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ABSTRACT

Equatorial long-wave theory applies where a small horizontal aspect ratio between meridional and zonal

length scales is assumed. In an idealized setting, the theory suggests that (i) meridional wind is small,

(ii) geostrophic balance holds in the meridional direction, and (iii) inertio-gravity waves are small in am-

plitude or ‘‘filtered out.’’ In this paper a spectral data analysis method is used to quantitatively assess the

spatial and temporal scales on which each of these aspects of long-wave dynamics is observed in reanalysis

data. Three different perspectives are used in this assessment: primitive variables, characteristic variables, and

wave variables. To define each wave variable, the eigenvectors and theoretical wave structures of the

equatorial shallow-water equations are used. Evidence is presented that the range of spatial and temporal

scales on which long-wave dynamics holds depends on which aspect of the dynamics is considered. For ex-

ample, while meridional winds are an order of magnitude smaller than zonal winds over only a very narrow

range of spatial scales (planetary wavenumber jkj& 1), an examination ofmeridional geostrophic balance and

inertio-gravity waves indicates long-wave dynamics for a broader range of scales (jkj& 4). A simple prediction

is also presented for this range of scales based on physical and mathematical reasoning.

1. Introduction

One type of ‘‘balanced dynamics’’ in the tropical at-

mosphere occurs on planetary zonal scales; accordingly

it is called the equatorial long-wave dynamics (Heckley

and Gill 1984; Majda 2003; Majda and Klein 2003).1

These dynamics are marked by several related charac-

teristics, including small meridional winds, geostrophic

balance in the meridional direction, and inertio-gravity

waves of small amplitude. Theories that exploit an as-

sumed small ratio of meridional to zonal length scales

suggest that these dynamics are valid on ‘‘long’’ zonal

and temporal scales.

The main goal of this paper is to assess how long the

zonal and temporal scales must be in order for equato-

rial long-wave dynamics to exist. Such an assessment

is important as many low-dimensional models of

planetary-scale phenomena in the tropical atmosphere

are derived in part using the long-wave approximation.

Examples include models of equatorial waves and their

interactions (Majda and Biello 2003) and the Madden–

Julian oscillation (MJO; Majda and Biello 2004; Biello

and Majda 2005; Majda and Stechmann 2009). Other

models incorporate a steady-state version of the long-

wave theory, such as models for the Walker circulation

(Gill 1980; Stechmann and Ogrosky 2014) and El Niño–
Southern Oscillation (ENSO; Cane and Zebiak 1985).

* Supplemental information related to this paper is available at
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1Another class of balanced dynamics in the tropics includes a

variety of weak temperature gradient (WTG) approximations

(Charney 1963; Sobel et al. 2001;Majda andKlein 2003; Stechmann

and Stevens 2010).
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In addition to justifications based on scale analysis or

formal asymptotics, there are rigorous mathematical

proofs of the convergence to long-wave dynamics under

the appropriate limit (Dutrifoy and Majda 2006;

Dutrifoy et al. 2009). What is more, fast-wave averaging

has been used to show the existence of balanced dy-

namics even with imbalanced initial conditions in the

tropics (Dutrifoy and Majda 2007). These results have

been proven for the equatorial shallow-water equations;

a remaining mathematical challenge is to prove similar

results for the three-dimensional primitive equations.

Using observational data, assessing the scales on

which long-wave dynamics exist is fraught with chal-

lenges. A substantial disconnect exists between tropical

dynamics in nature and in idealized fluid dynamics

models. For example, in idealized fluid dynamics

models, the effects of water vapor and convection must

be included in some way, perhaps through an imposed

forcing or a parameterization. In nature, in contrast,

water vapor and convection are part of a highly complex

turbulent dynamics. Also, idealized models typically

either neglect forcing or prescribe forcing functions of a

particular order of magnitude; the magnitude of forcing

in nature need not satisfy such constraints. For these

reasons and others, one might not expect to be able to

accurately assess the validity of the long-wave approxi-

mation using observational or reanalysis data. Never-

theless, it will be shown below that a sensible assessment

can in fact be made.

This assessment is achieved by applying a spectral

data analysis and wave projection technique introduced

recently in Stechmann and Majda (2015). Spatial pro-

jections onto theoretical basis functions in x, y, z, and t

are used. Previous studies have also used some combi-

nation of spatial projections (e.g., Wheeler and Kiladis

1999) and many others have utilized Fourier modes in x

and t. Yang et al. (2003, 2007) and Gehne and Kleeman

(2012) utilized parabolic cylinder functions in y, and

projecting onto vertical basis functions has a long history

(e.g., Kasahara 1976; Kasahara and Puri 1981; Fulton

and Schubert 1985). The spectral approach employed

here uses a unique projection in the vertical direction

that isolates the first baroclinic mode and does not in-

clude the stratosphere. Combined with projections in

the other directions, this approach systematically iso-

lates (i) the first baroclinic mode, (ii) individual merid-

ional modes, and (iii) individual zonal and temporal

Fourier modes in the data. This spectral isolation of

spatiotemporal scales in each dimension allows for a

clear assessment of the scales on which the dynamics are

long-wave in character.

Wave amplitudes are also identified here for individ-

ual wave types, providing a systematic way to combine

data frommultiple fields (such as wind and geopotential

height) into a single meaningful multivariate field. This

method was presented by Stechmann and Majda (2015)

for the long-wave equations; here it is introduced for the

traditional (i.e., no long-wave assumption) shallow-

water equations as well.

Three perspectives will be used here, each corre-

sponding to a different choice of model variables:

(i) primitive (u, y, u), (ii) characteristic (r, l, y), and

(iii) wave (K, Rm, etc.). Each perspective is best suited

to assessing a particular aspect of long-wave dynam-

ics: primitive variables allow a direct assessment of

small meridional winds y compared to zonal winds u,

characteristic variables allow spectral assessment of

meridional geostrophic balance, and wave variables

allow direct assessment of the strength of each type of

equatorial wave structure.

The rest of the paper is thus organized as follows.

Section 2 contains a review of the equatorial long-wave

approximation. A simple prediction is given of the scales

on which this approximation may be expected to be

valid based on physical and mathematical arguments.

Section 3 describes the data and methods used for the

observational data analysis. The data are then ana-

lyzed from three perspectives: (i) primitive variables,

(ii) characteristic variables, and (iii) wave variables, in

sections 4, 5, and 6, respectively. Some discussion of the

results is given in section 7, and a summary of the main

findings of the paper is given in section 8. Additional

results from the viewpoint of wave variables can be

found in the supplementary materials.

2. Background on the equatorial long-wave
approximation

We begin with the linearized three-dimensional equa-

tions for a rotating hydrostatic Boussinesq fluid:

›
t
U2byV52›

x
P1 S

U
, (2.1a)

›
t
V1byU52›

y
P1 S

V
, (2.1b)

g
Q

u
ref

5
›P

›z
, (2.1c)

›
t
Q1W

du
bg

dz
5 S

Q
, (2.1d)

›
x
U1 ›

y
V1 ›

z
W5 0, (2.1e)

with rigid-lid boundary conditions at the top, z5H, and

bottom, z5 0, of the troposphere. The variables

U5 (U, V) and W are the (x, y) and z components of

the winds, respectively; P is pressure; and Q is potential

temperature. In addition, g is acceleration due to gravity,
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b is the variation of the Coriolis parameter with latitude,

uref is a reference background potential temperature, and

dubg/dz is the background vertical gradient of potential

temperature. The source terms SU , SV , and SQ represent

forcing due to, for example, heating and cooling or dis-

sipation; these terms could also contain contributions that

represent the effects of nonlinear advection neglected in

the linearized equations. The Boussinesq equations have

been used as a starting point here for simplicity; a realistic

anelastic atmosphere would lead to the same type of

shallow-water system as the one derived below, but with

modified vertical basis functions (e.g., Kasahara 1976;

Kasahara and Puri 1981; Fulton and Schubert 1985).

a. First baroclinic mode dynamics

The rigid-lid boundary condition allows each of the

fluid variables to be expanded in terms of its vertical

basis components:

U(x, y, z, t)5 �
‘

j50

u
j
(x, y, t)C

j
(z) ,

Q(x, y, z, t)5 �
‘

j51

u
j
(x, y, t)jS

j
(z) , (2.2a)

P(x, y, z, t)5 �
‘

j50

p
j
(x, y, t)C

j
(z) ,

W(x, y, z, t)5 �
‘

j51

w
j
(x, y, t)S

j
(z) , (2.2b)

where the vertical basis functions are

C
0
(z)5 1, (2.3a)

C
j
(z)5

ffiffiffi
2

p
cos(pjz/H), S

j
(z)5

ffiffiffi
2

p
sin(pjz/H),

j5 1, 2, 3, . . . ,
(2.3b)

and where analogous expansions apply for each of the

source terms SU , SV , and SQ. When (2.2) is substituted

into (2.1), these equations can be projected onto each

vertical mode resulting in a set of systems of equations,

with one system describing the barotropic mode, an-

other describing the first baroclinic mode, etc.

We restrict our attention to the linearized first-baroclinic-

mode equations (dropping numerical subscripts):

›
t
u2byy2 ›

x
u5 S

u
, (2.4a)

›
t
y1byu2 ›

y
u5 S

y
, (2.4b)

›
t
u2

H

p

du
bg

dz
(›

x
u1 ›

y
y)5 S

u
. (2.4c)

Equations (2.4) can be nondimensionalized by

x5
L

E

d
x*, y5L

E
y*, t5

T
E

d
t*, (2.5a)

u5
L

E

T
E

u*, y5
L

E

T
E

y*, u5
HN2u

ref

pg
u*, (2.5b)

S
u
5

dL
E

T2
E

S
u
*, S

y
5

dL
E

T2
E

S
y
*, S

u
5

dHN2u
ref

pgT
E

S
u
* , (2.5c)

where asterisks denote dimensionless quantities, and

where

L
E
5

ffiffiffiffiffiffiffiffi
NH

pb

s
, T

E
5

ffiffiffiffiffiffiffiffiffiffiffi
p

NHb

r
, N2 5

g

u
ref

du
bg

dz
, (2.6)

are the meridional length scale, time scale, and buoy-

ancy frequency squared, respectively. The scales in (2.6)

are the natural, standard equatorial synoptic scales in

the troposphere and d is an aspect ratio parameter dis-

cussed below. All parameter values are shown in Table 1.

Note that we will take LE 5 1500 km, corresponding to a

characteristic velocity of roughly 50ms21 and an equiv-

alent depth of roughly 260m.

The aspect ratio d is typically treated in one of two

ways. Setting d5 1 and substituting (2.5) into (2.4) re-

sults in the dimensionless equations (dropping asterisks

hereafter),

›
t
u2 yy2 ›

x
u5 S

u
, (2.7a)

›
t
y1 yu2 ›

y
u5S

y
, (2.7b)

›
t
u2 ›

x
u2 ›

y
y5 S

u
. (2.7c)

System (2.7) will be referred to here as the ‘‘standard’’

system.

b. Long-wave scaling in primitive variables

For a general value of d, the dimensionless equations

take the following form:

d›
t
u2 yy2 d›

x
u5 dS

u
, (2.8a)

d›
t
y1 yu2 ›

y
u5 dS

y
, (2.8b)

d›
t
u2 d›

x
u2 ›

y
y5 dS

u
. (2.8c)

If it is assumed that d � 1, each variable can then be

expanded in powers of d:

u5 u
0
1 du

1
1O(d2), y5 y

0
1 dy

1
1O(d2),

u5 u
0
1 du

1
1O(d2) . (2.9)

Substitution of (2.9) into (2.8) results in, to leading order

in d,
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y
0
5 0, (2.10a)

yu
0
2 ›

y
u
0
5 0, (2.10b)

›
y
y
0
5 0. (2.10c)

Thus, one immediate consequence of this small-d

assumption is that y5O(d), while u and u are O(1)

quantities that satisfy meridional geostrophic balance in

(2.10b) to leading order. For this reason y is typically

rescaled by

y5 dy0 , (2.11)

resulting in

›
t
u2 yy0 2 ›

x
u5S

u
, (2.12a)

d2›
t
y0 1 yu2 ›

y
u5 dS

y
, (2.12b)

›
t
u2 ›

x
u2 ›

y
y0 5 S

u
. (2.12c)

Retaining only leading-order terms in d results in the

commonly used form of the long-wave equations:

›
t
u2 yy0 2 ›

x
u5 S

u
, (2.13a)

yu2 ›
y
u5 0, (2.13b)

›
t
u2 ›

x
u2 ›

y
y0 5 S

u
. (2.13c)

This assumption of small d is referred to as the ‘‘equa-

torial long wave,’’ or simply ‘‘longwave,’’ approximation.

c. Estimating long-wave scales from theory

A natural question to ask is ‘‘Over what range of

spatial and temporal scales can the long-wave equa-

tions [(2.13)] be expected to accurately describe the

linear dynamics of the first baroclinic mode of the

tropical atmosphere?’’ Before turning to reanalysis

data to address this question, this range of spatiotem-

poral scales is briefly estimated in two ways from theo-

retical considerations.

One crude estimate may be found through the fol-

lowing straightforward physical considerations. It is rea-

sonable to assume that the small aspect ratio d depends

on the dimensionless zonal wavenumber k:

d5
y
ref

x
ref

5
L

E

P
E
/jkj , (2.14)

where PE is the circumference of Earth. The long-wave

approximation d � 1 is then expected to be valid for

zonal wavenumbers satisfying

jkj � P
E
/L

E
. (2.15)

To estimate a specific range of wavenumbers and fre-

quencies for which condition (2.15) is satisfied, it is

helpful to define a ‘‘largest acceptable ratio’’ dmax of the

left-hand to right-hand sides of (2.15). In other words,

we say that condition (2.15) is met for all k that satisfy

jkj# d
max

P
E
/L

E
, (2.16)

respectively. We note that there is no one ‘‘correct’’

choice for dmax, but in atmospheric contexts, taking

dmax 5O(1021) is fairly common [see, e.g., Majda and

Klein (2003) or chapter 5 of Vallis (2006)]. For the rest

of this paper, results corresponding to dmax 5 0:3 are

highlighted, though we emphasize that every contour in

each power spectrum ratio plot corresponds to a value of

dmax. With PE ’ 40 000 km and taking dmax 5 0:3, con-

dition (2.16) is satisfied for 28# k# 8.

Similarly, wemay expect that long-wave dynamics will

only hold for frequencies v (where v is the dimension-

less frequency) such that v# dmax. With dmax 5 0:3 and

TE ’ 1/3 days, we find v/TE # 0:9 cpd. Together then,

we may expect that long-wave dynamics will hold on

spatiotemporal scales where the wavenumbers and fre-

quencies satisfy

28# k# 8, v/T
E
# 0:9 cpd, (2.17)

TABLE 1. Values of scaling parameters and constants.

Parameter Derivation Value Description

b 2.3 3 10211 m21 s21 Variation of Coriolis parameter with latitude

PE 40 000 km Circumference of Earth

uref 300K Reference potential temperature

g 9.8m s22 Gravitational acceleration

H 16 km Tropopause height

dubg/dz 3.1 3 1023 Km21 Background potential temperature gradient

N2 (g/uref)dubg/dz 1024 s22 Buoyancy frequency squared

LE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NH/pb

p
1500 km Equatorial length scale

TE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p/bNH

p
8 h Equatorial time scale

LE/TE 5NH/p 50m s21 Horizontal velocity scale

HN2uref/(pg) 15K Potential temperature scale

c2/g 255m Geopotential height scale
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respectively. Note that of course the endpoints of the

range in (2.17) are merely indicative of the spatial and

temporal scales at which a transition from long-wave to

non-long-wave dynamics can be expected and should

not be taken to indicate an abrupt shift in dynamics.

A second, related estimate may be found through the

followingmathematical consideration. Solutions to (2.8)

can be expressed as the superposition of individual

Fourier components in space and time:

û(k, y,v) exp[i(d
k
x2 d

v
t)], ŷ(k, y,v) exp[i(d

k
x2 d

v
t)],

û(k, y,v) exp[i(d
k
x2 d

v
t)] ,

(2.18)

with

d
k
5 2pkL

E
/P

E
, d

v
5 2pv . (2.19)

In order for the long-wave approximation to hold, we

require that variations in x and t be small [i.e., the co-

efficients of x and t in (2.18)must be small inmagnitude]:

d
k
� 1, d

v
� 1. (2.20)

As before, an estimate of the range of wavenumbers and

frequencies on which conditions (2.20) are met can be

made by requiring dk # dmax and dv # dmax. With the

values of LE, PE, and dmax used above, we find that

21:3# k# 1:3, v/T
E
# 0:14 cpd, (2.21)

where, of course, the wavenumber k may only take on

integral values.

Figure 1 shows the regions of wavenumber–frequency

space where conditions (2.17) and (2.21) are satisfied.

The dispersion curves of some of the linear solutions to

(2.7) are also shown. The first estimate [i.e., (2.17)]

encompasses a broad range of wavenumbers and fre-

quencies, including pieces of both the mixed Rossby–

gravity (MRG) and inertio-gravity (IG) wave dispersion

relations. The second estimate [i.e., (2.21)] is a much

more restrictive assumption; the difference in dimension

size of the two regions is a factor of 2p in both wave-

number and frequency. Such a distinction is typically not

important for purposes where a qualitative, order-of-

magnitude assessment of long-wave scales is sufficient

but is large enough in extent to be of interest in a

quantitative assessment. The smaller estimate associ-

ated with conditions (2.21) will be overlaid onto some of

the data analysis results displayed using wavenumber–

frequency plots in the following sections.

We pause to briefly discuss the underlying difference

between these two perspectives. In the first perspective,

the zonal-to-meridional aspect ratio has been defined by

comparing a whole zonal wavelength with the meridio-

nal trapping scale LE; in the second perspective, only a

fraction (specifically, 1/2p) of a zonal wavelength has

been compared with the meridional trapping scale. The

second perspective may be preferable since the meridi-

onal trapping scale is itself only a fraction of a meridi-

onal wavelength for the first few meridional modes, and

the results below suggest that reanalysis data support

this viewpoint.

The need for inclusion of 2p in (2.20) can also be

anticipated mathematically. The long-wave approxi-

mation holds when the quantities in (2.18) are slowly

varying in x and t, that is, the derivatives of the quantities

in (2.18) must satisfy

j›
x
û(k, y,v) exp[i(d

k
x2 d

v
t)]j

� jû(k, y,v) exp[i(d
k
x2 d

v
t)]j ,

for all x and t such that the right-hand side is nonzero,

with similar relationships for ŷ and û. These relation-

ships are identical to the first half of (2.20); similar

FIG. 1. Regions in wavenumber–frequency space where condi-

tions (2.17) (light shading) and (2.21) (dark shading) are satisfied.

Dispersion relations for linear solutions to (2.7) are depicted by

solid lines.
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constraints on the time derivative of the quantities in

(2.18) lead to the second half of (2.20).

Note that the width and height of the region in Fig. 1

associated with (2.21) is proportional to the chosen

value of dmax. For example, choosing dmax 5 0:15 would

result in a rectangular region half as wide and half as tall

as the region in Fig. 1 (where dmax 5 0:3; i.e., the region

would encompass wavenumbers jkj# 0:65 and fre-

quencies v# 0:07 cpd).

3. Data and data analysis methods

We now turn to reanalysis data to provide an

observation-based estimate of the spatial and temporal

scales on which long-wave dynamics occur. NCEP–

NCAR reanalysis daily zonal winds, meridional winds,

and geopotential height are used to estimate u, y, and u,

respectively (Kalnay et al. 1996). These datasets have a

horizontal spatial resolution of 2.58 3 2.58. The time

period used in this study is the 34-yr period from 1 Jan-

uary 1980 to 31 December 2013. The data are made di-

mensionless by the scales in (2.5) using the parameter

values shown in Table 1.

To test the robustness of the results, a second re-

analysis dataset with higher resolution was used. All the

results presented here were also calculated using the

ERA-Interim winds and geopotential during the same

time period with 18 3 18 horizontal resolution and four-

times-daily temporal resolution (Dee et al. 2011).

The variable quantities (u, y, u) are isolated in the

dimensionless data through a series of spectral analysis

steps. First, to estimate the first baroclinic component

only of each variable, the top and bottom, of the tro-

posphere are associated with the 200- and 850-hPa

pressure levels, respectively. When each velocity com-

ponent is expressed as the sum of the barotropic mode

and a first baroclinic mode, the first baroclinic compo-

nent can be estimated by

u
BC

(x, y, t)5
u(850 hPa)2 u(200 hPa)

2
ffiffiffi
2

p ,

y
BC

(x, y, t)5
y(850 hPa)2 y(200 hPa)

2
ffiffiffi
2

p . (3.1)

While temperature data in themiddle troposphere could

be used as an estimate of uBC, where

u(x, y, z, t)5 u
BC

(x, y, t)
ffiffiffi
2

p
sin(z) , (3.2)

here we use geopotential height Z instead, where

Z(x, y, z, t)5Z
BT
(x, y, t)1Z

BC
(x, y, t)

ffiffiffi
2

p
cos(z) . (3.3)

Similar to (3.1), the first baroclinic component of geo-

potential height may be estimated by

Z
BC

5
Z(850 hPa)2Z(200 hPa)

2
ffiffiffi
2

p . (3.4)

Combining hydrostatic balance, that is,

›Z/›p52u , (3.5)

with (3.2) and (3.3) results in uBC 52ZBC; substitution

of this into (3.4) results in

u
BC

(x, y, t)52
Z(850 hPa)2Z(200 hPa)

2
ffiffiffi
2

p . (3.6)

Isolation of the first baroclinic mode through this simple

vertical projection reduces a 3D (x, y, z) dataset into a

2D (x, y) dataset.

Next, the dimensionless first baroclinic data are

decomposed into their meridional-mode components

utilizing the meridional basis functions that take the

form of parabolic cylinder functions. Each first baro-

clinic variable can be expressed as a linear combination

of parabolic cylinder functions:

u
BC

(x, y, t)5 �
‘

m50

u
m
(x, t)f

m
(y) , (3.7)

where the fm(y) are the basis functions, the first five of

which are

f
0
(y)5

1

p1/4
e2y2/2, f

1
(y)5

1

p1/4

1ffiffiffi
2

p ye2y2/2 , (3.8a)

f
2
(y)5

1

p1/4

1

2
ffiffiffi
2

p (4y2 2 2)e2y2/2,

f
3
(y)5

1

p1/4

1

2
ffiffiffiffiffi
12

p (8y3 2 12y)e2y2/2 , (3.8b)

f
4
(y)5

1

p1/4

1

4
ffiffiffiffiffi
24

p (16y4 2 48y2 1 12)e2y2/2 , (3.8c)

and are shown in Fig. 2. The spectral coefficients um(x, t)

can be approximated by evaluating the integral:

u
m
(x, t)5

ð‘
2‘

u
BC

(x, y, t)f
m
(y) dy . (3.9)

Similar formulas apply for y and u. This meridional

projection reduces the 2D (x, y) dataset to a 1D (x)

dataset. More details of these projection steps can be

found in Stechmann and Majda (2015).

Next, for each spectral coefficient um, ym, and um, a

seasonal cycle is identified at each longitude x by the

mean and first three annual harmonics. This cycle is then

removed at each longitude.
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Finally, the power contained in the anomalies of

um(x, t), ym(x, t), and um(x, t) can then be found through

space–time spectral analysis, where the following stan-

dard steps are taken here. First, a spatial Fourier

transform is taken, and then the data for each wave-

number are partitioned into shorter overlapping time

segments. For each segment, the mean is removed and

the first and last 10% of each segment is tapered to zero

by a cosine tapering function. Here segments are taken to

be 366 days long, with an overlap of 246 days. A temporal

Fourier transform of each segment is taken next, and the

power in each frequency is estimated by the square of the

amplitude of these Fourier coefficients. This power is then

averaged over all segments and is denoted throughout the

paper by, for example, jûmj2; the logarithm of these

quantities can then be displayed in a wavenumber–

frequency diagram as in Wheeler and Kiladis (1999).

4. Primitive variables

We now turn to reanalysis data to assess the range of

spatial and temporal scales on which long-wave dy-

namics occur in nature. These scales are quantified first

from the perspective of the primitive variables (u, y, u).

Observational data analysis

Figure 3 shows a Hovmöller plot of the zeroth meridi-

onal mode of horizontal wind and potential temperature

FIG. 2. Meridional basis functions fm for m 5 0–4.

FIG. 3. Hovmöller plots of dimensionless (a) u0, (b) y0, and (c) u0 anomalies from a seasonal cycle. The time period

shown is 1 Jul 2009–30 Jun 2010.
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anomalies from a seasonal cycle for the 1-yr period from

1 July 2009 to 30 June 2010. The zonal winds contain

evidence of Kelvin waves, seen in the rapid eastward

propagation of anomalies throughout the figure. The

much slower eastward propagation of anomalies centered

between 908E and 1508W during the months of October

2009–February 2010 are evidence of the well-documented

MJO activity during the Year of Tropical Convection

(YOTC) (e.g., Moncrieff et al. 2012; Waliser et al. 2012).

The meridional wind and potential temperature anoma-

lies exhibit both eastward and westward propagation with

the largest anomalies occurring over the Pacific Ocean

from approximately 1808 to 908W. For both the zonal

winds and potential temperature, large anomalies appear

to occur primarily on large spatial and temporal scales. In

contrast, the meridional wind anomalies appear to occur

primarily on small spatial and temporal scales.

A power spectrum confirms that meridional winds are

indeed weaker than zonal winds for small wavenumber

and frequency. Figure 4 shows the power spectrum for

the zeroth and first meridional mode of each variable

[i.e., the quantities log(jûmj2), log(jŷmj2), and log(jûmj2),

for m5 0, 1]. Consistent with Fig. 3, u0 contains a ma-

jority of power in the eastward direction, while y0 and u0
show roughly equal power in each direction. For the first

meridional mode, y1 contains considerably more power

in the eastward direction, while both u1 and u1 contain

slightly more power in the eastward direction. At low

frequencies, both zonal winds and temperature show a

significant amount of ‘‘red noise’’ characteristics, while

there is a pronounced ‘‘double peak’’ in power spectrum

of y with a trough centered at k5 0; both jŷ0j and jŷ1j
contain themost power at low frequencies andmoderate

wavelengths with 3# jkj# 7.

The smallness of y can be seen more clearly in the

ratio of power (i.e., jŷmj/jûmj and jŷmj/jûmj) shown in

Fig. 5 for m5 0, 1. As expected, these ratios do indeed

take on their lowest values at low wavenumbers and

frequencies, though the ratio is much smaller than 1 for

only a very narrow range of wavenumbers. For example,

the solid black contour in Figs. 5a and 5c indicates where

jŷmj/jûmj5 0:3, and the solid black contour in Figs. 5b

and 5d indicates where jŷmj/jûmj5 0:3. This contour lies

within the range jkj# 2 in Fig. 5a and within the range

FIG. 4. (a)–(c) Power spectrum of the zeroth meridional mode of the first baroclinic dimensionless (a) zonal wind, (b) meridional wind,

and (c) potential temperature anomalies during 1 Jan 1980–31Dec 2013. Anomalies are from a seasonal cycle. (d)–(f) As in (a)–(c), but for

the first meridional mode.
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jkj# 1 in Figs. 5b–d. Note that in all figures displaying

the ratio of power in one variable to power in another, the

ratio is of the amplitude of the Fourier coefficients (e.g.,

jŷmj/jûmj), not the ratio of the logarithms of the amplitudes.

The spatiotemporal scales that satisfy condition (2.21)

are also indicated on each plot by the thick dashed

rectangular box. The dark line depicting the 0.3 contour

lies entirely within the box in Figs. 5b–d, while a portion

lies outside the box in Fig. 5a along a Kelvin wave–type

dispersion curve. This box region corresponding to

condition (2.21) thus appears in general to slightly

overestimate the region where the long-wave approxi-

mation holds, but the agreement is reasonable. This

slight overestimation persists over a range of values for

dmax, including up to dmax 5 0:5 (not shown).

5. Characteristic variables

The results in section 4 suggest that one aspect of the

long-wave approximation, small meridional winds, holds

only over a very narrow range of scales.We next examine

the data from the perspective of characteristic variables.

The equations expressed using characteristic variables

are first summarized in sections 5a and 5b; observational

analysis results are given in section 5c.

a. Definition of characteristic variables

System (2.7) can be expressed succinctly using char-

acteristic variables and ladder operators,

r5
1ffiffiffi
2

p (u2 u), l5
1ffiffiffi
2

p (u1 u),

L
6
5

1ffiffiffi
2

p (›
y
6 y) , (5.1a)

S
r
5

1ffiffiffi
2

p (S
u
1 S

u
), S

l
5

1ffiffiffi
2

p (S
u
2 S

u
) , (5.1b)

where the variable names r and l are used to suggest

‘‘right moving’’ (i.e., eastward) and ‘‘left moving’’ (i.e.,

FIG. 5. (a),(c) Power spectrum ratios jŷm(k, v)j/jûm(k, v)j form5 0 and 1, respectively. (b),(d)

Power spectrum ratios jŷm(k, v)j/jûm(k, v)j for m 5 0 and 1, respectively. The dashed black

rectangle outlines the region where conditions (2.21) are satisfied with dmax 5 0:3; the solid black

curve denotes the 0.3 contour. The dispersion relations for solutions to (2.7) are also shown.
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westward) quantities. Substitution of (5.1) into (2.7)

(i.e., where d5 1), results in

›
t
r1 ›

x
r1L

2
y5 S

r
, (5.2a)

›
t
l2 ›

x
l2L

1
y5 S

l
, (5.2b)

›
t
y1L

1
r2L

2
l5 S

y
. (5.2c)

The quantities (r, l, y) and their corresponding source

terms Sr, Sl, and Sy can be decomposed into their me-

ridional mode components:

0@ r

l

y

1A(x, y, t)5 �
‘

m50

0B@ r
m

l
m

y
m

1CA(x, t)f
m
(y) . (5.3)

Substitution of (5.3) into (5.2) and projection of the re-

sult onto each meridional basis function fm results in a

single PDE governing r0,

›
t
r
0
1 ›

x
r
0
5 S

r0
; (5.4)

the equations governing the evolution of r1 and y0 are

›
t
r
1
1 ›

x
r
1
2 y

0
5 S

r1
, (5.5a)

›
t
y
0
1 r

1
5 S

y0
; (5.5b)

and the evolution of the triplet (rm11, lm21, ym) is gov-

erned by

›
t
r
m11

1 ›
x
r
m11

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m1 1

p
y
m
5 S

rm11
, (5.6a)

›
t
l
m21

2 ›
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l
m21

2
ffiffiffiffiffi
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p
y
m
5 S

lm21
, (5.6b)

›
t
y
m
1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m1 1

p
r
m11

1
ffiffiffiffiffi
m

p
l
m21

5 S
ym
. (5.6c)

b. Long-wave theory with characteristic variables

Substitution of (5.1) into (2.12) results in

›
t
r1 ›

x
r1L

2
y0 5S

r
, (5.7a)

›
t
l2 ›

x
l2L

1
y0 5 S

l
, (5.7b)

d2›
t
y0 1L

1
r2L

2
l5 dS

y
. (5.7c)

The commonly used form of the long-wave equations

are again found by retaining the terms of (5.7) at leading

order in d:

›
t
r1 ›

x
r1L

2
y0 5 S

r
, (5.8a)

›
t
l2 ›

x
l2L

1
y0 5 S

l
, (5.8b)

L
1
r2L

2
l5 0. (5.8c)

The quantity

MGI5L
1
r2L

2
l (5.9)

in (5.8c) can be described as a measure of geostrophic

imbalance in the meridional direction [i.e., meridio-

nal geostrophic imbalance (MGI); see Remmel and

Smith (2009) for a discussion of similar quantities that

measure geostrophic imbalance in the midlatitudes].

Substitution of (5.3) into (5.8) and projection of the

result onto f0 results in (5.4); the long-wave version

of (5.5) is

y
0
52S

r1
(5.10a)

r
1
5 0; (5.10b)

and the long-wave version of (5.6) is two coupled PDEs

with a constraint equation governing the evolution of

the triplet (rm11, lm21, ym):

›
t
r
m11

1 ›
x
r
m11

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m1 1

p
y
m
5 S

rm11
, (5.11a)

›
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l
m21

2 ›
x
l
m21
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ffiffiffiffiffi
m

p
y
m
5 S

lm21
, (5.11b)ffiffiffiffiffiffiffiffiffiffiffiffiffi

m1 1
p

r
m11

1
ffiffiffiffiffi
m

p
l
m21

5 0. (5.11c)

c. Observational data analysis

Turning again to reanalysis data, we first briefly ex-

amine the spatiotemporal scales on which y is small from

this viewpoint of characteristic variables. Figure 6 shows

the ratios of each quantity jŷmj/jr̂m11j and jŷmj/jl̂m21j for
m 5 1–3. As in Fig. 5, the solid black line indicates the

0.3 contour. Comparing ym with the other components

of the triplet (rm11, lm21, ym) results in contours with

remarkable symmetry about k5 0; the corresponding

regions in Fig. 5a exhibit less symmetry.

Another feature readily apparent in Fig. 6 is the ex-

panding region of small ratio with increasing meridional

mode number m. This can be qualitatively anticipated

from the following physical considerations. As m in-

creases, the average distance between one local maxi-

mum and an adjacent local minimum in the basis

functionfm(y) decreases as can be seen in Fig. 2. Thus, it

may be expected that the effective meridional length

scale is a function of the m, just as the effective zonal

length scale was estimated as a function of wavenumber

k in section 2. The dimensionless distance dm from a

local maximum nearest the equator to a local minimum

nearest the equator for mode fm(y) is approximately

d1 ’ 2:02 form5 1, d2 ’ 1:58 form5 2, and d3 ’ 1:23 for

m5 3. For m5 0, there is no local minimum; one esti-

mate for a distance d0 analogous to d1, d2, . . . can be

found by noting that the distance from the maximum of
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f0(y) to one-tenth of the maximum is d0 ’ 2:15.2 The

wavenumber and frequency ranges found using condi-

tions (2.21) may then be multiplied by a factor of d0/dm

for a more detailed estimate of the long-wave scales for

each individual meridional modem5 1, 2, 3, . . ..3 These

adjusted predictions of long-wave scales are depicted by

the rectangular boxes in Fig. 6. Despite the crude

method used here, the rate of expansion in the predicted

range is in reasonable agreement with the data. We note

that the dimensionless distances dm are independent of

the equivalent depth, or meridional length scale; thus,

the ratios d0/dm are also independent of the equivalent

depth. We also note that use of an alternate estimate of

d0 (e.g., d0 5 2, not shown), does not have a significant

impact on the results.

Before continuing on, we note that one might expect

the opposite trend of that seen in Fig. 6 (i.e., one might

expect that the region of long-wave scales should shrink

with increasing m). This expectation could arise by

considering that meridional modes of higher number

have a wider base of support (i.e., these modes extend

farther away from the equator). Thus, it might be ex-

pected that higher meridional modes have a larger

length scale, which would suggest that the long-wave

approximation should only hold over a narrower region

of zonal length scales. However, as discussed in the

previous paragraph, it is also the case that the distance

between peaks in these meridional basis functions de-

creases with increasing meridional mode number. If this

FIG. 6. (a)–(c) Power spectrum ratios jŷm(k, v)j/jr̂m11(k, v)j form5 1–3, respectively. (d)–(f) Power spectrum ratios jŷm(k, v)j/jlm21(k, v)j
form5 1–3, respectively. In (a),(d), the solid black rectangle outlines the region where conditions (2.21) are satisfied with dmax 5 0:3; in

(b),(c),(e),(f), this region has been widened by a factor of d0/dm with d0 5 2:15, d1 5 2:02, d2 5 1:58, and d3 5 1:23. The solid black curve

denotes the 0.3 contour.

2 This method for measuring the width of a Gaussian is one

standard approach, although others could certainly be used as well.

For example, if the half-width of the Gaussian is estimated by two

standard deviations, the result is d0 5 2.
3 The meridional trapping scale is one standard deviation of the

Gaussian on which the parabolic cylinder functions are based, and

not a full wavelength in the meridional direction. Thus, an argu-

ment could be made that a more appropriate estimate could be

constructed by requiring that the ratio of one zonal wavelength to

one meridional wavelength be small. (Note that this notation

‘‘meridional wavelength’’ is not well defined without further clar-

ification since the distance from one crest to an adjacent crest is not

uniform within a given meridional basis function.)
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distance between peaks is taken as a meridional length

scale yref and the smallest zonal length scale that will satisfy

the long-wave approximation is denoted by xmin, then

(2.14) implies that xmin ; yref/d for fixed d. Thus, smaller yref
implies smaller xmin and, hence, larger maximum wave-

number kmax. The qualitative agreement with the data in

Fig. 6 suggests that this viewpoint is indeed justified.

Next we assess the scales on which the data are in

meridional geostrophic balance. For an atmosphere in

perfect meridional geostrophic balance, the terms rm11

and 2
ffiffiffiffiffi
m

p
lm21/

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m1 1

p
in (5.11c) will be identical for

each m5 1, 2, . . . . Hovmöller plots of these two quan-

tities are shown for m5 1 in Figs. 7a and 7b for a 1-yr

period. While there are significant differences between

the two quantities, the large-scale features of the two

appear to be in good agreement. The difference between

these quantities,

MGI
m
5 r

m11
1

ffiffiffiffiffi
m

pffiffiffiffiffiffiffiffiffiffiffiffiffi
m1 1

p l
m21

, (5.12)

with m5 1, is shown in Fig. 7c and exhibits anomalies

with much smaller amplitude than either original quantity.

These differences also appear to occur primarily on small

spatial and temporal scales.

This approximate geostrophic balance is confirmed

quantitatively, scale by scale, by examining the power

spectrum of the quantity MGIm, shown in Figs. 8a–c for

m 5 1–3, respectively. In all three panels, the power

present in wavenumbers 23# k# 3 is dwarfed by the

power in wavenumbers 4# jkj# 8, consistent with the

small scales observed in Fig. 7c. There is also a domi-

nance of eastward propagation that increases with in-

creasing m; this may be due to a number of possible

factors, including the larger u gradients occurring at

latitudes outside of the tropics, which are included in the

base of support for higher meridional modes.

Another way to assess the degree of the imbalance

term MGIm is to compare its magnitude with that of

rm11; the ratio j dMGImj/jr̂m11j is shown in Figs. 8d–f. In

all three panels, this ratio is small for wavenumbers

FIG. 7. Hovmöller plots of (a) r2, (b) 2l0
ffiffiffi
2

p
, and (c) MGI1 5 r2 1 l0/

ffiffiffi
2

p
anomalies from a seasonal cycle. The time

period shown is 1 Jul 2009–30 Jun 2010.
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satisfying23# k# 3 and frequencies smaller than 0.1 cpd.

This region also expands with increasingm, particularly in

the eastward direction.

An average of the low-frequency power seen in

Figs. 8a–c is shown in Fig. 9a, where the quantity

log

�
1

~v

ðv5~v

v50

jbMGI
m
(k,v)j2

�1/2
, (5.13)

is plotted as a function of wavenumber k, and where an

upper frequency cutoff of ~v/TE 5 0:25 cpd has been

used. This low-frequency power is shown for m 5 1–6.

For smallm, saym# 3, the power contained in jkj# 3 is

dwarfed by the power in 4# jkj# 8. This trough cen-

tered at k5 0 becomes less pronounced as m increases.

Note that for jkj$ 10, the low-frequency power of

MGIm is smaller than for jkj# 3; one might conclude that

meridional geostrophic balance is better observed at small

scales. However, a better measure for the degree of im-

balance is perhaps the ratio of the low-frequency power of

MGIm to the low-frequency power of rm11, that is, the

relative meridional geostrophic imbalance (RMGI):

RMGI
m
(k)5

�
1

~v

ðv5~v

v50

jbMGI
m
(k,v)j2

�1/2��
1

~v

ðv5~v

v50

jr̂
m11

(k,v)j2
�1/2

. (5.14)

This quantity is shown in Fig. 9b, where (5.14) is

plotted as a function of k. For all m, this relative

imbalance increases approximately monotonically

with increasing jkj.

FIG. 8. (a)–(c) Power spectrum of MGIm anomalies during 1 Jan 1980–31 Dec 2013 for m 5 1–3, respectively. (d)–(f) Power spectrum

ratios jbMGImj/jr̂m11j for m 5 1–3, respectively. The solid black curve denotes the 0.3 contour.
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6. Wave variables

The results in section 5 suggest that the second aspect of

long-wave dynamics considered here (meridional geo-

strophic balance) is seen in the data over a slightly larger

range of spatiotemporal scales than the first aspect (weak

meridional winds). The long-wave approximation is next

examined from a third viewpoint: wave variables. These

wave variables are defined in section 6a, their behavior in

the long-wave limit is discussed in section 6b, and their

structure is isolated in reanalysis data in section 6c.

a. Definition of wave variables

Equations (5.4) and (5.5) describe the evolution of the

Kelvin wave, and mixed Rossby–gravity (MRG) and

inertio-gravity (EIG0) waves, respectively. Equations

(5.6) for m5 1, 2, . . . describe the evolution of the mth

equatorial Rossby wave Rm and inertio-gravity waves

EIGm and WIGm. We focus here on the latter system;

analogous results for systems (5.4) and (5.5) are given at

the end of this section and in the supplementary material.

Equations (5.6) may be rewritten in terms of these

wave variables as follows. Each of the variables and

source terms in (5.6) can be expressed as a superposition

of plane-wave ansatzes:

r̂
m11

(k,v)ei(kx2vt), l̂
m21

(k,v)ei(kx2vt),

ŷ
m
(k,v)ei(kx2vt) ; (6.1)

substituting (6.1) into (5.6) results in

2664
i(k2v) 0 2

ffiffiffiffiffiffiffiffiffiffiffiffi
m11

p

0 2i(k1v) 2
ffiffiffiffiffi
m

pffiffiffiffiffiffiffiffiffiffiffiffi
m11

p ffiffiffiffiffi
m

p
2iv

3775
0BB@

r̂
m11

l̂
m21

ŷ
m

1CCA5

0BBBB@
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rm11

Ŝ
lm21

Ŝ
ym

1CCCCA.
(6.2)

We are interested in finding the eigenmodes of the linear

operator corresponding to (6.2); its characteristic

equation is

v3 2 (k2 1 2m1 1)v2 k5 0. (6.3)

There are three solutions vj for j 2 fRm, EIGm, WIGmg
to (6.3). Each eigenvalue vj is associated with an eigen-

vector of the following form:

ê
j
5

 
2
i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m1 1

p

k2v
j

,
i
ffiffiffiffiffi
m

p
k1v

j

, 1

!T

. (6.4)

The eigenvectors resulting from (6.4) are shown as a

function of k in Fig. 10 for m5 1 after normalization.

Since the matrix in (6.2) is skew-Hermitian, these nor-

malized eigenvectors form an orthonormal basis.

A straightforward projection technique will be used to

assess the degree to which the spatial structure of each of

these three waves is seen in reanalysis data. This technique

is similar to that used in Stechmann andMajda (2015) and

Ogrosky and Stechmann (2015) to identify theMJO. Each

day’s reanalysis data are broken into its Fourier compo-

nents in x, that is, [r̂m11(k), l̂m21(k), ŷm(k)]
T. Since the

eigenvectors form an orthonormal basis, the Rossby

wave’s Fourier coefficients may be defined as

R̂
m
(k)5 êyRm

(k)[r̂
m11

(k), l̂
m21

(k), ŷ
m
(k)]T , (6.5)

where the dagger denotes the conjugate transpose;

analogous definitions apply for the inertio-gravity

modes dWIGm and dEIGm. This spectral data may then

be transformed back into physical space through an in-

verse Fourier transform.

In contrast, many previous studies have identified

equatorial waves using the eigenvalues from the linear

FIG. 9. (a) The log of the average low-frequency power of meridional geostrophic imbalance (MGI) as defined in

(5.13) with ~v/TE 5 0:25 cpd for m 5 1–6. (b) The ratio of the average low-frequency power in MGIm and rm11 as

defined in (5.14) with ~v/TE 5 0:25 cpd for m 5 1–6.
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theory. In these studies, space–time filtering of a sin-

gle variable is used to identify anomalous peaks in its

power spectrum. Anomalies that are in close prox-

imity to the eigenvalues v(k) in (6.3) are identified

with equatorial waves. Examples include studies by

Wheeler and Kiladis (1999) and Dias and Kiladis

(2014); the latter study examined regional and sea-

sonal differences in the anomalous peaks in brightness

temperature and considered the effect of the back-

ground state on the theoretical dispersion curves.

Chao et al. (2009) also used space–time filtering and

modified the approach of Wheeler and Kiladis to take

into account wave structures with both symmetry and

asymmetry about the equator. These studies, and

others that use this space–time filtering methodology,

all define equatorial waves using the eigenvalues from

the linear theory.

Other techniques for wave identification have also

been used, of which a small sampling is discussed here.

A spatial projection technique that made use of

spherical harmonics at a single pressure level was used

by Madden (2007) to identify free large-scale Rossby

waves in the upper troposphere. Matthews and

Madden (2000) used Fourier analysis of sea level

pressure at nine locations in the tropics to study the

33-h barotropic Kelvin wave; see Salby (1984) for a

discussion of earlier observational studies of baro-

tropic equatorial waves. Tindall et al. (2006) used both

space–time filtering and a projection technique that

does not require selection of an equivalent depth a

priori to study the long-term climatology of equatorial

waves in the lower stratosphere. Hendon andWheeler

(2008) studied the spatial structure of convectively

coupled waves by studying the space–time coherence

spectrum of OLR and zonal winds; see Kiladis et al.

(2009) for further discussion of the features of con-

vectively coupled waves.

b. Long-wave theory with wave variables

We next give a brief summary of the effects of the

long-wave approximation on the wave variables. Pro-

jecting (5.7) onto fm11 for each m5 1, 2, . . . results in
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
m1 1

p
r
m11

1
ffiffiffiffiffi
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p
l
m21

5 dS
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In the limit of small d, the system (6.6) can be expressed

as an eigenvalue problem (written here in terms of

ŷm 5 dŷ0m):264id(k2v) 0 2
ffiffiffiffiffiffiffiffiffiffiffiffi
m11

p

0 2id(k1v) 2
ffiffiffiffiffi
m

pffiffiffiffiffiffiffiffiffiffiffiffi
m11

p ffiffiffiffiffi
m

p
2idv

375
0B@r̂

m11

l̂
m21

ŷ
m

1CA5

0BBB@
dŜ

rm11

dŜ
lm21

dŜ
ym

1CCCA.
(6.7)

The linear operator corresponding to (6.7) has a char-

acteristic equation:

d2v3 2 (d2k2 1 2m1 1)v2 k5 0. (6.8)

There are again three solutions, vj, for j 2
fRLWm, EIGLWm, WIGLWmg to (6.8); in the limit

d/ 0, the Rossby root vRLWm
is a regular root while

the inertio-gravity roots vEIGLWm
and vWIGLWm

are

singular. Each eigenvalue vj is associated with an

eigenvector of the following form:

ê
j
5

 
2
i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m1 1

p

k2v
j

,
i
ffiffiffiffiffi
m

p
k1v

j

, d

!T

. (6.9)

In the long-wave limit d/ 0, approximate eigen-

values may be found by expanding in powers of d:

FIG. 10. Components of normalized (a) R1, (b) WIG1, and (c) EIG1 eigenvectors as a function of zonal wavenumber k.
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v
RLWm

52
k

2m1 1
1O(d2) , (6.10a)

v
WIGLWm

52d21
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m1 1

p
1

k

2(2m1 1)
1O(d) , (6.10b)

v
EIGLWm

5 d21
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m1 1

p
1

k

2(2m1 1)
1O(d) . (6.10c)

After a phase shift so that the rm11 component is positive

and real, these long-wave eigenvectors are, to leading

order in d, given by

LW Rossby: ê
RLWm

5

 ffiffiffiffiffi
m

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m1 1

p ,2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m1 1

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m1 1

p , 0

!T
,

(6.11a)

LW WIG: ê
WIGLWm

5

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
m1 1

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m1 2

p ,

ffiffiffiffiffi
m

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m1 2

p ,2
i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m11

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m12

p
!T
,

(6.11b)

LW EIG: ê
EIGLWm

5

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
m1 1

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m1 2

p ,

ffiffiffiffiffi
m

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m1 2

p ,
i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m1 1

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m1 2

p
!T
.

(6.11c)

The long-wave approximation aids in the identification

of waves by offering simpler eigenvector formulas that

are independent of wavenumber; these eigenvectors are

shown in Fig. 11. The long-wave Rossby structure can

then be defined to leading order by4

R̂
LWm

(k)5 êyRLWm
(k)[r̂

m11
(k), l̂

m21
(k), ŷ

m
(k)]T . (6.12)

The formula for long-wave Rm(x, t) can also be written

explicitly in terms of u and u in physical space; hence, the

wave projection can be performed without the need for

Fourier transforms, and the definition of Rm(x, t) can be

more easily understood in terms of the physically in-

tuitive variables u and u (Stechmann and Majda 2015).

We note that the leading order of the long-wave

Rossby eigenvalue in (6.10a) is only expected to be a

good approximation of the eigenvalue for small zonal

wavenumber k. This long-wave approximate Rossby

eigenvalue is also a feature of other balance models that

are based on the equatorial long-wave scaling (Stevens

et al. 1990; Chan and Shepherd 2013, 2014). For any

wavenumber k, not necessarily small, the Rossby ei-

genvalue is approximately 2k/(2m1 11 k2) (e.g.,

Matsuno 1966; Schubert et al. 2009). Similarly, the long-

wave eigenvectors in (6.11) are only expected to be a

good approximation of (6.9) when k is small. Never-

theless, in the observational data analysis below, it will

be shown that use of the approximate Rossby structure

in (6.11a) produces a projection remarkably similar to

the standard Rossby structure.

The amplitudes of the long-wave structures can be

studied theoretically by rewriting (6.6) as a diagonal

system in terms of the wave variables R̂LWm,bWIGLWm,

andbEIGLWm and their corresponding source terms:

d

dt
R̂

LWm
1 iv

RLWm
R̂

LWm
5 Ŝ

R1
, (6.13a)

d

dt
bWIG

LWm
1 iv

WIGLWm

bWIG
LWm

5 Ŝ
WIG1

, (6.13b)

d

dt
bEIG

LWm
1 iv

EIGLWm

bEIG
LWm

5 Ŝ
EIG1

. (6.13c)

Each of these wave variables and source terms may be

expanded in powers of d:

FIG. 11. The normalized long-wave versions of eigenvector components shown in Fig. 10.

4 The definition of the long-wave Rossby structure R̂LWm used

here is different than the one used in several previous studies (e.g.,

Majda and Stechmann 2009; Stechmann and Majda 2015). Here,

R̂LWm has been defined by using the normalized eigenvector êRLWm
in

(6.11a). Earlier studies have defined R̂LWm by analogy with potential

vorticity in fluid flow, resulting in êRLWm
5 (

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m1 1

p
,2

ffiffiffiffi
m

p
, 0)T. For

data in perfect meridional geostrophic balance, these definitions

produce identical Rossby wave structures after normalization.
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R̂
LWm

5 R̂
(0)
LWm 1 dR̂

(1)
LWm 1O(d2) , (6.14a)bWIG

LWm
5bWIG

(0)
LWm 1 dbWIG

(1)
LWm 1O(d2) , (6.14b)bEIG

LWm
5bEIG(0)

LWm 1 dbEIG(1)
LWm 1O(d2) . (6.14c)

Substituting (6.14) into (6.13) and noting that vRLWm
5O(1)

and vWIGLWm
52vEIGLWm

5O(d21) results in

d

dt
R̂

(0)
LWm 1 iv

RLWm
R̂

(0)
LWm 5 Ŝ

(0)
R1

, (6.15a)bWIG
(0)
LWm 5 0, (6.15b)bEIG(0)
LWm 5 0. (6.15c)

Thus on long-wave spatiotemporal scales, the Rossby

wave structure R̂LWm evolves at leading order according

to (6.15a), while thewave variablesbWIGLWm andbEIGLWm

are expected to have smaller amplitude. This aspect of the

long-wave approximation is sometimes referred to as the

‘‘filtering out’’ of inertio-gravity waves.

c. Observational data analysis

Figure 12 shows a Hovmöller plot of the standard

Rossby and inertio-gravity wave structures from (6.9) in

reanalysis data using the projection technique described

in section 6a. The most obvious feature is that the

inertio-gravity waves clearly have much smaller ampli-

tudes than the Rossby wave. The variability that does

exist in the inertio-gravity waves appears to occur pri-

marily on short length and time scales. Also apparent is

that the Rossby and westward inertia-gravity (WIG)

wave structures each exhibit both periods of eastward

and westward propagation, while the eastward inertia-

gravity (EIG) wave structure exhibits mostly eastward

propagation.

These features are confirmed by the power spectrum

of each wave structure, shown in Fig. 13, and deserve

additional comment. We note that studies that use

space–time filtering to identify free equatorial waves

have shown that EIG and WIG waves have less power

than Rossby waves, a feature consistent with the redness

of the background spectrum. Here, however, the waves

are defined solely by their spatial structure; no temporal

filtering has been used. While it is reasonable to conjec-

ture that the spatial structures of inertio-gravity waves

would contain less power than Rossby waves at low fre-

quencies, it is not clear a priori that this must necessarily

be the case with the method employed here.

FIG. 12. Hovmöller plot of (a) R1, (b) WIG1, and (c) EIG1 anomalies from a seasonal cycle. The time period shown is 1 Jul 2009–30 Jun 2010.
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Also, while free Rossby and WIG waves propagate

strictly westward and free EIG waves propagate strictly

eastward, the picture is more complicated for forced

waves. Nonlinear advection, heating and cooling, dissi-

pation, etc. all can contribute to the forcing terms

Su(x, y, t), Sy(x, y, t), and Su(x, y, t) in (2.4). In nature,

these terms contain contributions from many wave-

numbers k and frequencies v, even k and v that do not

lay along the dispersion curves for free waves. In such a

case, a forced wave can arise where the structure of, for

example, a Rossby wave can propagate eastward if the

forcing vector (Su, Sy , Su) projects onto theRossbywave

structure so that ŜR1
6¼ 0 in (6.13a). In addition, the

presence of nontrivial background states in the tropical

troposphere have been shown to produce Doppler

shifting of equatorial waves (Dias and Kiladis 2014); see

also Yang et al. (2003), who showed that in some regions

of the tropics, Rossby waves may propagate eastward.

Figure 14 shows the ratio of power in the inertio-

gravity waves WIG1 and EIG1 to the Rossby wave R1.

This ratio is smallest for a region near k5 0 and v5 0

but is also small for a large range of wavenumber and

frequency. This suggests that over these scales, the

three-dimensional data (r2, l0, y1) can be effectively

represented by one-dimensional data R1. We note that

the spatiotemporal scales at which inertio-gravity waves

containmore power thanRossbywaves do not necessarily

lay along the inertio-gravity wave dispersion curves of the

linear theory; note that these curves are not even visible in

Fig. 14 as they lay entirelywithin a higher-frequency range

FIG. 13. Power spectrum of (a) R1, (b) WIG1, and (c) EIG1 anomalies during 1 Jan 1980–31 Dec 2013.

FIG. 14. Power spectrum ratios (a) jbWIG1j/jR̂1j and (b) jbEIG1j/jR̂1j. The solid black curve

denotes the 0.3 contour.
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(see Fig. 1). This is likely explained at least in part by the

previous discussion of forced waves; that is, the forcing

terms in nature contain contributions from many wave-

numbers and frequencies, even those that do not lay along

the free dispersion curves. Also, at wavenumbers and

frequencies that are not near either the inertio-gravity or

Rossby dispersion curves, it is unclear a priori which

structure will emerge as the dominant one with the spatial

projection method used here. However, note that the

inertio-gravity waves contain more power than the

Rossby structure only at high frequencies (0.3 cpd and

higher) with the EIG structure showing greater relative

power in the eastward direction and the WIG structure

displaying more relative power in the westward direction.

Last, theWIGwave structure contains greater power than

the EIG wave structure; this is potentially consistent with

previous evidence that free WIG waves have been iden-

tified more easily than free EIG waves in the troposphere

(e.g., Wheeler and Kiladis 1999).

The features of Fig. 14 discussed above are all present

in the ERA-Interim data as well (not shown). Use of this

higher-resolution dataset does result in a slightly larger

ratio of WIG1 to R1 power in the westward direction at

frequencies of 0.3–0.5 cpd. Similarly, ERA-Interim data

shows a larger ratio of EIG1 to R1 in the eastward di-

rection at similar frequencies. The higher inertio-gravity

wave power present in high-resolution ERA-Interim

data is consistent with other studies of equatorial waves

[see, e.g., Tindall et al. (2006) for a discussion of the

limitations of using coarse resolution reanalyses for

identifying inertio-gravity waves in the lower strato-

sphere]. However, for the low frequencies of interest in

long-wave modeling, use of ERA-Interim data results in

ratios that are essentially unchanged from those of

Fig. 14.

Given the strength of the Rossby wave relative to the

IG waves, it is natural to wonder if a further simplifica-

tion can be made by using the long-wave form of the

Rossby wave RLW1 in (6.12) to approximate the full

Rossby wave in reanalysis data. Figures 15a and 15b

show a Hovmöller plot forR1 andRLW1 from 1 July 2009

to 30 June 2010. Most of the large-scale features of the

full Rossby wave are also present in the long-wave

version, while some of the small-scale features appear

to be filtered out. This is confirmed qualitatively by

Fig. 15c, which shows a Hovmöller plot of the difference

FIG. 15. Hovmöller plot of (a) R1, (b) RLW1, and (c) R1 2RLW1 anomalies from a seasonal cycle. The time period shown is 1 Jul 2009–30

Jun 2010.
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between the two Rossby structures. The amplitude of

the difference is small and there is no discernible low-

wavenumber or low-frequency activity. These observations

are further confirmed by examining the corresponding

power spectra ofR1,RLW1, and the difference between the

two, which are shown in Fig. 16. Note the pronounced

trough of the difference centered at k5 0. The results here

also suggest that equatorial Rossby waves with zonal

wavenumber k 5 1–4 should be able to be modeled ef-

fectively using long-wave asymptotics.

This analysis was also conducted for the f0 and f1

components of (5.2) corresponding to the Kelvin, MRG,

and EIG0 waves. Figure 17 shows the power spectrum

density of the Kelvin, MRG, and EIG0 anomalies from a

seasonal cycle. The Kelvin wave structure has significant

power at low frequencies and low wavenumbers, con-

sistent with its important role in long-wave dynamics.

On the other hand, the MRG and EIG0 wave structures

have less spectral power at low frequencies and low

wavenumbers, consistent with their absence dynami-

cally from the long-wave theory. Additional results

for these waves can be found in the supplementary

materials.

In summary, all of these figures demonstrate that re-

analysis data projects weakly onto the spatial structures

of inertio-gravity waves over a broad range of wave-

numbers and frequencies.

7. Discussion

We note that there are many other facets of the

tropical atmosphere that have been neglected here. For

one, the effects of both dissipative mechanisms (e.g.,

Rayleigh friction and Newtonian cooling) and forcing

(e.g., convective heating and radiative cooling) have not

been directly quantified here. The results presented,

FIG. 16. Power spectrum of (a) R1, (b) RLW1, and (c) R1 2RLW1 anomalies during 1 Jan 1980–31 Dec 2013.

FIG. 17. Power spectrum of the (a) Kelvin, (b) MRG, and (c) EIG0 wave anomalies during 1 Jan 1980–31 Dec 2013.
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however, do contain contributions from both free and

forced waves in the tropical troposphere, and the impact

of forcing on the results was discussed in section 6.While

some aspects of the tropical circulation have been

modeled well without the traditional damping terms

[e.g., the Walker circulation (Stechmann and Ogrosky

2014) and the MJO (Majda and Stechmann 2009)], both

forcing and dissipative mechanisms have been shown to

play a significant role in the tropical atmosphere; it would

be interesting to directly study the role these mechanisms

play in setting the long-wave scales presented here.

In addition, the first baroclinic mode has been studied

exclusively here, in part due to the primary role it plays

in many models of the tropical atmosphere; it would be

interesting to adapt the data analysis methods used here

for other vertical modes. The nonlinear interactions

between different vertical modes have also been

neglected here. Neglecting these nonlinearities allows

for the clear spectral methods presented here, but any

role these nonlinearities play in setting the long-wave

scales has not been considered here [see, e.g., Lin et al.

(2005) and Lin et al. (2008) for estimates of the role

these nonlinearities play in the tropical atmosphere, and

Stechmann et al. (2008) for a model of nonlinear in-

teractions between two baroclinic modes]. The results

presented here, however, suggest that when a snapshot

of the tropical atmosphere is described in terms of the

solutions to Matsuno’s linear shallow-water theory, the

degree to which each solution is present in the data is in

good agreement with the long-wave approximation

statistically.

Also, this study has focused solely on the dry variables

used in Matsuno (1966); since convectively coupled

waves tend to exhibit different scaling than their dry

counterparts, it would be interesting to extend this

quantitative assessment to include the role of moisture

in setting these long-wave scales. Last, the focus here has

been on the tropical atmosphere; it would be interesting

to adapt this assessment technique to oceanic long-wave

dynamics considered in Harvey and Patzert (1976),

Legeckis (1977), and Legeckis et al. (1983) or to mid-

latitude or global atmospheric dynamics.

8. Conclusions

This paper has provided a quantitative assessment of

the spatiotemporal scales on which long-wave dynamics

are seen in reanalysis data. Specifically, three inter-

connected aspects of the equatorial long-wave approx-

imation were considered: (i) the smallness of meridional

wind anomalies relative to those of zonal winds and

potential temperature, (ii) the leading-order dynamics

being in meridional geostrophic balance, and (iii) the

filtering out of inertio-gravity waves. This assessment

was achieved by using a spectral method that allows for

analysis from three different perspectives: primitive

variables (u, y, u), characteristic variables (r, l, y), and

wave variables (e.g., K and Rm).

This assessment illustrated that different aspects of

long-wave dynamics may exist over different ranges of

spatiotemporal scales. Specifically, it was shown that

while meridional winds are small for a very narrow

range of length scales (jkj& 1) and time scales

(v/TE & 0:1 cpd), dynamics exhibit meridional geo-

strophic balance and small-amplitude gravity wave

structures over a significantly broader range of scales

(jkj& 4, v/TE & 0:2 cpd). Small meridional wind is thus

the first feature associated with the long-wave approxi-

mation to break down; meridional geostrophic balance

and small inertio-gravity wave amplitudes are features

of the long-wave approximation that are observed, at

least statistically, to hold for a larger range of zonal

wavenumbers. As a result, when asking the question

‘‘Over what spatiotemporal scales can one expect

models employing the long-wave approximation to be

valid?,’’ the answer may depend on what implications of

the long-wave approximation are ofmost relevance for a

particular model or application.

The results here do suggest that the largest-scale

features of the tropical atmosphere (e.g., the Walker

circulation and the MJO), whose main features are well

described with small zonal wavenumbers, say, k 5 1–4,

may be effectively modeled using the long-wave ap-

proximation, provided the model and data are com-

pared using a wave perspective [see, e.g., Stechmann

and Majda (2015) (MJO) and Stechmann and Ogrosky

(2014) (Walker circulation)]. This wave perspective

was identified as one of the factors contributing to the

good agreement found between a simple model and

observations of the Walker circulation in Stechmann

and Ogrosky (2014). Of course, even for scales where

the tropical atmosphere exhibits long-wave dynamics

statistically, the dynamics of the atmosphere at a given

moment may not be well described by the long-wave

approximation.

Several further issues were also raised and described

in more detail in section 7. For example, the present

study did not explicitly account for many effects such as

nonlinearity, water vapor, convection, and other forcing

and dissipative mechanisms. Such effects are major

challenges for idealizedmodels andmajor challenges for

comparing theory with observational data. Despite

these simplifications, the main characteristics of long-

wave dynamics could still be identified here.

An important ongoing task is assessing the accuracy

of the many low-dimensional models of the tropical
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atmosphere thatmake use of equatorial long-wave theory

(e.g.,Majda and Biello 2003;Majda and Stechmann 2009;

Stechmann and Ogrosky 2014). Such assessments are

typically made by comparing model results with obser-

vational or reanalysis data (Stechmann and Ogrosky

2014; Stechmann and Majda 2015; Ogrosky and

Stechmann 2015). If significant discrepancies between

model and observations exist, it is important to under-

stand whether these discrepancies are due to the long-

wave approximation or to some other simplifying

assumption (e.g., treatment of convective heating). It is

our hope that the quantitative assessment presented here

provides an additional resource for such assessments.
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