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Background on the First-Passage Process Simple Prototype. The
simple stochastic prototype, Eq. 4, is used to approximate the
moisture equation from the climate model, using the running
accumulation s̃ as a transformed temporal coordinate because it
increases monotonically in time during a precipitation event but
tracks an important physical variable, the integrated water loss
due to precipitation. The steps implying the form of the accumu-
lation distribution discussed in the text are expanded here. Once
the problem is cast in the form of Eq. 4, and the noise term W
is assumed to be from a Wiener process (Case 1 of the stochas-
tic prototype), the corresponding Fokker–Planck equation has a
classic form (29), except that s̃ holds the place normally occupied
by time. The evolution of the probability density pq = (q , s̃) as a
function of column-integrated moisture q and s̃ is given by this
equation, Eq. 6, repeated here for convenience:

∂s̃pq(q , s̃) = ∂qp(q , s̃) +
1

2
D∂2

qp(q , s̃). [S1]

For the first-passage problem, we consider that the precipitation
event begins when the system first passes a threshold water vapor
value q0 and terminates when the water vapor drops below a
slightly lower value qt = q0 − ε, the threshold for precipitation
termination. These conditions mimic the observed onset of pre-
cipitation at a critical value of column water vapor (for a given
temperature profile), associated with conditional instability of
entraining plumes or large-scale saturation in observations (22–
24) and in versions of the climate model considered here (26,
27). Within this simple prototype, the onset corresponds to an
initial condition of a delta function of probability density at q0,
and the termination corresponds to an absorbing boundary con-
dition with probability density pq = 0 at qt . The evolution of the
pdf for this case has a known solution (28, 29)
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where σ = (Ds̃)1/2, Aq is a normalization constant, and B =
exp (2ε/D) is set by the boundary condition pq = 0 at the ter-
mination threshold. Note that the form F (·) is as in the scaling
solution (Eq. 8), with the second occurrence shifted to maintain
the boundary condition. For this case, F is simply a Gaussian.
As the solution evolves forward in s̃ , the probability of remain-
ing above the termination threshold decreases by the mecha-
nisms discussed in the main text. Evaluating the flux of prob-
ability across the termination threshold yields the probability
that an event will terminate in a small increment surrounding
a given s̃ . This termination value of s̃ defines the size s of the
accumulation.

This yields an inverse Gaussian distribution for the accumula-
tion pdf

ps(s) = A0 exp[−sS/s]s−τ exp[−s/sL], [S3]

where A0 is a normalization constant, τ = 3/2, and sL = 2D is
the large-event cutoff, the key role of which is discussed in the
main text. In the prototype full solution, there is also a small
event cutoff sS = ε2/(2D), which Doppler radar measurements
suggest may be on the order of 10−3 to 10−2 mm (18). In gauge
observations (19, 20) and in the climate model analyzed here,
the small event portion of the range is not resolved. Thus, the

distribution is simply considered over the range greater than the
specified minimum accumulation s1 � sS , leading to the form

ps(s) = As−τ exp[−s/sL], s>s1 [S4]

which corresponds to Eq. 7. The normalization constant A tends
to be set by the smallest observable scale s1, because for τ>1, the
low-s range dominates the integral when the power law range is
long (s1 � sL). As a result, increases in large-event probability
density due to increases in sL create only a small adjustment in
normalization constant, yielding small reductions in probability
density over the power-law range. For instance, for s1 = 0.2 mm,
a change in sL from 145 to 210 mm, as in the top curve of Fig. 1,
yields only a 1% decrease in the normalization constant.

Note that the time-mean rainfall is not closely related to the
changes in the accumulation distribution. The time mean obeys
long-term constraints from moisture and energy budgets that
can affect the fraction of time spent precipitating. The dry-spell
intervals between precipitation events have dynamics with strong
parallels to that considered here for accumulation distributions,
with the upward drift in moisture toward onset of precipitation
driven by mean moisture convergence, including evaporation.
For increasing moisture convergence variance, the probability
density of the very longest dry spells in the prototype tends to
increase consistently with the results shown here for the change
in pdf of the largest precipitation accumulations.

Considerations of Robustness and Relations with Other Systems.
Despite the complexity of the climate model, the simple stochas-
tic prototype was able to provide predictions of its behavior.
While the analytic solution for Case 1 and the scaling solution
aim at distilling physical insight, the numerical solutions for Case
2 of the stochastic prototype make clear that the slight adjust-
ments to the exponent of the power law range seen in the cli-
mate model solutions are easily obtained for assumptions that
are realistic in a climate-modeling context. Here, we elaborate
briefly on how the form of the regime change at a cutoff scale is
robust to these changes. The Case 2 model is solved in the time
domain, as for a climate model (note that D* thus has different
units than D). In Case 2, during nonprecipitating intervals, there
is an upward drift in q due to C̄ . Event onset is taken to begin for
precipitation above a small threshold, such that P>C̄ , and the
drift is downward due to precipitation loss. The running accumu-
lation s̃ is then diagnosed within precipitation events in the Case
2 simulations. In this s̃ coordinate, the Case 2 noise has tem-
poral correlation and the spread of an ensemble of trajectories
due to variations in moisture convergence increases less quickly
than s̃1/2, consistent with the slower drop of probability density
of accumulation size at termination of the event in the approx-
imately scale-free range before the cutoff. This behavior corre-
sponds to the subdiffusive case of anomalous diffusion, as com-
monly arises in tracer transport in complex flow (41). Because
the time dependence of the spreading process is different from
that of the drift process, as seen in the scaling solution, a regime
change with a cutoff scale given by the competition of these pro-
cesses must occur. The amplitude of the moisture convergence
variations is the key parameter in this competition—an increase
in this amplitude with increasing moisture necessarily extends the
cutoff, and thus creates the selective increase in probability den-
sity of the largest events. The physics of this competition must
occur even for more complex moisture convergence variations,
as in the climate model.
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Prototypes for anomalous diffusion regimes and associated
first-passage problems have been examined in a number of sys-
tems (42), so it is worth considering under what circumstances
analogies drawn from these cases can be instructive. First-
passage problem solutions exist for representation of these cases
by fractional Fokker–Planck equations (43–45). A key result is
that the properties discussed in the Weiner process case are
modified smoothly, with the exponent of the power law range
adjusted. Properties are in some cases approximated by a gen-
eralized inverse Gaussian distribution as in Eq. 3 where τ can
differ from 3/2 (46), similar to features noted numerically in
both Case 2 and CESM1 here. Technical challenges involving
divergent moments often arise in these representations, includ-
ing failure of the method of images under non-Markovian con-
ditions (42, 47). The system of interest here is Markovian with
finite moments, and thus in a number of respects is simpler
than these cases. The adjustment of the exponent is here associ-
ated with the observable of climate interest—the time-integrated
loss term.

Moment Ratio sM and Large-Event Cutoff Geographic Dependence in
the Climate Model. In the main text, an event-size scale sM based
on the ratio of second moment

〈
s2
〉

to the first moment 〈s〉 is
used as an estimator proportional to the cutoff, as has been done
to compare accumulation distributions for different regions esti-
mated from the Department of Energy Atmospheric Measure-
ment Program high-resolution observation sites (19)

sM =
〈
s2
〉
/〈s〉. [S5]

For the simple case (Eq. 3), the large-event cutoff sL is related to
sM by

sL = 2
(
〈s2〉 − 〈s〉2

)
/〈s〉 ≈ 2sM . [S6]

For Eq. 4, adjustments to the proportionality constant occur
associated with s1 and modifications to τ . A similar scaling also
holds when the form of the cutoff exp [−s/sL] is replaced by a
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Fig. S1. The accumulation moment ratio, sM (mm), an estimator proportional to the large-event cutoff value sL. (A) For historical climate simulations
(1976–2005). (B) For the end-of-century (2071–2100) simulations.

more general function G [s/sL] that approaches 1 for s� sL
and 0 for s � sL (19, 20, 48). The form of a scale-free range
followed by a cutoff is common to many systems. There is an
underlying mathematical connection to the self-organized crit-
icality literature that originally motivated observational work
(18, 19)—certain first-passage processes can be put into one-
to-one correspondence with simple models of self-organized
criticality (29). Here, the derivation of the theoretical model
from the equations of a climate model is key because we
care foremost about the physical climate processes setting the
cutoff in current climate and modifying it in future climate.

Fig. S1 shows the estimate of the large-event cutoff sM in Eq. 6
as a spatial distribution for historical and end-of-century simula-
tions, respectively. Fig. 3 shows the ratio of these. The full ensem-
ble of 450 y is used, computing each of 〈s〉 and

〈
s2〉 in Eq. 6. This

first computation of such an estimate as a map shows spatial vari-
ations of sM are considerable within current climate (Fig. S1a),
with values increasing substantially toward the tropics. In many
regions, a tendency may be noted for sM to be larger over ocean
regions than over land regions at comparable latitudes, likely
associated with such factors as additional energy supply from the
ocean surface and reduced impact of diurnal cycle. In the end-of-
century case (Fig. S1b), large-scale spatial patterns remain simi-
lar, and the global warming increase in many areas can be seen
primarily as a broad-scale increase on the order of 20%, albeit
slightly larger in some regions than others, as seen in the ratio in
Fig. 3. This serves as a reminder that the changes in probability
density of the largest events seen in Figs. 1 and 2 are increases
in the largest events experienced for a given geographic region.
Large-event changes should not be misconstrued as converting
midlatitude accumulation cutoffs to values typical of the trop-
ics. Nonetheless, because the sM changes translate into large
changes in the pdf in the range of the very largest accumula-
tions historically experienced in each region, these effects may
be expected to play a key role for regional planners with regard
to adaptation to potential flood magnitudes and other societal
impacts.
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(a) Number of events Historical

(b) Number of events RCP 8.5
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Fig. S2. The number of events in the 450-y ensembles evaluated. (A) For historical climate simulations (1976–2005). (B) For the end-of-century (2071–2100)
simulations. Masked where <4,000 events occurred in either 450-y ensemble.
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