by

k̄ =

km∑
k=−km

|k|
√
K̂2
k + R̂2

k + Q̂2
k + Â2

k. (30)

In the case with uniform As = As, k̄ is an integer for each mode;
in the case with zonally varying As(x), k̄ is a real number that
assesses on average what wavenumber contains the most power.
The MJO modes can then be ordered by average wavenumber, i.e.
they will be denoted by

ê1, ê2, ... (31)

so that ê1 refers to the MJO mode with smallest k̄, ê2 refers to
the MJO mode with k̄ larger than that of ê1 and smaller than
k̄ for all other MJO modes, and so on. In some places in the
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Figure 4. (a) Phase speed ω/k̄ and (b) oscillation frequency ω(k) for uniform
background state α = 0 (black crosses), and varying background state, α = 0.1,
N = 1 (red circles).

text, the alternate notation MJO-1, MJO-2, etc., may be used. As
the skeleton model was proposed to describe the planetary-scale
dynamics of the MJO, it is the lowest-wavenumber modes, i.e. êj
for say j = 1− 4, that are of the most relevance here; only these
first few modes with small k̄ will be studied here.

We first consider the frequencies of the MJO modes with
uniform or varying background state. The case of a uniform
background state was studied by Majda and Stechmann (2009),
where it was shown that the MJO modes have a frequency
that is roughly constant with k, and a phase speed of ≈ 4− 7

m s−1 for k = 2− 4, features in common with the observed MJO.
This constant background case is depicted by the black crosses
in Figure 4. When the modes are found in the presence of a
varying background state with α = 0.1, N = 1, the phase speed
for the MJO-j modes for j = 2, 3, ..., are very similar to their
counterparts in the constant background case, see Figure 4(a).

The difference between the uniform and varying cases can be
seen more clearly in the structure of the MJO modes. The uniform
MJO-2 mode is shown in Figure 5. Positive (negative) anomalies
in convective activity are depicted by red (blue) shaded regions.
The individual variables K, R, Q, and A are shown as functions
of x in panels (c), (e), (g), and (i), while the contribution each
wavenumber k makes to each variable is shown in panels (d), (f),
(h) and (j). This mode retains its shape as it propagates eastward
around the globe with approximate phase speed 5.6 m s−1.

The varying MJO-2 mode is shown in Figure 6 with α = 0.1

and N = 1. Note that many of the features seen in the uniform
modes are reproduced in the varying modes, e.g. the convective
activity A is in quadrature with the other three variables K, R,
and Q, and A lags behind Q, R and a pair of anticyclones, and
leads K and a pair of cyclones. However there is additional
structure created by the coupling between wavenumbers; both
the amplitudes and phases of the components of different
wavenumbers are fixed relative to each other. This additional
structure creates a wave envelope with maximum amplitude
centered over the maximum of the background convective heating
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Figure 5. Uniform background state MJO-2 mode, i.e. α = 0; ω ≈ 0.0235 cpd,
k̄ = 2.0. Convective anomalies are depicted by shading. (a) Positive (negative)
pressure anomalies are depicted by solid (dashed) lines. (b) Positive (negative)
moisture anomalies are depicted by solid (dashed) lines. (c)K, (e)R, (g)Q, and (i)
A are shown; the contribution made to each by each wavenumber is shown in (d),
(f), (h), and (j), respectively.

anomaly located at approximately 140E as in Figure 3. This
envelope has a base of support stretching from roughly 60E
to 160W, spanning the Indian ocean, maritime continent, and
western Pacific ocean. Consistent with Figure 4, the varying
background state also has the effect of shifting power to
higher wavenumbers and lowering the phase speed. The average
wavenumber for the varying MJO-2 mode is k̄ ≈ 3.0 resulting in
a narrower base of support for individual convective anomalies,
while for the uniform mode MJO-2 (depicted in Figure 3 in Majda
and Stechmann (2009)), there is only a contribution from k = 2.

To further emphasize the difference between the uniform and
varying cases, the propagation of the varying MJO-2 mode’s
convective anomalies is depicted in Figure 7. Linear disturbances
propagate eastward through this envelope with phase speed ≈ 4

m s−1, increasing in strength over the Indian Ocean, reaching
maximum amplitude near the western Pacific warm pool, and
decaying rapidly after crossing the date line. In contrast, the
sinusoidal uniform modes have anomalies over the global tropics.

We also note that a background state with zonal variations
small compared with the zonal mean, e.g. α = 0.1, is sufficient
to see significant change in the structure and phase speed of the
relevant MJO modes. Increasing the amplitude further results in a
wave envelope with narrower base of support through which the
linear disturbances propagate, and a higher average wavenumber
k̄. Figure 8(a) shows the MJO-2 mode with α = 0.5; note that each
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Figure 6. Same as Figure 5 but for varying background state MJO-2 mode with
α = 0.1, N = 1; ω ≈ 0.0245 cpd, k̄ ≈ 3.0.
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Figure 7. Propagation of varying MJO-2 mode convective anomalies (shading)
with α = 0.1, N = 1. (a) t = 0 d, (b) t = 10 d, (c) t = 20 d, (d) t = 30 d.
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Figure 8. Varying background state MJO-2 mode with α = 0.5, N = 1. ω ≈
0.267 cpd and k̄ ≈ 4.2. Convective anomalies are depicted by shading. (a) Positive
(negative) pressure anomalies are depicted by solid (dashed) lines. (b) Positive
(negative) moisture anomalies are depicted by solid (dashed) lines.

positive convective anomaly covers a smaller range in longitude
than when α = 0.1 in Figure 6. We also note that this sensitivity is
also seen, to a slightly lesser degree, in the moist Rossby modes,
but is not present in the dry modes. In fact, the dry Kelvin and
Rossby modes (not shown) are almost entirely unaffected by the
background convective state.

Finally, these variations are also sensitive to the number
of Fourier modes retained in the smoothed background state.
Figure 9 shows the MJO-2, MJO-3, and MJO-4 modes with α =

0.1 and N = 3. The MJO-2 mode is similar to the MJO-2 modes
withN = 1 but with a slightly narrower wave envelope. The MJO-
3 mode is similar to the MJO-3 mode with N = 1 (not shown),
but with narrower base of support for individual anomalies and a
slightly broader base of support in the wave envelope. The MJO-4
mode is the lowest-wavenumber mode to show a second region of
linear anomaly activity; linear disturbances propagate through the
envelope centered over the warm pool as with the other modes,
decrease in strength over the Pacific, but regain some strength as
they approach South America and cross over the Amazon region.
This reflects the local maximum in this region in the background
convective state with N = 3, see Figure 3.

4.3. Identifying the MJO in reanalysis data

In Stechmann and Majda (2015), the uniform MJO modes were
used to identify the MJO in reanalysis data. This was achieved in
two steps: first, reanalysis data U(x, t) = (K,R,Q,A)T(x, t) was
projected onto each of the low-wavenumber MJO modes, i.e.

MJOS∧k (t) = ê†kÛk(t), (32)

for k = 1− 3, where † refers to the conjugate transpose and Ûk

are the Fourier coefficients of U. Thus for each wavenumber k
we have a measure of the strength and phase of the MJO-k signal.
Second, taking the inverse Fourier transform of (32) gives the real-
valued scalar quantity MJOS(x, t), referred to as the MJO skeleton
signal. The reanalysis data was found to contain a strong signal
of this theoretical structure at times and locations where well-
documented observed MJOs have occurred over the last thirty
years.

The first step described above, i.e. projecting reanalysis data
onto individual MJO modes, may be extended to the varying
background case with little modification. We now consider
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Figure 10. (a) Evolution of the complex-valued MJOSj(t) for j = 2 from 1 July 2009 through 30 June 2010. Here MJOSj has been rescaled by its standard deviation;
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Figure 9. Varying background state MJO-2, 3, and 4 modes with α = 0.1,N = 3.
(a) MJO-2, ω ≈ 0.245 cpd and k̄ ≈ 3.6; (b) MJO-3, ω ≈ 0.239 cpd and k̄ ≈ 6.0;
(c) MJO-4, ω ≈ 0.236 cpd and k̄ ≈ 8.8. Convective anomalies are depicted by
shading. Positive (negative) pressure anomalies are depicted by solid (dashed) lines.

reanalysis data

Û = [Û−km , Û−km+1, ... Ûkm−1, Ûkm ]T, (33)

with

Ûk = [K̂k, R̂k, Q̂k, Âk]T. (34)

This data is projected onto a single MJO eigenvector ẽj in a
manner similar to (32),

MJOSj(t) = ẽ†jÛ(t)

= MJOSAj(t) exp[iMJOSPj(t)], (35)

resulting in a complex-valued scalar function of time, where the
magnitude of this signal is denoted MJOSAj(t) and the phase
of the signal is denoted by MJOSPj(t). (Note that here we use
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Figure 11. (a,b) Same as Figure 10(a,b) but from 1 July 2007 through 30 June 2008.
(c) MJOSA signal as in Stechmann and Majda (2015) during the same time period.
Thick red lines denote December 2007 and January 2008. (d,e) Wavenumber-2 and
3 components of MJOSA, respectively.

MJOS, rather than MJOS∧ as in (Stechmann and Majda 2015),
to denote the signal in Fourier space). The results in this section
were found using the MJO modes with α = 0.1 and N = 1, and
using reanalysis data smoothed to retain only wavenumbers k =

±1,±2,±3. In all figures, the signal MJOSj has been normalized
by its standard deviation over the sixteen year period 1 July 1997
through 30 June 2013; an MJOSA value of one thus indicates a
signal one standard deviation away from the complex mean of
approximately zero.
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The evolution of MJOSj , MJOSAj and accumulated MJOSPj
is shown in Figure 10 for j = 2 from 1 July 2009 through 30 June
2010. This period overlaps with the Year of Tropical Convection
(YOTC) (Moncrieff et al. 2012; Waliser et al. 2012). The most
significant MJO-like activity during YOTC occurred during the
2009-10 DJF season. The MJOSA2 signal in panel (b) is strongest
in early November and late January through February of this
season. The variations in signal strength from late November
through early January indicate that the observations only partially
reflect the theoretical structure of the MJO skeleton model with
varying background state during this time. In panel (c), an increase
of 2π in the accumulated phase indicates the signal MJOS has
completed one counterclockwise cycle around the complex plane.
Periods of elevated MJOSA signal correspond with an upward
trend in the accumulated phase MJOSP2; the increase indicates
eastward propagation. Note that the accumulated phase is only
meaningful during time periods of a strong MJOSA signal. In
panel (a), these two trends are shown together by plotting the daily
values of the complex-valued signal MJOS2.

The pattern correlation can be used to compare the MJOSA2

signal with other MJO indices currently in use and is here defined
as

PC(f, g) =
1
T

∫ T
0
f(t)g(t)dt[

1
T

∫ T
0
|f(t)|2dt

]1/2 [
1
T

∫ T
0
|g(t)|2dt

]1/2 , (36)

where T is the length of time considered and f and g are two
MJO indices defined on the time period [0, T ]. During the time
period shown in Figure 10, i.e. 1 July 2009 through 30 June 2010,
the MJOSA2 signal has a pattern correlation of 0.86 with the
Real-time Multivariate MJO (RMM) index (Wheeler and Hendon
2004) and a pattern correlation of 0.87 with the OLR MJO Index
(OMI) (Kiladis et al. 2014); the RMM and OMI have a pattern
correlation of 0.90 with each other during the same time period.
Note that in contrast to the RMM and OMI indices, the MJOSA2

does not rely on empirical orthogonal functions (EOFs) and does
not use temporal filtering.

The zonally-varying MJOS2 and MJOSA2 signals are shown
for a second time period from 1 July 2007 through 30 June 2008
in Figure 11(a,b). Spikes can be seen in MJOSA2 in the months
of December 2007 and January 2008 (shown in red) suggesting
significant MJO activity. The elevated signal during the months of
December and January corresponds with an upward trend in the
accumulated phase MJOSP2 indicating eastward propagation (not
shown). We note that these features are also pronounced in modes
MJOS3 (not shown).

Figure 11(c) shows the MJOSA signal from Stechmann and
Majda (2014) during the same time period, and panels (d) and
(e) show the wavenumber 2 and 3 components of this signal,
respectively. As with the MJOSA2 signal, a prolonged elevated
MJOSA signal is seen throughout December and January. This
elevated signal is seen most clearly when using all three uniform
MJO-j modes for j = 1, 2, 3 (panel c); the individual components
MJO-2 (panel d) and MJO-3 (panel e) show an elevated signal as
well, though less pronounced than the total signal.

While many similarities exist between the uniform and varying-
background signals, including a pattern correlation of 0.92 during
the year shown in Figure 11, they are not identical for at least two
reasons. First, the MJOSA is elevated whenever the theoretical
structure of the skeleton model is present at any longitudes. In
contrast, the MJOSA2 is elevated when this theoretical structure
is present at longitudes in the base of support of the wave envelope
in Figure 6, i.e. roughly 60E to 160W. Restricting the search for
the theoretical structure of the skeleton model to those longitudes
where the MJO is most active can be seen as a conceptual
improvement over the original data projection technique. Second,
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Figure 12. Sq and Sθ used for the stochastic model simulations.

the MJOSA signal in Stechmann and Majda (2014) uses OLR,
rather than precipitation data, for convective heating A. During
this time period, the MJOSA2 signal has a pattern correlation
of 0.88 with the RMM index (Wheeler and Hendon 2004), and
a pattern correlation of 0.89 with the OMI index (Kiladis et. al.
2014).

The second step in the technique used in (Stechmann and Majda
2015) combines the information from all the relevant MJO modes
into a single quantity MJOS(x, t). Such a step could potentially
be used here as well, although it is complicated by the zonally-
varying base state As(x). Furthermore, the need for a function
MJOS(x, t) is lessened here since each individual eigenmode
already has an interesting zonal structure that is not simply a single
sinusoid. Lastly, by using a single eigenmode only, one can obtain
a compact representation of the MJO in terms of just two numbers,
its amplitude and phase.

5. Nonlinear stochastic model

We next turn to the stochastic form of the skeleton model. In Thual
et al. (2014), the model was solved with equal forcing functions,
i.e. Sq(x) = Sθ(x), where each function was either a constant or
a single sinusoid. Here, we use forcing terms Sq(x) and Sθ(x)

that are informed by the estimates found in Section 3. Specifically,
using the annual averages shown in Figure 1(c,d) as our starting
point, two additional steps are taken: (i) only the first 8 Fourier
modes are retained in order to include variations on planetary
scales only, and (ii) the Fourier coefficients for k = ±1− 8 are
multiplied by a factor β, i.e. if Ŝqk is the wavenumber-k Fourier
coefficient of Sq shown in Figure 1(d), then

S̃q = Ŝq0 + β

8∑
k=1

[
Ŝqke

i( 2πkx
L ) + Ŝq−ke

−i( 2πkx
L )

]
, (37)

and S̃q will be used as our forcing function (dropping tildes from
here). An analogous formula for Sθ is used, with identical value
for β as that used in (37). Figure 12 shows the forcing functions
used to generate the solutions shown below; here β = 0.1. The
addition of the parameter β will be discussed further in Section 6.

One might anticipate that these stochastic model solutions
would contain features in common with both the uniform-
background stochastic solutions, e.g. the formation of intermittent
MJO wavetrains, and the varying-background linear solutions
discussed in Section 4, e.g. locally enhanced convective activity at
longitudes with strong heating. It will be shown that this is indeed
the case, and a quantitative comparison with reanalysis data will
be made.

5.1. Convective activity

The model was solved using the numerical procedure described
by Thual et al. (2014). The solver was run for 20,000 days which
was enough time for the model solution to settle into a statistical
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Figure 13. Hovmoller plot of (a) observed H̄A and (b) model solution H̄A.
Observed data is shown for DJF seasons 2005/06 - 2011/12; model data is shown
for a continuous 840-day period.

steady-state; such a simulation can be run relatively quickly, since
400 days of simulation time takes roughly only 1 minute of wall-
clock time on a typical laptop computer. The solution’s convective
activity H̄A is shown as a Hovmoller plot for an 840-day period
near the end of the simulation in Figure 13(b).

The observed convective activity is shown in Figure 13(a)
for seven boreal winters from 16 November 2005 through 15
March 2012, i.e. the lowest portion of the Hovmoller plot depicts
the time period 16 November 2005 through 15 March 2006.
Black horizontal lines separate the seven extended DJF seasons;
note that the black lines are omitted in the model Hovmoller
plot as a continuous 840-day period of time is displayed. In
the observed data, several events of slow, eastward propagation
can be seen, e.g. December 2007 through January 2008 and
December 2009 through January 2010. Note that the observed
and modeled convective activity should not be compared directly
day by day, as each plot is a representative sample of the
climatological convective variability; they should be compared
statistically instead.

Both the models and observations in Figure 13 show much high
frequency/wavenumber activity, particularly the observations; the
higher noise level in observations is at least in part due to
the higher spatial resolution of the reanalysis data (144 zonal
gridpoints, ∆x ≈ 280 km) than that of the model simulation (64
gridpoints, ∆x ≈ 625 km). In order to focus on the planetary
scale dynamics on intraseasonal timescales of relevance for the
MJO, both the sixteen year period of 120-day extended DJF
seasons described above for the observed data and sixteen 120-
day segments of the numerical simulation were filtered. This
was achieved by applying a cosine-tapering function to the first
and last twelve days of each segment, and then taking the
Fourier transform in both space and time. Only wavenumbers k =

±1,±2,±3 and frequencies 1/90 ≤ ω ≤ 1/30 cpd were retained;
the remaining data was then transformed back to physical space.

The filtered data is shown in Figure 14 for observed and
modeled H̄A. While propagation can be seen in both the eastward
and westward directions, the eastward propagation appears to be
the dominant feature in both observed and modeled H̄A. In the
model data, the strongest anomalies appear between day 500 and
720 as two somewhat distinct periods of MJO activity. Individual
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Figure 14. (a) Observed and (b) modeled H̄A filtered by removing the statistical
steady-state and retaining only wavenumbers k = ±1,±2,±3 and frequencies
1/90 ≤ ω ≤ 1/30 cpd.
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Figure 15. Power spectrum of (left) observed and (right) modeled H̄A.

anomalies have similar strength and propagation speed to the
observed anomalies. The intermittency in MJO activity seen in the
model is also reminiscent of that in the observations, with several
successive MJO events followed by periods of smaller anomalies.
The largest anomalies in the observed data generally occur from
roughly 60E through 150W; the strongest anomalies in the model
solution occur in a similar range, though strong anomalies can also
be seen near South America and the Atlantic Ocean, e.g. day 760
through 840. Note again that the observed and modeled convective
activity should be compared statistically, rather than directly day
by day.

The logarithm of the wavenumber-frequency spectrum is
shown in Figure 15 for the entire sixteen-year period of observed
H̄A and the last sixteen years of modeled H̄A. The observed data
represents anomalies from a seasonal cycle, calculated as the sum
of the mean and first three seasonal harmonics. The spectrum was
then calculated by splitting the anomalies into successive 120-day
segments, removing the mean, tapering the first and last 10% of
each segment, and averaging the power over all 120-day segments.
The spectrum of observed H̄A shows eastward power in the
MJO frequency range at low wavenumbers, as does the spectrum
of modeled H̄A. Both plots show considerably more power in
the eastward than the westward direction for wavenumbers k =

±1,±2,±3.
The statistical steady state of the raw data and the variance

of the filtered data are shown in Figure 16. The agreement in
mean convection H̄A is very good, with a pattern correlation
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Figure 16. (a) Steady state of observed H̄A (solid black line) and model-predicted
H̄A (red dashed line). (b) Variance of filtered observed and model-predicted H̄A.

of 0.96. The agreement in variance is good from approximately
50E to 170W, while the model overestimates the variance near
South America and Africa. This agreement is somewhat sensitive
to the choice of model parameter values, and to the choice of
wavenumber-frequency box size in the filtering step. Note that
both eastward and westward power were retained in the filtering
technique described above.

5.2. Data projection

In Section 4, the extended linear MJO modes were used to identify
a period of significant MJO activity through data projection. This
same method is next used to identify significant MJO events in
the stochastic model solutions. The model data is again filtered
by removing all wavenumbers except k = ±1,±2,±3 and all
frequencies except 1/90 ≤ ω ≤ 1/30 cpd. This filtered data is
then projected onto the eigenmodes in the same manner as the
observed data in Section 4. Results are shown here for the MJO-2
mode.

Figure 17 shows the evolution of MJOSA2 and accumulated
MJOSP2 during a ten year period. The observed signal MJOSA2

is shown for the ten year period from 1 July 2003 through 30
June 2013; the model signal is also shown for a ten-year period.
Large fluctuations tend to occur on shorter timescales in the
observed data than the model data. Both model and observations
show a tendency towards eastward propagation, or positive
phase accumulation, though periods of westward movement
occur as well. Periods of extended eastward propagation in the
model, e.g. day 1800 to 2000, have a frequency of roughly
ω = 1/40 cpd, consistent with the linear results. These periods
are occasionally interrupted by (generally shorter) periods of
westward propagation which slow the phase accumulation. This
phase accumulation can be further quantified by calculating an
average annual phase accumulation. When the stochastic model
is run with a zonally-varying background state for an extended
20,000 day simulation, the average annual phase accumulation
produced by the model is 35% of that seen in observations. When
the model is run with a uniform background state (not shown),
the resulting phase accumulation exhibits the same qualitative
behavior but produces an average phase accumulation of only 19%
of the observations.

The daily values of MJOSA2 are displayed in a histogram in
Figure 18 for both observed and modeled data. The distribution of
the modeled and observed signals are very similar including long
tails that correspond to large-amplitude MJO events. We note that
the distribution of signal amplitudes when the stochastic model is
run with a uniform background state (not shown) is also similar to
observations.

Some additional comparisons between the model and observed
MJOS2 signals were made by the authors, including a comparison
of extended periods of high values of MJOSA2; initial results
show good agreement in the length and behavior of these
large events between the model and reanalysis data. Further

comparisons of the model and observed signals using other
standard MJO indices are currently being undertaken by
collaborators.

6. Further discussion of sensitivity studies

Several comments should now be made. First, the data projections
presented here were conducted a second time with OLR as a proxy
for H̄A, consistent with the alternative viewpoint of the meaning
of H̄A discussed in Section 3. Using OLR rather than precipitation
data did not significantly alter the main features of the projections
described here.

Second, in addition to the parameter sensitivity studies already
described in Section 4, the sensitivity of the stochastic model
results to the model parameter values of Γ, Sq , Sθ , and β was
examined. As Γ sets the rate of growth/decay in the planetary
scale envelope of convective activity, higher values of Γ result
in a power shift to higher frequencies in convective activity,
though there is little change in the variance over long time
periods. Different values for the zonal means of the steady forcing
functions, i.e. Sq and Sθ , tended to also shift the frequencies and
had some impact on the ratio of eastward-to-westward power. This
frequency dependence on the parameters Γ and Sθ is consistent
with the approximate frequency of MJOs in the linearized skeleton
model, which was shown by Majda and Stechmann (2009) to be

ωMJO ≈
√

ΓSθ(1− Q̃). (38)

Increasing β, i.e. increasing the amplitude of zonal variations in
the forcing functions, results in stronger zonal variations in the
variability and background state.

Finally, additional model terms were considered for the latent
heat flux in the moisture evolution equation. For example,
an initial investigation was made into incorporating a bulk
parameterization; this is part of an ongoing area of investigation,
though initial attempts have not significantly improved the
agreement between model solutions and observations. An attempt
was also made to incorporate the effects of evaporation-wind
feedback; this is also an area of ongoing research.

7. Conclusions

To conclude, the MJO skeleton model has been assessed by
comparison with reanalysis and observational data. Solutions to
the model with varying forcing functions compare favorably with
reanalysis data in several ways. Model solutions were also used to
design new ways of analyzing observational data.

The presence of zonal variations in the steady forcing creates a
realistic background state of convective activity. This background
state creates additional realistic structure in the linear solutions
including a wave envelope centered over the warm pool through
which convective events reminiscent of the MJO pass. Signals
of these linear solutions are seen in reanalysis data during
periods of significant MJO activity, suggesting that this additional
structure is indeed present during some MJOs. This MJO structure
with warm-pool envelope is achieved here with a compact
index defined by just two scalars: its amplitude MJOSA(t) and
phase MJOSP(t) (as opposed to the function MJOS(x, t) defined
in Stechmann and Majda (2015)).

Stochastic nonlinear simulations were also found using
observation-based forcing, and the extent to which these simu-
lations reproduce realistic zonal variations in the climatological
mean state and intraseasonal variability was explored. It has
been shown that these model solutions also contain additional
structure created by the zonal variations in forcing including
realistic convective variability throughout much of the tropics,
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Figure 17. (a) MJOSA2 and (b) accumulated MJOSP2 for observed data from 1 July 2003 through 30 June 2013. (c) MJOSA2 and (d) accumulated MJOSP2 for model
data over an identical length time period (approximately 3650 days).
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Figure 18. Histogram of MJOSA2(t) values for (a) observed and (b) model data.
Time periods are identical to those of Figure 17. The bin width is 0.05, and 80 bins
were used spanning the range of 0 to 4.

a dominance of eastward power over intraseasonal timescales
and planetary spatial scales, and MJO events localized within
the linear wave envelope. The intermittency of the MJO events
in these stochastic solutions is also reminiscent of those seen in
observations.

One could also construct more complicated and realistic
background states with the observational data than those presented
here. For instance, adding time-variations to the forcing terms
Sq and Sθ could allow for a seasonally-varying simulation, and
adding additional meridional modes could allow for important
additional off-equatorial features, some of which have been
explored recently by Thual et al. (accepted) with equal forcing
functions; these questions are left for future work.
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Appendix A. Computing the linear eigenmodes with a
zonally-varying background state

Substitution of (28) and (29) into (9) yields a system of 8km + 4

equations which can be written in terms of each wavenumber k

such that −km ≤ k ≤ km,

ωK̂k =
2πk

L
K̂k −

i√
2
Âk, (39a)

ωR̂k = −2πk

3L
R̂k −

2i
√

2

3
Âk, (39b)

ωQ̂k =
2πkQ̃√

2L
K̂k −

2πkQ̃

6
√

2L
R̂k +

(
Q̃

6
− 1

)
iÂk, (39c)

ωÂk = iQ̂kŜ0 + α
∑

m+n=k,m 6=k
|m|,|n|≤km

iQ̂mŜn. (39d)

There are thus 2km + 1 such wavenumbers coupled to each other
through the equations (39d). These systems together comprise an
eigenvalue problem,

(A− ωI)Û = 0, (40)

where I is the 4(2km + 1) x 4(2km + 1) identity matrix, and Û is
a column vector with 4(2km + 1) entries,

Û = [Û−km , Û−km+1, ... Ûkm−1, Ûkm ]T, (41)

with

Ûk = [K̂k, R̂k, Q̂k, Âk]T, (42)

and

A =


A−km S1 S2 . . . S2km
S−1 A−km+1 S1 . . . S2km−1

S−2 S−1 A−km+2 . . . S2km−2
...

...
...

. . .
...

S−2km S−2km+1 S−2km+2 . . . Akm

 , (43)

where

Ak =


2πk
L 0 0 − i√

2

0 − 2πk
3L 0 − 2i

√
2

3
2πkQ̃√

2L
− 2πkQ̃

6
√

2L
0 iQ̃

6 − i
0 0 iŜ0 0

 , (44)

Sj =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 iαŜj 0

 , (45)
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for −2km ≤ j ≤ 2km. As mentioned in the main text, the
background state is smoothed to retain only the first N Fourier
modes, so that Ŝj = 0 for |j| > N .

The eigenvalue problem in (40) is solved numerically using
MATLAB’s eig function. We note that in spectral calculations,
the linear solutions are susceptible to distortion due to the
truncated system of Fourier modes. To ensure the robustness
of the solutions, km must be taken large enough so that the
lowest-k̄ MJO modes are insensitive to increasing km further. The
convergence of the eigenvalues was tested by increasing km and
tracking the change in both eigenvalues ωj and the components of
the eigenvectors êj for j < 6. The change in each of these values
when km was increased by 1 was less than 10−14 for km > 60 in
most results reported here; for cases where this change was greater
than 10−14, km was increased as necessary, up to a maximum
value of km = 100. Consequently, the eigenmodes presented here
are robust.
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