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+ 1. Kelvin and MRG waves

s The analysis of section 6 is repeated here for the ¢g and ¢; components of equation (5.2) from

¢« the main text corresponding to the Kelvin, MRG, and EIG( waves.

7 a. Definition of wave variables
¢ 1) KELVIN WAVE

s The ¢9 component of (5.2) is a single PDE governing a Kelvin wave,
oro+ drg = 0. (S1)

o 2) MRG AND EIGy WAVES

i  The ¢; component of (5.2) is a system of two coupled PDEs governing an MRG and EIG, wave,

o1 +0yr1 —vo =0, (S2a)

ovo+r; =0. (S2b)

» Each of the variables in (S2) can be expressed as a superposition of plane-wave ansatzes

71 (k, @)e' K@), Do (k, @) =00, (S3)
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substituting (S3) into (S2) gives

i(k—w) -1 71 0
= . (S4)
1 —im 0 0
We are interested in finding the eigenmodes of (S4); its characteristic equation is
* —ko—1=0. (S5)

There are two solutions, ®;, for j € {MRG,EIGy} to (S5). Each eigenvalue w; for j €

{MRG,EIG} is associated with an eigenvector of the form

. i r
éj0:<—k_wj, 1) . (S6)

The resulting eigenvectors are shown in Fig. S1 after normalization.

The degree to which the spatial structure of each of these two waves is seen in reanalysis data
can be calculated by the projection technique described in section 6. Using this approach, the

Fourier coefficients of the MRG and EIG( wave structures are defined as
TR el ) 1 P
MRG (k) = é),p;(k) , EIGy(k) = eEIGO(k) , (S7)

respectively, where crosses denote the conjugate transpose. This spectral data may then be trans-

formed back into physical space through an inverse Fourier transform.

b. Long-wave theory with wave variables
1) KELVIN WAVE

The Kelvin wave is unaffected by the long-wave approximation.



z 2) MRG AND EIGy WAVES
»  Projecting (5.7), i.e. with 6 < 1, onto ¢; results in two coupled PDEs,
o1 + oyry — vy =0, (S8a)
820,y +r1 =0; (S8b)

» In the limit of small J, the system (S8) can be expressed as an eigenvalue problem (written here

» in terms of Py = 07}),

iS(k—w) -1 7 0
= . (S9)
1 —i0W V0 0
«  We are interested in finding the eigenmodes of (S9); its characteristic equation is
8’ w* — 8%kw —1=0. (S10)

« There are again two solutions, ®;, for j € {MRG,EIGy} to (S10), but in the limit § — 0 both of

» these roots are singular. Each eigenvalue ; is associated with an eigenvector of the form

. T
e?joz(—k_le, 3) . (S11)

«  In the long-wave limit, approximate eigenvalues may be found by expanding in powers of 0,

oyre = -8+ 0(1), (S12a)

wgig, =6 ' +0(1), (S12b)

s After a phase shift so that the r; component is positive and real, the normalized long-wave eigen-

% vectors are, to leading order in 8, given by

. 1 i\

MRG :  3yrc = (ﬁ —é) : (S13a)
. 1 i \T

EIG() : éEIGo = (E, %) . (Sle)

o Note that the structure of these ‘long-wave’ eigenvectors is independent of k.
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c. Observational data analysis

1) KELVIN WAVE

A Hovmoller plot of the Kelvin wave structure isolated in reanalysis data is shown in Fig. S2(a)
for the one year period 1 July 2009 through 30 June 2010. Note the abundance of information
propagating rapidly to the east, reminiscent of Kelvin waves. The power spectrum of the Kelvin

wave structure is shown in the main text in Fig. 18(a).

2) MRG AND EIGy WAVES

Fig. S2(b-c) shows the non-long-wave MRG and EIG( wave structures isolated in reanalysis
data. The MRG wave exhibits the strongest activity between 180 and 90W, similar to the location
of highest activity in the meridional winds vy (see Fig. 4b in the main text). This can be anticipated
in light of the MRG wave being comprised almost entirely of vy at moderate to high wavenumbers,
as in Fig. S1(a). Note also the large discrepancy between the MRG and EIG structures in am-
plitude: the EIG( wave contains very little power at all frequencies and wavenumbers, while the
MRG wave contains significant power at moderate wavenumbers. Both waves contain very little
low-wavenumber information. These figures demonstrate that reanalysis data projects weakly onto
the MRG and EIG( waves over spatial and temporal scales where the long-wave approximation

holds.
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LIST OF FIGURES
Fig. S1. Eigenvector components of the (a) MRG and (b) EIGy wave structures.

Fig. S2. Hovmoller plot of (a) Kelvin, (b) MRG, and (c) EIG( anomalies from a seasonal cycle. Time
period shown is 1 July 2009 through 30 June 2010.
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F1G. S1. Eigenvector components of the (a) MRG and (b) EIG( wave structures.
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F1G. S2. Hovmoller plot of (a) Kelvin, (b) MRG, and (c) EIG( anomalies from a seasonal cycle. Time period

so shownis 1 July 2009 through 30 June 2010.



