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1. Kelvin and MRG waves4

The analysis of section 6 is repeated here for the φ0 and φ1 components of equation (5.2) from5

the main text corresponding to the Kelvin, MRG, and EIG0 waves.6

a. Definition of wave variables7

1) KELVIN WAVE8

The φ0 component of (5.2) is a single PDE governing a Kelvin wave,9

∂tr0 +∂xr0 = 0. (S1)

2) MRG AND EIG0 WAVES10

The φ1 component of (5.2) is a system of two coupled PDEs governing an MRG and EIG0 wave,11

12

∂tr1 +∂xr1− v0 = 0, (S2a)

∂tv0 + r1 = 0. (S2b)

Each of the variables in (S2) can be expressed as a superposition of plane-wave ansatzes13

r̂1(k,ω)ei(kx−ωt), v̂0(k,ω)ei(kx−ωt); (S3)
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substituting (S3) into (S2) gives14  i(k−ω) −1

1 −iω


 r̂1

v̂0

=

 0

0

 . (S4)

We are interested in finding the eigenmodes of (S4); its characteristic equation is15

ω
2− kω−1 = 0. (S5)

There are two solutions, ω j, for j ∈ {MRG,EIG0} to (S5). Each eigenvalue ω j for j ∈16

{MRG,EIG0} is associated with an eigenvector of the form17

~̂e j0 =

(
− i

k−ω j
, 1

)T

. (S6)

The resulting eigenvectors are shown in Fig. S1 after normalization.18

The degree to which the spatial structure of each of these two waves is seen in reanalysis data19

can be calculated by the projection technique described in section 6. Using this approach, the20

Fourier coefficients of the MRG and EIG0 wave structures are defined as21

M̂RG(k) = ~̂e†
MRG(k)

 r̂1(k)

v̂0(k)

 , ÊIG0(k) = ~̂e†
EIG0

(k)

 r̂1(k)

v̂0(k)

 , (S7)

respectively, where crosses denote the conjugate transpose. This spectral data may then be trans-22

formed back into physical space through an inverse Fourier transform.23

b. Long-wave theory with wave variables24

1) KELVIN WAVE25

The Kelvin wave is unaffected by the long-wave approximation.26
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2) MRG AND EIG0 WAVES27

Projecting (5.7), i.e. with δ � 1, onto φ1 results in two coupled PDEs,28

∂tr1 +∂xr1− v′0 = 0, (S8a)

δ
2
∂tv′0 + r1 = 0; (S8b)

In the limit of small δ , the system (S8) can be expressed as an eigenvalue problem (written here29

in terms of v̂0 = δ v̂′0),30  iδ (k−ω) −1

1 −iδω


 r̂1

v̂0

=

 0

0

 . (S9)

We are interested in finding the eigenmodes of (S9); its characteristic equation is31

δ
2
ω

2−δ
2kω−1 = 0. (S10)

There are again two solutions, ω j, for j ∈ {MRG,EIG0} to (S10), but in the limit δ → 0 both of32

these roots are singular. Each eigenvalue ω j is associated with an eigenvector of the form33

~̂e j0 =

(
− i

k−ω j
, δ

)T

. (S11)

In the long-wave limit, approximate eigenvalues may be found by expanding in powers of δ ,34

ωMRG =−δ
−1 +O(1), (S12a)

ωEIG0 = δ
−1 +O(1), (S12b)

After a phase shift so that the r1 component is positive and real, the normalized long-wave eigen-35

vectors are, to leading order in δ , given by36

MRG : ~̂eMRG =

(
1√
2
, − i√

2

)T

, (S13a)

EIG0 : ~̂eEIG0 =

(
1√
2
,

i√
2

)T

. (S13b)

Note that the structure of these ‘long-wave’ eigenvectors is independent of k.37
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c. Observational data analysis38

1) KELVIN WAVE39

A Hovmoller plot of the Kelvin wave structure isolated in reanalysis data is shown in Fig. S2(a)40

for the one year period 1 July 2009 through 30 June 2010. Note the abundance of information41

propagating rapidly to the east, reminiscent of Kelvin waves. The power spectrum of the Kelvin42

wave structure is shown in the main text in Fig. 18(a).43

2) MRG AND EIG0 WAVES44

Fig. S2(b-c) shows the non-long-wave MRG and EIG0 wave structures isolated in reanalysis45

data. The MRG wave exhibits the strongest activity between 180 and 90W, similar to the location46

of highest activity in the meridional winds v0 (see Fig. 4b in the main text). This can be anticipated47

in light of the MRG wave being comprised almost entirely of v0 at moderate to high wavenumbers,48

as in Fig. S1(a). Note also the large discrepancy between the MRG and EIG0 structures in am-49

plitude: the EIG0 wave contains very little power at all frequencies and wavenumbers, while the50

MRG wave contains significant power at moderate wavenumbers. Both waves contain very little51

low-wavenumber information. These figures demonstrate that reanalysis data projects weakly onto52

the MRG and EIG0 waves over spatial and temporal scales where the long-wave approximation53

holds.54
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FIG. S1. Eigenvector components of the (a) MRG and (b) EIG0 wave structures.
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FIG. S2. Hovmoller plot of (a) Kelvin, (b) MRG, and (c) EIG0 anomalies from a seasonal cycle. Time period

shown is 1 July 2009 through 30 June 2010.
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