
Global warming precipitation accumulation increases
above the current-climate cutoff scale
J. David Neelina,1, Sandeep Sahanya,2, Samuel N. Stechmannb,c, and Diana N. Bernsteina,3

aDepartment of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA 90095-1565; bDepartment of Mathematics, University of
Wisconsin–Madison, Madison, WI 53706; and cDepartment of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, WI 53706

Edited by Kerry A. Emanuel, Massachusetts Institute of Technology, Cambridge, MA, and approved November 28, 2016 (received for review September
14, 2016)

Precipitation accumulations, integrated over rainfall events, can
be affected by both intensity and duration of the storm event.
Thus, although precipitation intensity is widely projected to
increase under global warming, a clear framework for predicting
accumulation changes has been lacking, despite the importance
of accumulations for societal impacts. Theory for changes in the
probability density function (pdf) of precipitation accumulations
is presented with an evaluation of these changes in global cli-
mate model simulations. We show that a simple set of conditions
implies roughly exponential increases in the frequency of the very
largest accumulations above a physical cutoff scale, increasing
with event size. The pdf exhibits an approximately power-law
range where probability density drops slowly with each order of
magnitude size increase, up to a cutoff at large accumulations that
limits the largest events experienced in current climate. The the-
ory predicts that the cutoff scale, controlled by the interplay of
moisture convergence variance and precipitation loss, tends to
increase under global warming. Thus, precisely the large accu-
mulations above the cutoff that are currently rare will exhibit
increases in the warmer climate as this cutoff is extended. This
indeed occurs in the full climate model, with a 3 ◦C end-of-century
global-average warming yielding regional increases of hundreds
of percent to >1,000% in the probability density of the largest
accumulations that have historical precedents. The probabilities of
unprecedented accumulations are also consistent with the exten-
sion of the cutoff.
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Occurrences of intense precipitation are projected to increase
(1–8) associated with higher atmospheric moisture content

(9, 10) under global warming. Measures of precipitation inten-
sity, coarse-grained to 1- to 5-d intervals, exhibit end-of-century
increases on the order of 20% for wettest annual 5-d rainfall (8)
or 10% in average wet-day intensity (11) or 17% ◦C in the 99.9th
to 99.999th percentiles of daily precipitation (12) in business-
as-usual anthropogenic forcing scenarios. Associated with this,
substantial increases in frequency of high-rain-rate events can
occur (13–15), and the return times of events exceeding a given
threshold decrease (16).

Time-integrated accumulation, the amount of precipitation
that falls during a single event, is of concern for many societal
impacts (17). Because more intense precipitation could, in prin-
ciple, yield shorter event durations (10), the expected change in
accumulation probabilities is unclear. Here, we derive a stochas-
tic prototype from a fundamental climate model equation. This
leads to an explanation of key properties of the probability den-
sity function (pdf) of accumulations noted in station observations
(18–20)—why the pdf of accumulation size drops slowly with
increasing size over many orders of magnitude before reaching
a cutoff scale, after which the pdf drops rapidly for very large
accumulations. From the theory, we show that physical balances
creating this behavior regime imply extremely high sensitivity
for the very largest events under climate change. This motivates

an evaluation of the accumulation distribution and its changes
under global warming in a global climate model, the Community
Earth System Model [CESM1 (21)]. The fact that the integrated
precipitation during the event plays a key physical role makes
accumulation a natural variable for examining these impacts.

Moisture Equation and Dynamics of Accumulation
The vertically integrated moisture equation for a climate model
may be written

∂tq = −P + C , [1]

where ∂tq is the rate of change of column water vapor q , and
C is the vertically integrated moisture convergence into the
atmospheric column, including evaporation at the surface and
horizontal moisture convergence by atmospheric transport. This
moisture convergence term can be split into a climatological
component C̄ and variations C ′ that have large fluctuations
due to atmospheric internal variability. The precipitation P can
depend on the vertical structure of both the water vapor and the
temperature, but because moisture variations tend to be domi-
nated by a deep vertical structure (22), the onset of precipita-
tion (as measured by probability of precipitation occurring and
by the conditional average precipitation) increases rapidly above
a threshold value of q for a given tropospheric temperature in
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observations (23–25) and climate models (26). Both the onset of
conditional instability of atmospheric deep convection and large-
scale saturation can contribute to this.

The time-integrated accumulation s from the beginning of the
precipitation event (when P first exceeds a small threshold value)
at time t0 to the end of the precipitation event at time tf is

s =

∫ tf

t0

P(t ′)dt ′, [2]

which gives the water lost from the atmosphere over the event.
This moisture loss plays a role in terminating events, so it is

useful to define a running accumulation s̃ , i.e., the amount of
water rained out up to time t within an event

s̃(t) =

∫ t

t0

P(t ′)dt ′, i.e., ds̃ = Pdt . [3]

The size s of the accumulation is simply the value of the running
accumulation s̃ when the event terminates.

We now introduce two cases of a stochastic prototype model
based on simplifications of Eq. 1. Case 1 is sufficiently simpli-
fied to permit analytic solutions that guide understanding of the
physics, whereas Case 2 is integrated numerically in time and
then diagnosed as for a climate model.

For Case 1, we make use of the one-to-one monotonic rela-
tionship Eq. 3 between time and the running accumulation, using
s̃ instead of time during precipitation events. The increment ds̃
gives the moisture loss Pdt due to precipitation in a time incre-
ment dt , noting that s̃ and s have units of vertically integrated
moisture, commonly expressed in mm (equivalent to 1 kg m−2

of water). Precipitation during an event is an order of magni-
tude larger than climatological moisture convergence C̄ , so for
simplicity we neglect C̄ in Case 1 (alternately, the definition of
s̃ could be altered to use P − C̄ ). The fluctuations of moisture
convergence C ′ are approximated as a noise D1/2dWs̃ , yielding
a simple stochastic equation for Case 1

dq = −ds̃ + D1/2dWs̃ [4]

that serves as a prototype for moisture fluctuations within precip-
itation events. For Case 1, the stochastic process Ws̃ is assumed
to have independent, Gaussian increments (a Wiener process,
i.e., Brownian motion), and the coefficient D governs the ampli-
tude of this moisture convergence noise term, here taken con-
stant. For the sake of analytic solution, increments are taken to
be independent in the s̃ coordinate, an assumption that will be
altered in the Case 2 numerical solution. Precipitation is taken to
occur when q exceeds a threshold mimicking the observed onset
above a critical value of column water vapor.

For Case 2 of the stochastic approximation to Eq. 1, we
approximate the precipitation dependence on q seen in obser-
vations and CESM (27), P = P(q−qc), as a ramp function, zero
below the threshold moisture qc and linear above, yielding

dq = −P(q − qc)dt + C̄ dt + D1/2
∗ dWt . [5]

The climatological value of moisture convergence including
evaporation, C̄ , is taken constant. The variations C ′ are repre-
sented as a noise D

1/2
∗ dWt , with Wt again a Weiner process, but

with independent increments in the conventional time coordi-
nate. Although one can envision a hierarchy of sequentially more
complex stochastic approximations to climate model equations,
the cases here are sufficient to exhibit accumulation distributions
that may be compared with the climate model.

In both cases, the presence of a threshold for onset and termi-
nation of precipitation creates a first-passage problem (28, 29) in

which trajectories in the precipitating regime above the thresh-
old evolve by a competition between fluctuating moisture con-
vergence and water loss by precipitation until the moisture first
falls below the threshold that terminates the event. For Case 2,
trajectories are computed numerically for a long time series that
enters and exits events as for a climate model. For Case 1,
one has a simple Fokker–Planck equation (30) corresponding to
Eq. 4 for the evolution of the pdf pq(q , s̃) of the trajectories for
q evolving as a function of s̃

∂s̃pq(q , s̃) = ∂qpq(q , s̃) +
1

2
D∂2

qpq(q , s̃). [6]

This has a known solution (29) (reviewed in SI Text), and we
return to the properties of the first-passage problem schemati-
cally in Physical Mechanisms and Implications for Robustness to
discuss how the analytic solution relates to more complex cases.

The key result for informing climate model analysis is the pdf
ps(s) for events reaching an accumulation of size s at termina-
tion when q drops to the threshold value

ps(s) ∝ s−τ exp[−s/sL] [7]

with τ = 3/2 and sL = 2D for Case 1, for s above a small-event
cutoff (Eq. S3) that is too small to see in gauge observations (18,
19) or in the climate model.
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Fig. 1. Probability density function (mm−1) of precipitation accumula-
tion (in mm) for historical climate (1976–2005) and end-of-century (EoC)
climate (2071–2100) from CESM and from two cases of a stochastic proto-
type. (Upper) Case 1 analytical solution, Eq. 7 with τ = 1.5 and cutoff scales
sL = 145 and 210 mm, respectively (values as for E. China); Case 2 numer-
ical solution to Eq. 5 (dashed) for 2 values of D∗, with comparison to the
Case 1 analytical solution modified with τ = 1.25. (Lower) For 6 different
regions (Materials and Methods) from CESM1 simulations (shifted vertically
in 2-decade increments for readability). Bootstrap 25th to 75th and 5th to
95th percentiles are given by box and error bar. The pdfs for E. China and
India have overlaid prototype solution curves with τ = −1.25 and cutoff
scales as listed. Dashed curves show shifts of the historical case for compari-
son with EoC.
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Features of this solution are seen in the top pair of curves
of Fig. 1. There is a scale-free range over which the power
law s−τ applies, within which the pdf ps(s) drops relatively
slowly with each factor of 10 increase in s. A key transi-
tion occurs near sL, above which the exponential cutoff cre-
ates a sharp reduction in the pdf. The very largest events that
would ever in practice be encountered are thus controlled by
sL (i.e., by the coefficient D that measures the amplitude of
moisture convergence variations due to atmospheric internal
variability). Under global warming, the moisture content of the
lower troposphere available for convergence tends to increase
(9, 31). If the statistics of low-level wind convergence were to
remain the same, many aspects of precipitation would tend to
increase, known as the rich-get-richer or wet-get-wetter effect
(10, 32). Here, the prediction of a change in sL, illustrated in the
simplest prototype curve using sL = 145 and 210 mm, respec-
tively, has substantial implications. The vertical arrow between
these curves indicates where this modest change in the cutoff
scale results in a factor of 10 change in the pdf for large events.
This pdf increase grows rapidly with accumulation size above the
historical cutoff value.

The prototype makes clear that the changes are expected to
occur disproportionately for the very largest events (i.e., approx-
imately exponential changes in the rare portion of the size dis-
tribution above the regionally defined cutoff for the historical
period). Dynamical feedbacks will affect this regionally, includ-
ing the possibility of regional reductions in largest-event proba-
bility density if D decreases due to dynamical reductions in the
variance of low-level convergence. Changes are small within the
long power-law range because for τ > 1, the pdf normalization
is little affected by the changes in the large-event range.

For Case 2 of the stochastic prototype, results (Fig. 1) exhibit
close parallels to the analytic solution Eq. 7 of Case 1, but with
the exponent τ adjusted to 1.25. A similar scale break occurs and
is shifted to larger values when D∗ is increased. Values in Fig. 1
are chosen to illustrate sL values relevant to the Eastern China
(E. China) region of the CESM simulations in current climate
and at the end of the century (see SI Text for details). In Case
2, deviations from the form of Eq. 7 as a function of scale may
be noted in both the approximate power law and cutoff ranges,
but the key point remains of an approximately scale-free range
over which the pdf drops slowly, followed by a scale at which
the pdf drops quickly. The Case 2 results can be understood as a
modification of the Case 1 assumption of uncorrelated noise, as
discussed in Physical Mechanisms and Implications for Robustness
and SI Text.

Precipitation Event-Size Change Under Global Warming
Motivated by the behavior predicted by the theory, we carried
out an ensemble of 15 CESM1 simulations with the required
high-resolution time output to assess these distributions under
historical estimates of radiative forcing by greenhouse gases and
aerosols and under Representative Concentration Pathway 8.5
(33) (Materials and Methods). Precipitation accumulation dis-
tributions for various regions in Fig. 1 consistently exhibit long
power law ranges with exponent τ ≈ −1.25, a value in approxi-
mate agreement with prior observational estimates from shorter
time series at various Department of Energy Atmospheric Radi-
ation Measurement Program sites (19), and of slightly smaller
magnitude than −1.5 (i.e., corresponding to a modestly sub
diffusive case). Curves shown for China and India illustrate the
simple form Eq. 7 with τ = −1.25.

As expected, the power-law range is for each region followed
by a large-event cutoff, above which the pdf of large accumula-
tions drops steeply. Were the power law range to extend indefi-
nitely, the mean and variance of the accumulation would diverge,
an indicator of how important the physics of the cutoff is in lim-
iting large events. Under global warming, the power-law portion

Fig. 2. Ratio of the pdf of a given accumulation under global warming to
the pdf under current climate for the six regions (dots). Bootstrap 25th to
75th and 5th to 95th percentiles are given by box and error bar, respectively.
The extension of the distribution tends to yield end-of-century occurrence
of accumulation sizes unprecedented in the 450 y of the historical ensemble,
indicated by∞ symbols above the plot; the same effect yields long upward
error bars in the highest bins (shifted slightly within bin for graphical clarity;
bin boundaries are indicated by gray bars at bottom).

of the distribution remains essentially unchanged, while, in many
regions, the large-event cutoff changes, extending the power
law range to slightly larger values on the s-axis. This extension
increases the probability of these very largest events. To make
this clearer, Fig. 2 shows the ratio of the pdf of each accumula-
tion bin in the end-of-century climate to that under current cli-
mate. This corresponds to a risk ratio (34) for the s-intervals cor-
responding to each bin (i.e., for probability density rather than
probability of exceedance). For events smaller than the cutoff,
there is essentially no change in the pdf. Above the large-event
cutoff, however, the pdf increases rapidly (roughly exponentially)
for the very largest events. The extent of the increase for the var-
ious regions corresponds to differing degrees of change in sL.
Changes for Midlatitude North America appear modest on this
scale, but reach a 250% increase (150 to 450%, 25th to 75th) in its
uppermost bin. Most of the regions have several bins in the large-
event range, exhibiting increases of hundreds of percent relative
to current climate. For E. China, the increase for the highest bin
with historical precedent is >1,700%, with >1,000% for the 25th
percentile bound.

Referencing future probabilities to current climate probabili-
ties of a given accumulation, as in Fig. 2, is informative, but the
end-of-century extension of the distribution yields accumulations
that are unprecedented in the historical period. A direct mea-
sure of the change in distribution extent is thus useful for inter-
pretation and for estimating statistical significance by geographic
region. The change in distribution in Fig. 1 is very close to a sim-
ple rescaling, even for curves where the cutoff is more complex
than exponential, as occurs for the lower four curves. This is indi-
cated in Fig. 1 by overlaying curves interpolated for each histor-
ical distribution onto the corresponding end-of-century distribu-
tion, with s rescaled by a constant (a shift in log s , with the pdf
amplitude correspondingly rescaled). The match indicates that
the end-of-century distribution is well captured by the histori-
cal distribution, rescaled by a single number for each region that
typifies the change in the large-event cutoff sL. Probabilities of
events that have no counterpart in the historical period (seen for
E. China, India, and South American regions) are consistent with
the rescaled distributions. Thus, the shift in the cutoff appears to
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Fig. 3. An estimate of the fractional change in the large-event cutoff scale
sL. Accumulation moment ratio Eq. 9, sM, for the end-of-century (2071–2100)
simulations divided by its value for historical climate simulations (1976–
2005). Values > 1 imply increases in the cutoff scale, which yield large
changes in probability of events larger than the cutoff. Increases are shown
only where >95% of 1,000 bootstrap replications (Materials and Methods)
exhibit an increase, and similarly for decreases. Points are masked (gray)
where <4,000 events occurred in either 450-y ensemble. The regions over
which accumulation distributions are shown in Fig. 1 are indicated as black
outlines.

be a useful paradigm for explaining, and potentially predicting,
the occurrence of these unprecedented events.

In addition to providing a simple hypothesis for future changes
in corresponding observed distributions, the result that the distri-
bution changes are governed by the shift in the cutoff can greatly
aid in significance testing and displaying changes at a regional
level. Fig. 3 uses an estimate sM from observational work (19)
that is proportional to the large-event cutoff sL (Materials and
Methods and Eq. 9) to indicate the simulated spatial distribution
of these changes under future climate. The ratio of sM computed
for 2071–2100 to the value from the historical period is displayed
at each grid point, where this measure of the rescaling of the
distribution differs significantly from 1 by a bootstrap test. As
expected, there is regional variation, with some regions having
little change, and even some regions of decrease. The predomi-
nant shift is toward increases (91% of grid points passing criteria
for significance and number of events). Clausius–Clapeyron scal-
ing of D (Materials and Methods), and thus of sL, in the prototype
yields a factor slightly over 1.2 in sL, which is approximately the
average over significant points in Fig. 3, although certain regions
exhibit larger increases.

The regions for which distributions are averaged in Fig. 1 are
indicated in Fig. 3, chosen to sample regions of relatively mod-
est change, such as the Midlatitude North American region, as
well as regions of large change, such as a box in the Indian
region and a box covering E. China and the neighboring ocean
area including Taiwan. Factors rescaling the box-average distri-
butions in Fig. 1 bracket the Clausius–Clapeyron scaling, from
slightly below (1.14 for Australia and Midlatitude North Amer-
ica) to substantially above (1.46 for E. China). It is worth empha-
sizing that, even for regions where the rescaling in s is approx-
imately consistent with Clausius–Clapeyron, the consequences
for the frequency of the largest events can be substantial. A
20% increase in moisture convergence in Eq. 7 yields a frac-
tional increase in the pdf of approximately exp(0.2s/sL), which
increases rapidly for the largest accumulation sizes. Thus, even
the midlatitude North American region, with relatively modest
increase in sM in Fig. 3, exhibits roughly a 250% increase in
probability for the bin with the largest events that have histori-
cal precedents in Fig. 2.

Physical Mechanisms and Implications for Robustness
This distinct behavior for the largest events is due to the time-
dependent dynamics that yields the cutoff scale. Standard pro-
totypes for changes in extreme events (17, 35) consider station-
ary distributions of a climate variable that in a warmer climate
becomes shifted due to a change in mean or whose width changes
due to a change in variability. For non-Gaussian distributions

(Fig. 4A), such as precipitation rate (14, 15, 35, 36) or water vapor
(27), the change in mean and variance are typically linked. In
addition to affecting occurrences of extreme values (red), these
mechanisms create changes throughout the probability distribu-
tion (decreases in blue; increases in light red). In the behavior for
accumulations found here (Fig. 4B), changes are primarily in the
probability of the most extreme accumulation range. How does
this occur?

A scaling argument from the theory here points to the essen-
tial features of the climate physics that create this sensitivity and
provides a sense of the robustness. Probability distribution solu-
tions of Eq. 6 during the event have the form

pq(q , s̃) =
1

σ(s̃)
F

(
q − q0 + s̃

σ(s̃)

)
, [8]

where the width of the distribution σ spreads due to atmospheric
variability as a function of the running accumulation s̃ , which
is acting as a transformed temporal coordinate. The prefactor
σ(s̃)−1 maintains normalization as the distribution spreads. For
constant D and Gaussian noise, one obtains σ ∝ (Ds̃)1/2, and F
is Gaussian. The drift toward lower q is simply s̃ in the numera-
tor because this represents integrated loss by precipitation up to
a given time. The event termination when moisture falls below
a given threshold gives the first-passage process; the bound-
ary condition at this threshold is met by a pair of such solu-
tions (SI Text), so Eq. 8 is sufficient to show the key physical
factors.

Fig. 4C illustrates the collision of two temporal-dependences
in Eq. 8 that yield the different behavior ranges. In early time, the
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Fig. 4. Mechanisms for changes in accumulation probabilities involve two
evolution regimes. (A and B) Traditional schematics of a shift and change in
width of a stationary distribution (A) (14, 17, 35) differ from the effect for
accumulations in which the pdf is susceptible to disproportional change for
the largest events, above the cutoff (B). (C) The mechanism that creates this
effect (schematized for Eq. 8) involves the evolution of the pdf of an ensem-
ble of events (example trajectories shown in blue) before the first passage
across an event-termination threshold at lower moisture. The power-law
range of accumulations comes from spreading of the pdf due to internal
variability, which dominates termination when accumulations are not too
large. The large-accumulation regime occurs when drift toward termination
by precipitation loss becomes important. A change in moisture-convergence
variability changes the large-event cutoff that separates these regimes.
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spread of the distribution width like (Ds̃)1/2 dominates the flux
of probability toward event termination at the threshold qt , yield-
ing the power law range. At long time, the drift term s̃ enters,
causing a faster flux of probability across the event termination
due to the integrated precipitation loss. The transition between
these regimes occurs where these two terms are the same order,
yielding a cutoff scale proportional to D . As illustrated by Case 2
of the stochastic prototype, the basic features resulting from
this transition remain robust under circumstances for which ana-
lytic solutions are not available, but which capture the value of
the exponent τ in the accumulation distribution of the climate
model. The spread of the distribution per unit of water lost by
precipitation increases at a rate slightly slower than s̃1/2, but the
key transition to the cutoff regime occurs by the same physics as
in the analytic solution of Case 1: namely, as accumulated water
loss becomes important. This argument would apply to more
complex spreading processes, explaining why these features carry
over to the full climate model.

Discussion
In the physical mechanism for changes in precipitation accu-
mulation presented here, one of the essential ingredients, an
increase in the variability of moisture convergence, is in common
with the prevailing discussion of changes in precipitation inten-
sity under warming. The other ingredients—an integrating vari-
able and a threshold for event termination—dictate not a general
broadening of the accumulation distribution, but a shift in the
cutoff that limits very large events. These ingredients imply that,
for integrated accumulations, a corollary of the rich-get-richer
effect applies, especially to the largest events. This might be
termed the biggest-get-more-frequent or the biggest-get-bigger,
because successively larger increases in frequency occur for suc-
cessively larger accumulation categories above the historical cut-
off scale as the cutoff value increases. Geographic patterns of
the changes should be viewed with caution from a single cli-
mate model, and caveats apply to climate model simulation of
extreme precipitation events (6, 14, 27)—these results motivate
evaluation over a wider ensemble of climate models, despite
the need for high time-resolution output, and over observations
more extensive than the set so far examined. The simplicity of
the mechanism and of the resulting distributions for accumula-
tion in Fig. 1 suggest that precipitation accumulation provides a
natural coordinate for evaluating statistics of extreme precipita-
tion change. The success seen in Fig. 1 in approximating changes
in the pdf, even for unprecedented events, by a suitable rescaling
of the historical distributions suggests that this can be exploited
to evaluate scenarios for potential impacts.

Materials and Methods
Precipitation accumulations in CESM are computed as the integrated pre-
cipitation from the first exceedance of a small threshold (0.4 mm/h) to the
first drop below the threshold. These have not previously been computed
in climate models—the high time-resolution data are not normally saved.
Augmented output (for 30S to 50N) from an ensemble of runs with the fully
coupled National Center for Atmospheric Research CESM1 (Version 1.0.5)
(21) under historical estimates of radiative forcing by greenhouse gases and
aerosols and under Representative Concentration Pathway (RCP) 8.5 (33)
with precipitation saved at all time steps (30-min intervals) is used to com-
pute the accumulation distributions in Fig. 1. The ensemble of 15 simula-
tions of 30 y each are initiated from different atmospheric initial conditions
for the historical and RCP8.5 simulations (37) to yield different instances of
atmospheric and climate internal variability. CESM output data used in this
study are available from the authors following guidelines in the CESM data
plan (www.cesm.ucar.edu/management/docs/data.mgt.plan.2011.pdf).

For the accumulation distributions and ratios in Figs. 1 and 2, the
latitude–longitude ranges for the six averaging boxes are: Midlatitude
North America (37N to 50N, 240E to 288E), Africa (20S to 18N, 10E to
44E), Australia (28S to 16S, 120E to 152E), South American region (20S to
0, 290E to 320E), India (15N to 25N, 70E to 90E), and E. China region (20N

to 30N, 110E to 130E), which includes ocean regions surrounding Taiwan,
the East China Sea, and the southwest islands of Japan. Accumulation dis-
tributions are computed for each spatial point and then averaged within
these domains. As seen in Fig. 3, the latter two regions provide examples
within the long band across Southeast Asia exhibiting substantial increases
in sM; the other boxes characterize broad continental areas while remaining
within tropical/midlatitude ranges of historical sM (Fig. S1) . Shifts of the his-
torical curves in Fig. 1 to approximately match end-of-century correspond
to rescalings of s by a factor of 1.14, 1.22, 1.14, 1.35, 1.29, and 1.45, in the
order above. Sensitivity tests on box choices (e.g., dividing the African box
in two) give robust results consistent with sM changes in Fig. 3. The boxed
regions are chosen primarily over land due to relevance for societal impacts;
Fig. 3 provides a good indicator of where similar results apply over oceans.

The bin size in Figs. 1 and 2 has a value of 0.2 in log s. The pdf is normal-
ized by bin increment in s and by the total number of events (i.e., the pdf
provides information about probability for different sizes of events, given
that an event occurs). The frequency of all events over a given time interval
provides complementary information that can be important in interpreting
measures of precipitation change (38). The total number of events tends
to increase in the RCP8.5 ensemble relative to historical (Fig. S2), but the
changes are modest compared with the differential changes in pdf in the
large-accumulation range.

For analysis of spatial distributions of the cutoff (Fig. 3), we use an esti-
mator of the cutoff sM = 〈s2〉/〈s〉 (i.e., the ratio of second moment 〈s2〉 to
the first moment 〈s〉). For the exact version of Eq. 7 (SI Text), this is related
to the large-event cutoff sL by

sL = 2(〈s2〉 − 〈s〉2)/〈s〉 ≈ 2〈s2〉/〈s〉 = 2sM [9]

The constant of proportionality cancels for ratios of sM between future and
current climate.

The Clausius–Clapeyron scaling of D to provide a sense of the simplest
expected increase in sL and sM uses a 7.3% increase in vertical and global
average moisture per degree of global average temperature increase (39),
and a corresponding temperature increase of 3.0 K (2071–2100 minus 1976–
2005) for this model. Small variations about this can occur through regional
differences in base temperature or temperature change (31), but regional
departures in Fig. 3 from large-scale Clausius–Clapeyron increases are likely
due to changes in the dynamical portion of moisture convergence. This
scaling includes all quantities with units of moisture [i.e., a rescaling of
the pdf for rain intensities (5), which can reduce temporal duration, is
implicitly included].

A bootstrap procedure (40) is used to establish confidence intervals in
Figs. 1 and 2 and to mask small changes in Fig. 3. The fifteen 30-y runs for
each of historical and end-of-century are broken into 5-y segments, for a
total of 90 segments, which are considered independent for these precipi-
tation statistics. A set of 1,000 bootstrap replications is constructed by ran-
dom picks with replacement from the set of segments to create 1,000 artifi-
cial ensembles of 90 segments. Statistics for each replication are computed
exactly as on the original ensemble of 90 segments, for historical and end-
of-century respectively. For Fig. 3, 〈s〉 and 〈s2〉 are each computed for the
450 y averages of a given replication and the moment ratio for each of
historical and end-of-century (Fig. S1) computed before taking the ratio of
these. The bootstrap distribution provides an estimate of the variations in
the computed statistic due to sampling error. The 1,000 instances of each
statistic are ranked, and values of the 5th and 95th percentile bounds
are computed. Increases in the moment ratio are shown only if the 5th
percentile is >1 (i.e., only if at least 95% of the replications indicate an
increase). Conversely, decreases are shown only if at least 95% of the repli-
cations show a decrease.

In Fig. 4A, a gamma distribution pdf, commonly used for daily rainfall
intensity distributions (36), is used to illustrate the typical occurrence of
changes throughout the distribution (14) as mean and variance increase
(linear axes; shape parameter = 2; scale parameter = 3 and 4, schematiz-
ing historical and EoC cases, respectively). In Fig. 4C, the pdf as a function
of moisture and s̃ corresponding to Eq. 8 is schematized as shading with
black contours for an idealized case for which the effect of drift toward the
event-termination threshold due to precipitation loss can be seen within
the diagram. The no-drift case (dropping the drift term) is shown as a single
contour for reference. The white arrow shows the difference to the corre-
sponding contour in the full case, indicating the growing importance of the
drift term.

For the Case 2 stochastic prototype, solutions in Fig. 1 are for P =α(q−
qc), withα= 0.1 h−1 and qc = 60 mm. C̄ = 0.1 mm h−1 with an increased value
for q< 10 mm to limit negative excursions; precipitation events are com-
puted over intervals for which P> C̄. Two values of D∗ = 20 and 27 mm2 h−1
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yield shorter/longer cutoff cases shown, chosen to illustrate cutoffs similar
to E. China historical and end of century CESM1 results, respectively.
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