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Abstract
Purpose of Review: Review our current understanding of how precipitation is related to its thermodynamic environment,
i.e., the water vapor and temperature in the surroundings, and implications for changes in extremes in a warmer climate.

Recent Findings: Multiple research threads have i) sought empirical relationships that govern onset of strong convective
precipitation, or that might identify how precipitation extremes scale with changes in temperature; ii) examined how
such extremes change with water vapor in global and regional climate models under warming scenarios; iii) identified
fundamental processes that set the characteristic shapes of precipitation distributions.

Summary: While water vapor increases tend to be governed by the Clausius-Clapeyron relationship to temperature,
precipitation extreme changes are more complex and can increase more rapidly, particularly in the tropics. Progress may be
aided by bringing separate research threads together and by casting theory in terms of a full explanation of the precipitation
probability distribution.

Keywords Rainfall · Climate change · Deep convection · Extreme events · Precipitation probability · Stochastic model

Introduction

Examination of climate change impacts on the probability
of strong precipitation events has been an ongoing effort
since the late 1980s (Noda and Tokioka 1989) and much
work since then (e.g., Meehl et al. 2000; Allen and
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Ingram 2002; Trenberth et al. 2003; Tebaldi et al. 2006;
Min et al. 2011; Chou et al. 2012; O’Gorman 2012;
Wuebbles et al. 2014; Sillmann et al. 2013; Pendergrass
and Hartmann 2014; Myhre et al. 2019; Papalexiou
and Montanari 2019; Tabari 2020) including reviews by
Schneider et al. (2010), Trenberth (2011), O’Gorman
(2015) and Donat et al. (2020). However, confidence in
projections of precipitation change is affected by limitations
in simulations of various aspects of precipitation in current
climate (e.g., Biasutti et al. 2006; Qian et al. 2015;
Lintner et al. 2017; Hagos et al. 2021; Biasutti et al.
2018), by differences in the projection of changes in
extreme precipitation among models, especially in the
tropics (Pendergrass et al. 2019), by sensitivity to model
parameters (e.g., Knight et al. 2007; Sanderson 2011;
Covey et al. 2013; Bernstein and Neelin 2016; Qian et al.
2018), and by limited understanding of the interaction
between the large-scale flow and small-scale convective
precipitation (Tomassini 2020). Narrowing uncertainties
in simulated precipitation probability distribution changes
becomes all the more important as procedures for event
attribution (Haustein et al. 2016; Eden et al. 2016; van der
Wiel et al. 2017; van Oldenborgh et al. 2017; Emanuel
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2017; Risser and Wehner 2017; Pall et al. 2017; Wang
et al. 2018) potentially inform decisions regarding whether
and how to rebuild after extreme events. Such procedures
provide estimates of the extent to which probabilities of
equaling or exceeding a given event size have changed
due to anthropogenic warming, typically using ensembles
of current climate simulations compared to simulations
approximating conditions that would have occurred in
absence of anthropogenic emissions.

It has been common to ask whether precipitation scales
with the Clausius-Clapeyron (CC) relationship of saturation
water vapor to temperature, roughly 7% per degree Celsius
of large-scale warming or whether it increases slower (Eden
et al. 2016), or faster than this, the latter termed “super-
CC” scaling (Pall et al. 2007; Lenderink and Van Meijgaard
2008; Sugiyama et al. 2010; Loriaux et al. 2013; Prein et al.
2017; Wasko and Sharma 2014; Lenderink et al. 2017; Pfahl
et al. 2017; Pendergrass 2018). Various simple balances
based on approximations to the moisture budget or energy
balance, respectively, have been put forward, as discussed
in the Section “Moisture Equation and Thermodynamic
Equation”, but these do not attempt to explain the under-
lying distributions of precipitation or vertical velocity.
Diagnostic statements based on these budgets often divide
changes in moisture convergence into those associated with
changes in moisture, commonly termed the “thermody-
namic” contribution, and those associate with changes in
convergence, termed the “dynamic” contribution, with the
latter being viewed as separate and not easily explained.

At the same time, there have been advances in under-
standing the relationship of precipitation—particularly that
associated with deep convection—to its temperature and
moisture environment. Part of this literature has shown that
essential features of the precipitation distribution can be
explained relatively simply in terms of the onset of precip-
itation in relationship to variations affecting this thermody-
namic environment. These results imply that the thermo-
dynamic and dynamic contributions affect the precipitation
jointly. Indeed, for the tropical case, we argue that the ther-
modynamic and dynamic components are involved in a
feedback such that it may be more productive for the field
to move away from this artificial separation.

Key Balances

Moisture Equation and Thermodynamic Equation

The vertically integrated moisture equation may be written:

〈∂tq〉 + 〈∇ · vq〉 = E − P, (1a)

where q is water vapor mixing ratio, t is time, P is
precipitation, E is evaporation, v is the horizontal wind

vector and 〈x〉 = ∫ ps

0 xdp/g denotes a mass weighted
integral in pressure coordinates, with ps surface pressure,
and g the gravitational acceleration. Equivalently, (1a) can
be written as

〈∂tq〉 + 〈v · ∇q〉 + 〈ω∂pq〉 = E − P, (1b)

where the transport term has been rewritten using 〈∇ ·vq〉 =
〈v·∇q〉+〈ω∂pq〉, where ω is vertical pressure velocity, with
the vertical transport term being equivalent to the moisture
integrated with the horizontal convergence.

Similarly, the vertically integrated thermodynamic
energy equation (temperature equation) is, in an approxima-
tion sufficient for present purposes,

〈∂t cpT 〉 + 〈v · ∇cpT 〉 + 〈ω∂ps〉 = 〈Qc〉 + Fs (2)

with T the temperature, s = cpT + φ the dry static energy,
cp the heat capacity at constant pressure, φ the geopotential,
Fs the net flux of longwave and shortwave radiation plus
sensible heat into the column. The convective heating Qc

includes latent heat release by condensation and freezing
processes and vertical transport by subgrid scale convective
motions, and can here be approximated as 〈Qc〉 = LP ,
with L the net latent heat of condensation released per unit
of moisture loss by precipitation. Condensate loss to the
column by lateral transport is sometimes represented by a
precipitation efficiency (Muller and Takayabu 2020), which
is particularly relevant at smaller scales or high rates of
moisture convergence, and ideally should be modeled by
including a condensate equation. Freezing processes are not
explicitly addressed here for brevity, but can be included
using a frozen moist static energy (Wing et al. 2007, 2014).

The leading balance for the moisture equation under
heavily precipitating conditions, especially in the tropics,
can be written equivalently as either

〈qC〉 ≈ P or − 〈ω∂pq〉 ≈ P (3)

defining convergence C = −∇ · v, and using the
continuity equation C = ∂pω, assuming that ω is
small at upper and lower limits of integration. With
moisture being relatively small in the upper troposphere
these approximately correspond to a balance between low-
level moisture convergence and precipitation. Likewise,
the leading balance for the thermodynamic equation under
similar circumstances can be written equivalently as either

−〈sC〉 ≈ LP or 〈ω∂ps〉 ≈ LP . (4)

We note that for the climatology, evaporation and energy
fluxes cannot be neglected because the leading order
balances (3)–(4) disappear in the vertically integrated moist
static energy equation due to the cancellation between
the moisture sink and the convective heating associated
with precipitation. Likewise, for the evolution of storm
systems, terms that would be apparently small in moisture
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and thermodynamic equations separately, including the time
derivative of moisture, can be important. In the midlatitudes
where horizontal advection is important, (4) may be refined
with the quasi-geostrophic omega equation (O’Gorman
2015; Nie et al. 2018) which includes the effects of
vorticity and temperature advection on vertical velocity.
It is further worth underlining that a dominant source of
variations leading to the probability density function (pdf)
of precipitation arises from the variations in convergence.

“Thermodynamic” and Dynamical Contributions
and Issues

For changes in mean precipitation, defining �x to be the
difference in time mean under a global warming scenario
relative to historical climatology, denoted with x̄, it has been
common to diagnose the changes in the moisture budget as:

〈�qC̄〉 + 〈q̄�C〉 + ... = �P − �E (5)

where “...” denotes additional terms such as changes in
v · ∇q and transients (e.g., Seager et al. 2014), and the
second-order covariance term 〈�q�C〉 is ignored. The
first and second terms in (5) have come to be referred
to as the “thermodynamic” and “dynamic” contributions,
respectively (Chou and Neelin 2004; Emori and Brown
2005; Held and Soden 2006; Oueslati et al. 2019; O’Gorman
et al. 2021), where the thermodynamic terminology for
related analysis of clouds (Bony et al. 2004) quickly
supplanted “direct moisture effect” (Chou and Neelin 2004).
This breakdown between the two components highlights
that the rich-get-richer or wet-get-wetter effect (i.e.,
regions where historically precipitation exceeds evaporation
will receive enhanced precipitation, while regions where
historically evaporation exceeds precipitation will become
even drier) arises from the thermodynamic term, but can be
regionally increased or offset by the dynamic term.

A corresponding division can be defined for precipitation
quantiles (Emori and Brown 2005; Chen et al. 2019; Norris
et al. 2019a), with xi denoting x conditioned on the ith

quantile of P in historical or future climatology and �xi

denoting the change of x at the ith quantile of P in a warmer
climate. We use percentiles or return time in the historical
climatology to refer to these quantiles where convenient.
The leading balances for precipitation Pi at a given quantile
are

〈�qiCi〉 + 〈qi�Ci〉 ≈ �Pi (6)

with the first and second terms on the LHS again termed
thermodynamic and dynamic. The first term represents
additional moisture in a warmer climate subject to the
present-day circulation when precipitation extremes occur,
while the second term represents the future changes to
circulation when extremes occur acting on present-day

moisture. However, each grid point is typically analyzed in
isolation (Emori and Brown 2005; Pfahl et al. 2017; Tandon
et al. 2018; Norris et al. 2019a), so that, unlike for the mean
budget (5), Ci does not represent a closed circulation.

The thermodynamic term, 〈�qiCi〉, is well predicted
by the increase in temperature corresponding to the given
quantile of P , with about 7% increase of moisture at
each vertical level per K warming, as per the Clausius-
Clapeyron relation (Chen et al. 2019; Norris et al. 2019a).
The dynamic term, 〈qi�Ci〉, could in theory result from an
amplification/dampening of the circulation or a change in
the vertical structure of the circulation. In the CESM Large
Ensemble, the component relating to vertical structure is
small, so that the dynamic term approximately results from a
rescaling of the circulation when precipitation occurs (Chen
et al. 2019; Norris et al. 2019a).

For precipitation event accumulations, i.e., precipitation
integrated from beginning to end of a rain event, a similar
budget can be written that also involves duration, although
changes in the latter tend not to be of leading importance
(Norris et al. 2019b) in diagnostics of the Community Earth
System Model (CESM) Large Ensemble.

This approximation neglects the conditionally averaged
terms such as 〈∂tq〉i , which is small in the tropics and
shows some cancellation with 〈v · ∇q〉i for midlatitude
weather systems (Chen et al. 2019; Norris et al. 2019a).
In other words, extreme precipitation is maintained not
by the water vapor being reduced in the column but by
moisture transport. The covariance between qi and Ci at
each percentile is also ignored (i.e., 〈qC〉i ≈ 〈qiCi〉), with
the vertical structure of Ci varying with percentile.

Figure 1 shows an example of this decomposition for
changes in 10-year event accumulation size between 1990–
2005 and 2071–2080 from the CESM large ensemble under
the scenario for anthropogenic emissions Representative
Concentration Pathway RCP8.5 (Meinshausen et al. 2011).
While the contribution from moisture changes is substantial
both within and outside the tropics, the enhancement by
convergence changes is particularly large in certain regions
of the tropics. At longer return times (not shown), both
contributions are larger, and the dynamical contribution
tends to be further enhanced (Norris et al. 2019b).
Similar spatial structures of thermodynamic and dynamic
components, conditioned on precipitation extremes, have
been calculated by other methods (Emori and Brown 2005;
Held and Soden 2006; Pfahl et al. 2017; Tandon et al.
2018). In midlatitude regions where precipitating events are
often associated with Atmospheric Rivers (ARs) (Zhu and
Newell 1998; Gimeno et al. 2014; Waliser and Guan 2017;
Ralph et al. 2017; Valenzuela and Garreaud 2019), projected
changes to ARs likewise depend on changes to convergence
as well as changes in moisture (Ma et al. 2019; Payne et al.
2020).
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Fig. 1 Contributions to changes in 10-year event accumulation size
(mm) over global land due to changes in moisture and in conver-
gence, respectively, a.k.a. thermodynamic and dynamic contributions
from the CESM large ensemble between 1990–2005 and 2071–2080

under RCP8.5, adapted from (Norris et al. 2019b). Note the substantial
enhancement by convergence changes in certain regions in the trop-
ics. Missing values are where fewer than 80% of bootstrap replications
agree on the sign of the change

A closely related diagnostic of the dynamic and
thermodynamic contributions has been advocated based on
approximations to the energy budget. If the stratification
(−∂ps) is assumed to be approximately moist adiabatic
in convective regions, it can roughly be replaced by
∂pqsat in (4) (Muller et al. 2011; Muller and Takayabu
2020) with the saturation specific humidity qsat evaluated
along moist adiabats. Given that departures from moist
adiabatic structure are noted in observations even in heavily
precipitating conditions (Holloway and Neelin 2009, 2010;
Schiro et al. 2016), one might ask what the role is
for this approximation compared to simply using the
moisture equation leading balance (3) (e.g., Chou et al.
2012). Indeed, for some purposes the two formulations
behave similarly (Muller and Takayabu 2020). Two useful
aspects of making this approximation are that (i) the dry
stability (−∂ps) tends to vary less than the moisture in
the large-scale convective environment, and (ii) it provides
an indication of how the stratification may be expected
to change with warming, partially compensating increases
in moisture, without having to assume constant relative
humidity. However, it is worth underlining that the overall
stability for moist motions also depends on the vertical
structure and vertical extent of the vertical velocity in (4),
both of which may change.

If we expand (4) for quantiles, an expression parallel to
(6)—and with similar approximations—for the thermody-
namic equation is:

−〈�siCi〉 − 〈si�Ci〉 ≈ L�Pi (7)

For midlatitudes, this thermodynamic balance may be
combined with vorticity and temperature advection in the
quasi-geostrophic omega equation which can give similar
dynamic amplification from increases in convective heating
(Nie et al. 2018) with competition among changes in

moisture, dry stratification in depth of heating (Li and
O’Gorman 2020) and nonlinearity of the heating response
(Nie et al. 2020). While the thermodynamic budget (7) has
not yet been quantified in the same ways as (6), it allows
us to make a simple but important point. Combining (6)–
(7) to eliminate P yields a balance governing the dynamical
changes

〈(si + Lqi)�Ci〉 ≈ −〈(�si + L�qi)Ci〉 + ... (8)

where “+...” is a reminder that terms considered small
relative to P in (6) and (7) are not necessarily negligible
here. The terms in �qi and �si on the rhs of (8) must
be balanced by the �Ci term on the lhs. In other words,
the interaction of the thermodynamic equation with the
moisture equation can imply that changes in the dynamical
terms must arise, i.e., there can be a thermodynamic
requirement that changes in convergence occur. The
substantial dynamical feedback at long return times in the
tropics, or under midlatitude convective conditions where
these balances apply, should thus be expected as seen
in Fig. 1. In this sense, the term “thermodynamic” for
changes associated only with moisture is a misnomer,
and the division between thermodynamic and dynamic
effects is artificial. We hypothesize that progress in better
understanding intense precipitation changes, especially in
the tropics, will require theory that combines both of these
effects, especially since both combine naturally in the
theory of how precipitation probability distributions arise,
outlined in the Section “How Precipitation Distributions
Arise: Variations Across a Moisture/Buoyancy Threshold”.

Scaling Arguments

There are variants in the way the term “scaling” is used for
precipitation, but in essence they posit that the precipitation
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probability distribution, or some aspect of it, under the warmer
climate is similar to that under historical conditions once
precipitation is scaled by some factor. This can be argued from
leading balances in either the moisture (3) (Pall et al. 2007;
O’Gorman and Schneider 2009, 2009; Trenberth 2011;
Chou et al. 2012) or thermodynamic (4) (Muller et al. 2011),
assuming that the short timescale variations that lead to the
distribution come primarily from convergence and change
little in the warmer climate, while the large-scale moisture
or stratification increases by a factor (1 + γ ), with γ given
by Clausius-Clapeyron. Chou et al. (2012) posit that the pdf
prob(P ) of a given precipitation intensity P would thus
simply be prob(P/(1 + γ )) under the warmer climate, for-
malizing the assumption that the precipitation axis simply
rescales. Pendergrass and Hartmann (2014) rephrase this as
a “shift mode” since rescaling the precipitation by a constant
factor is equivalent to a shift in log-precipitation. In the
Section “How Precipitation Distributions Change: Changes
in Extremes”, it becomes clear why this holds well for event
accumulations but imperfectly for daily average intensities.

A number of studies have sought ways to examine such
scaling in current climate (Lenderink and Van Meijgaard
2008, 2015, 2019; Wasko and Sharma 2015; Westra et al.
2014). Figure 2 combines examples from two such studies
that typify key points from this endeavor. A measure of
extreme precipitation, such as a high percentile, is binned
by dew point temperature (typically near-surface values
are used) across a range of conditions in current climate.
Dew point temperature is a measure of water vapor or
absolute humidity of the air. Since much of the atmospheric
water vapor resides in the atmospheric boundary layer, near-
surface dew point temperature is related to the column water
vapor (CWV) and, likewise, near-surface humidity is also
a measure of the potential for latent heating in a simple
updraft parcel framework, and therefore a proxy for one
contribution to buoyancy (see the Section “Precipitation
Relationship to the Thermodynamic Environment”). If the
near-surface dew point temperature could be taken to be
typical conditions through the lower tropospheric layer
that contributes to moisture convergence in storms, then
the scaling of precipitation extremes as a function of this
by 7% per C could be said to be CC and more rapid
changes super-CC. The green curve in Fig. 2 exemplifies
a number of observational studies that find changes that
are faster than CC in this sense. While the interpretation of
scaling is complex and some confounding factors may also
explain super-CC behavior (Haerter and Berg 2009; Zhang
et al. 2017; Lenderink et al. 2018), dynamical feedbacks in
convective rain systems that enhance moisture convergence
(〈qi�Ci〉) are usually considered to play a key role in
explaining super-CC scaling (Loriaux et al. 2013; Berg et al.
2013; Lenderink et al. 2017; Lochbihler et al. 2017; Haerter
and Schlemmer 2018; Lochbihler et al. 2021).
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RCM current climate

Zhang et al. 2017
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RCM future climate
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Fig. 2 Measures of precipitation intensity (log scale) as a function
of dew point temperature. Green curve: observed hourly event peak
precipitation intensities above the 90th percentile from summertime
afternoon and evening events from stations in the Netherlands
(adapted from Lenderink et al. 2017), with dashed line indicating
2CC scaling (14% C−1) for reference. Red solid and dashed curves:
95th percentile hourly precipitation intensity from current and future
climate simulations, respectively, with the Rossby Center regional
climate model over the Netherlands, with thin red curve showing CC-
based prediction, shifting the current climate curve by the projected
warming and multiplying by 1.07 (adapted from Zhang et al. 2017)

Another step in this argument is whether the variations
in meteorological conditions that lead to these diagrams
in current climate can potentially be interpreted as
characterizing the way they will scale with temperature
under global warming (Fowler et al. 2021). An analysis of
this by Zhang et al. (Zhang et al. 2017) is summarized by the
red curves in Fig. 2. A hydrostatic regional climate model
reproduces apparent super-CC scaling in current climate,
but under a greenhouse change scenario, the change of the
curve does not follow the current climate curve, but rather
the curve shifts in a manner that is more consistent with CC.
A similar result was earlier obtained (Sahany et al. 2014) for
the way that curves characterizing the onset of convection
shift under warming.

Despite these caveats, there is considerable evidence in
model simulations for regions of super-CC scaling (Attema
et al. 2014; Lenderink et al. 2019; Singleton and Toumi
2013; Prein et al. 2017; Lochbihler et al. 2019). Also,
convection-permitting climate model simulations reveal
shifts in scaling curves exceeding the CC rate, in particular
for the most extreme events and for scenarios that have
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relatively small lapse rate changes (Lenderink et al. 2021).
Maps of fractional change in precipitation at a given high
percentile in model simulations of global warming provide
one means of visualizing the scaling as a function of region.
Commonly there are some super-CC regions, i.e., where this
fractional change is larger than expected from CC scaling,
especially within the tropics (Pall et al. 2007; Sugiyama
et al. 2010; Hoegh-Guldberg et al. 2018), as further discussed
in the Section “How Precipitation Distributions Change:
Changes in Extremes”. Indications of a band of super-CC
scaling within the tropics may also be seen in observed
annual maximum precipitation (Westra et al. 2013), although
highly uneven spatial coverage places caveats on this.

The key balances of the Section ““Thermodynamic” and
Dynamical Contributions and Issues” suggest a reason
for this. The thermodynamic contribution tends to obey
CC scaling, so departures from this tend to occur where
the dynamical contribution is substantial. The moist static
energy balance (8) suggests that there are conditions under
which this must occur, and furthermore be proportional to
changes in moisture and stratification. If we approximate
〈si�Ci〉 ≈ −Msi�C∗

i , 〈Lqi�Ci〉 ≈ Mqi�C∗
i , with �C∗

i

characterizing the low-level convergence and the change in
vertical structure being small, (6)–(7) yield

�Pi ≈ 〈�qiCi〉︸ ︷︷ ︸
“thermodynamic”

+ 〈(�siL
−1 + �qi)Ci〉(Mqi/Mi)

︸ ︷︷ ︸
dynamic required by thermodynamics

(9)

with Mqi a gross moisture stratification for the changes, and
Mi = Msi − Mqi a gross moist stability (which is typi-
cally smaller). The first term is the effect commonly termed
“thermodynamic”, which yields CC scaling if �qi changes
with constant relative humidity. The second term represents
the result of the feedback between convective heating and
convergence changes required by simultaneously satisfy-
ing thermodynamic and moisture balances. Recall that it is
commonly termed “dynamic” because it entails changes in
the flow; the form here clarifies that the vertical velocity
changes are proportional to moisture and stability changes
that initiate the feedback. It tends to amplify the precip-
itation changes if the moisture change effect in the feed-
back term is larger than the compensation by stratification
increases, and thus tends to yield changes that differ from
CC scaling. The importance of feedbacks from changes in
convective heating on changes in vertical motion have been
noted in multiple studies (Pall et al. 2007; Pendergrass and
Gerber 2016; Lenderink et al. 2017; Berg et al. 2013; Sin-
gleton and Toumi 2013; Nie et al. 2018) to varying degrees
(Abbott et al. 2020). We underline that (9) is a statement
of this, phrased in terms of the large-scale moist stability
of the thermodynamic environment. There have been slow
advances in theory and diagnostics of gross moist stabil-
ity over the years (Neelin and Held 1987, 2000, 2007; Yu

et al. 1998; Back and Bretherton 2006; Raymond et al. 2007;
Raymond et al. 2009; Muller and O’Gorman 2011; Inoue
and Back 2015, 2017), but (9) suggests a need for further
advances. It makes the basic point that super-CC scaling of
changes is quite reasonable to expect under conditions that
can be widespread in the tropics.

Precipitation Relationship to the
Thermodynamic Environment

A more quantitative route to modeling and understanding
precipitation extremes must relate precipitation to its
thermodynamic environment, in a manner more similar to a
parameterization of precipitation. An empirical relationship
linking tropical oceanic precipitation to its environmental
moisture content has been noted at both daily (Bretherton
et al. 2004) and instantaneous timescales (Peters and Neelin
2006) and explorations of this continue (e.g., Rushley et al.
2018; Wolding et al. 2020). For regions dominated by deep
convection, this empirical relationship can be understood by
computing the buoyancy of entraining plumes (Holloway
and Neelin 2009; Schiro et al. 2016), which are consistent
with observations provided the plume is allowed to entrain
environmental air through a deep lower tropospheric layer.

The precipitation-moisture relationship shows depen-
dence on column temperature (Neelin et al. 2009; Kuo
et al. 2020), land surface (Ahmed and Schumacher 2017)
and the land-sea interface (Bergemann and Jakob 2016).
Figure 3a shows one way of quantifying this. Column water
vapor (CWV) is used as a measure of moisture since satel-
lite microwave retrievals are widely available over oceans
(e.g., Hilburn and Wentz 2008). Temperature is measured by
the column-integrated saturation value q̂sat from reanalysis
(Kanamitsu et al. 2002) (other bulk measures of tropo-
spheric temperature work similarly). For the range of tem-
peratures relevant to the tropics, the dependence on moisture
can be collapsed to a common form for all temperatures,
when the water vapor is taken relative to a critical value wc.
This value characterizes the rapid increase of precipitation
associated with the onset of convective conditional instabil-
ity, with the difference (CWV − wc) acting like a crude
measure of buoyancy, albeit with errors due to the presence
of more detailed vertical structure than these bulk variables
can capture. Percentiles of precipitation (from TRMM pre-
cipitation radar, coarse-grained to the CWV grid as in (Kuo
et al. 2020) as a function of (CWV − wc) behave similarly
for each temperature. The 50th percentile behaves similarly
to the conditional average, exhibiting a rapid pickup above
the critical value; higher percentiles have a corresponding
rapid pickup in parallel with this.

Much of the moisture-temperature dependence is
explainable if the moisture and temperature variations are
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Fig. 3 Two ways of quantifying the relationship of precipitation
to its moisture-temperature environment. a Precipitation perccen-
tiles as a function of column water vapor (CWV) relative to a
critical value wc that depends on temperature, here measured by
the column-integrated saturation humidity q̂sat . CWV-wc(̂qsat ) acts
as a rough proxy for buoyancy of convective plumes, yielding a

rapid pickup in precipitation percentiles or conditional average in
the vicinity of the critical value that is similar for all tempera-
tures (Kuo et al. 2018). b TRMM 3B42 precipitation condition-
ally averaged by an empirical estimator of plume buoyancy BL for
four different tropical ocean basins (left axis) and the pdfs of BL

(right axis)

mapped onto to a measure of cloud buoyancy (Ahmed and
Neelin 2018; Schiro et al. 2018; Adames et al. 2021). The
resulting precipitation-buoyancy relationship is valid across
a wide range of environments, and is therefore a gener-
alized version of the precipitation-moisture relationship—
essentially acting like an empirical precipitation parameter-
ization. Figure 3b depicts this buoyancy relationship, where
tropical oceanic precipitation is conditionally averaged by
a measure of lower tropospheric buoyancy (BL). The prob-
ability density functions (pdfs) of BL are sharply peaked
near the value beyond which the conditional precipitation
increases linearly.

Figure 3 suggests a simple empirical precipitation
parameterization in which a threshold buoyancy value (Bc)
separates the non-precipitating and precipitating regimes,
and the linear precipitating regime is characterized by its
slope, α:

P =
{

α(BL − Bc), if BL > Bc

0, if BL ≤ Bc.
(10)

The use of BL provides a framework to understand the
sensitivity of precipitation to changes in its thermodynamic
environment. Following Ahmed et al. (2020), we can
decompose BL into two terms:

BL = CAPEL − SUBSATL. (11)

In (11), CAPEL is akin to the commonly used convec-
tively available potential energy (CAPE) and depends on the

difference between the boundary layer moist enthalpy and
the free-tropospheric temperature, acting like a lower tropo-
spheric static stability. The decreases in cloud buoyancy due
to entrainment of dry air are captured by SUBSATL. The
empirical buoyancy framework therefore quantifies the joint
influence (Louf et al. 2019; Powell 2019; Tian and Kuang
2019) of moisture and CAPE on precipitation.

The buoyancy framework can be used to study precip-
itation distributions, provided one has knowledge of BL

evolution. The problem can be simplified by assuming that
CAPEL remains fixed, so that BL variations can be tracked
purely by moisture variations. Under this assumption, the
buoyancy threshold for precipitation, Bc, is transformed
into a moisture threshold, qc. This simple—but empirically
rooted—precipitation parameterization can then be coupled
to equally simple evolution equations for the environmen-
tal thermodynamics. Surprisingly, this has implications for
probabilities of precipitation extremes, as outlined in the
following section.

How Precipitation Distributions Arise:
Variations Across a Moisture/Buoyancy
Threshold

Denoting the size of a precipitation event as S, measured
in units of mm, a key quantity of interest is the pdf ps(S)

of event sizes. The event size pdf can be measured from
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observational data or climate model data (Peters et al. 2002;
Neelin et al. 2008; Peters et al. 2010; Deluca and Corral
2014; Neelin et al. 2017; Martinez-Villalobos and Neelin
2018), and has been seen to take the form

ps(S) ∝ S−τ exp[−S/SL], (12)

which includes a power law range due to S−τ , and an
exponential decay exp[−S/SL] that becomes significant for
the largest events beyond a large cutoff size SL (Stechmann
and Neelin 2011, 2014; Neelin et al. 2017). See Fig. 4 for
an illustration of the pdf from observational data.

Also shown in Fig. 4 is the pdf for a related quantity, the
daily precipitation, i.e., the amount of precipitation P that
falls in one day, whose pdf has a less-steep, approximately
power law range. The power law range is slightly less
steep in the midlatitude compared to the tropical case (in
part due to 1-h vs 1-m data), but the pdf still shows
essentially the same functional form. There is a long history
of approximating rainfall distributions for daily average
intensities (or similar averaging interval) as a gamma
distribution

pP (P ) ∝ P −τP exp[−P/PL], τP < 1 (13)

(Barger and Thom 1949; Thom 1958; Groisman et al. 1999)
including for projections of changes under warming (Wilby
and Wigley 2002; Watterson and Dix 2003) (noting that
some related distributions have also been used (Papalexiou
and Koutsoyiannis 2013; O’Gorman 2014; Kirchmeier-
Young et al. 2016; Moustakis et al. 2021)). We are now in a
position to explain the physics behind this, beginning with
an explanation of the event accumulation size distribution,
which is simpler because it involves only the precipitating
regime.

Why does the event size pdf take the form of (12)?
A theory can be described using some of the intuition
from previous sections (Stechmann and Neelin 2011, 2014;
Hottovy and Stechmann 2015b, Neelin et al. 2017). Two
important ingredients are (1) the threshold provided by the
rapid onset in (10) and Fig. 3, and (2) variations across
that threshold. To see this, consider the evolution equation
for vertically integrated moisture from (1a), and write it in
approximate form as

dq = −Pdt + D̃1/2dW̃t , (14)

where the moisture convergence 〈∇ · vq〉 and evaporation
E have been approximated by white noise. The parame-
terization of P could be as in (10), which indicates the
first important ingredient: a threshold in buoyancy and
therefore in moisture. The second important ingredient is
that the evolution in (14) governs the variations in both
non-precipitating and precipitating regimes.

To arrive at the event size pdf in (12), consider the
evolution of moisture, according to (14), at the start of a

precipitation event. Prior to the start of the event, P = 0
in (14). At the start of the event, P turns on, and one can
replace time with a running accumulation S̃, i.e., the amount
of water rained out up to time t within an event:

S̃(t) =
∫ t

t0

P(t ′)dt ′, i.e., dS̃ = Pdt . (15)

The size S of an event is simply the value of the running
accumulation S̃ when the event terminates. Since dS̃ =
Pdt , one can rewrite (14) as

dq = −dS̃ + D1/2dWS̃ . (16)

The event size S can now be viewed as the “time” elapsed
in waiting for moisture to decrease below a threshold
value, similar to the threshold in (10), at which point
the precipitation terminates. This is a first-passage-time
problem for the stochastic differential equation in (16),
and it can be solved analytically for the event size pdf
ps(S), leading to the form shown in (12) (Gardiner 2009;
Stechmann and Neelin 2014). Intuitively, the two parts of
the pdf—the power law S−τ and the exponential decay
exp[−S/SL]—arise from the two parts of the stochastic
evolution in (14). In particular, the stochastic variability
from D̃1/2dW̃t leads to the power law by the random
crossing of a threshold, and after enough time has elapsed,
the precipitation loss −Pdt becomes more important and
eventually cuts off the power law. These two processes are
of equal importance at the cutoff scale, SL.

While physically accumulations (from event onset
to termination) provide a more fundamental connection
between the moisture budget and precipitation pdfs, in
practice precipitation aggregated over fixed time intervals
(e.g., daily precipitation) is the main object of the research
community interest. An important distinction between
event accumulation and daily precipitation is that the
accumulation only depends on dynamics occurring while
precipitating whereas daily precipitation mixes dynamics
occurring at wet and dry times. This distinction has an
important imprint in the resulting accumulation and daily
precipitation pdfs. Figure 4 shows the typical shape of
these pdfs for one location in the tropics (Fig. 4a) and one
location in midlatitudes (Fig. 4b). In both cases pdfs display
a power law range for low and moderate values and a cutoff
scale where the probability drops much faster, in agreement
with the stochastic prototype for accumulations. The main
difference is the gentler power law exponent τP for daily
precipitation (τP < τ ), which can be explained using the
stochastic prototype for accumulations as a starting point.
Under suitable conditions for the length of accumulation
events with respect to the averaging interval (e.g., 1 day
for daily precipitation), daily precipitation is approximately
the summation of individual accumulation events within a
day. This reduces daily precipitation power law exponent
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Fig. 4 Example of accumulation and daily precipitation pdfs in (a) a
location in the tropics (Manus Island, 2◦ 3′ S, 147◦ 25′ E) and (b) mid-
latitudes (Hartford Airport, CT, USA, 41◦ 56′ N, 287◦ 19′ E). Manus
Island pdfs calculated from 1-min data quantized at 0.1 mm

min
intervals.

Hartford Airport pdfs calculated from 1-h data quantized at 0.254 mm
h

intervals. Blue and red circles denote the location of the accumula-
tion cutoff SL and daily precipitation cutoff PL, respectively. Adapted
from Martinez-Villalobos and Neelin (2019)

because days with multiple accumulation events contribute
to a larger probability of higher daily precipitation amounts
at the expense of low and moderate amounts, flattening the
power law range (Martinez-Villalobos and Neelin 2019).
The daily precipitation cutoff scale PL is set by the
underlying accumulation cutoff scale SL (confirmed in
observations over the USA, see Martinez-Villalobos and
Neelin 2018), implying that daily precipitation extremes are
approximately controlled by the same balances (fluctuations
in moisture convergence vs moisture loss by precipitation)
as accumulation extremes (Martinez-Villalobos and Neelin
2019).

Climate models are known to exhibit errors in the current
climate simulation of precipitation distributions, including
too-frequent occurrences of low intensity rain (Hagos et al.
2021), and considerable differences at high percentiles
(Pendergrass and Hartmann 2014; Goldenson et al. 2021;
Norris et al. 2021; Fiedler et al. 2020). While marginal
improvements are noted in Coupled Model Intercomparison
Project Phase 6 (CMIP6) over earlier CMIP5 models in
simulating precipitation extremes, inter-model spread and
biases persist in the latest generation of models (Chen
et al. 2020; Ha et al. 2020; Kim et al. 2020; Scoccimarro
and Gualdi 2020; Wehner et al. 2020; Wehner 2020; Zhu
et al. 2020; Chen et al. 2021; Li et al. 2021). How can
the new connection of the precipitation intensity pdf to the
thermodynamic environment inform this discussion? First,
it suggests that the low-to-medium range intensity errors
could be associated with a deficiency of variability, or an
insufficiently sharp onset of precipitation as a function of
moisture and temperature—both of which can occur in
models. Second, it suggests that both of these factors affect

the physical precipitation scale PL, governing the medium-
to-high intensity range. This is consistent with the impact
of resolution increases (Roberts et al. 2018; Wehner et al.
2014), increasing PL while maintaining the shape of the
medium-high intensity range, and of stochastic convective
parameterization (Wang et al. 2021) which improves both
ranges. In CMIP6 models (Martinez-Villalobos and Neelin
2021), the observed shape of the medium-high intensity
range, and the spatial and seasonal changes in PL are
proportional to observed, yielding encouraging indications
that fractional changes in the extreme events distribution
may be reliable despite inter-model differences in the
absolute value of this key parameter.

How Precipitation Distributions Change:
Changes in Extremes

Physical insight from the stochastic prototype points
to a single precipitation scale for accumulation (SL)
and daily precipitation (PL) that encapsulate dynamical
and thermodynamical effects for extremes. Because both
thermodynamic and dynamic effects enter into the same
cutoff scale (SL, or PL), this scale provides a useful
test, in a single quantity, of both thermodynamic and
dynamic effects. In comparison to the common use of
percentiles, one advantage of using the cutoff scale PL

for extreme precipitation change assessment is that it is a
more fundamental quantity, whose physics and connection
to the moisture budget are relatively well understood, as
outlined in the Section “How Precipitation Distributions
Arise: Variations Across a Moisture/Buoyancy Threshold”.
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Fig. 5 Examples of changes in
key aspects of precipitation pdfs
under warming. a US Northeast
daily precipitation pdfs in
CESM2 simulated for historical
(blue; 1990–2014) and
end-of-century (red;
2075–2099) SSP5-8.5 scenario
radiative forcing. Note increases
in the extreme tail under global
warming associated with an
increase in the precipitation
scale PL. b Daily precipitation
risk ratios in two different
regions (indicated by red boxes
in c) for CESM2. Systematic
increases for the largest events
are controlled by �PL versus
PL. c Percent change in PL

between 2075–2099 compared
to 1990–2014 in CESM2. d
Same as a but for GFDL-CM4.
The 7% K−1 contour interval
corresponds approximately to
multiples of CC scaling

c)

d) 

a) b)

The scale PL is also less affected than percentiles by
the low-to-moderate range of the distribution for which
models can exhibit substantial deficiencies (Pendergrass
and Hartmann 2014; Hagos et al. 2021). We thus illustrate
changes from example CMIP6 models in terms of this view
of the distribution, and use it as a lens to review prior results.

For daily precipitation, Fig. 5a shows the pdf for an
example region. Increases in PL with warming tend to
stretch the pdf: the medium-large intensity regime where

the pdf drops steeply in Fig. 5a shifts accordingly. This
results in large increases in the probability of extremes,
which is exacerbated with event rareness, as noted in
various forms in multiple studies (e.g., Kunkel et al. 2013;
Fischer and Knutti 2016; Pendergrass 2018; Myhre et al.
2019; Li et al. 2019; Kirchmeier-Young and Zhang 2020),
including assessments based on CMIP6 models (Li et al.
2020; Akinsanola et al. 2020; Gupta et al. 2020; Ge et al.
2021; Dong et al. 2021). This is illustrated in Fig. 5b, which
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shows the risk ratio (ratio between future and historical
exceedances, conditioned on wet day occurrence) in two
different regions in CESM2. In the US Northeast region
(40◦–48◦ N, 280◦–293◦ E) the model shows a 10-fold
increase in the probability of daily precipitation larger than
about 100 mm (note logarithmic x-axis). A similar shape
of the risk ratio occurs in the Southeast Asian region
(15◦–30◦ N, 90◦–120◦ E) with increases in probability of
almost 20 times for daily precipitation larger than 300 mm,
consistent with the analysis in (Ge et al. 2021) over a
similar region. Models’ representation of this characteristic
risk ratio shape is in agreement with theoretical findings
(Martinez-Villalobos and Neelin 2019, Fig. 8), and mirror
observed accumulation and daily precipitation risk ratios in
the USA (Martinez-Villalobos and Neelin 2018) and China
(Chang et al. 2020), as well as accumulation risk ratios in
CESM1 (Neelin et al. 2017).

If the exponent of the approximately power law range
does not change substantially, as illustrated in Fig. 5a, PL

governs a simple rescaling of the entire distribution. For
event accumulations, this holds to high accuracy (Peters
et al. 2010; Neelin et al. 2017) because this distribution
involves only the precipitating regime. For daily average
precipitation, this low-to-medium range tends to adjust
slightly if the typical number of events per day changes, an
effect governed by the dynamics of the non-precipitating
intervals (Martinez-Villalobos and Neelin 2019). Even so,
PL governs the scaling of the large event range. Thus, maps
of changes in daily precipitation cutoff scale PL (Fig. 5c,d)
for 2075–2099 under SSP5-8.5 (O’Neill et al. 2016) relative
to historical conditions (1990–2014) summarize scaling
as a function of region in two CMIP6 models (CESM2
and GFDL-CM4). Increases in PL occur in most places
with exception of some sub-tropical regions, as previously
seen for high percentiles (Pall et al. 2007; Pfahl et al.
2017; Hoegh-Guldberg et al. 2018; Norris et al. 2019a). In
midlatitudes, large areas tend to be roughly at CC scaling
(alternating between slightly above and slightly below 7%
K−1), but ocean storm track regions tend to be consistently
above CC. In sub-tropical dry regions there tend to be
decreases or sub-CC scaling. However, in certain regions
of the tropics, substantial areas of super-CC scaling by
factors of 2 to exceeding 4 may be noted, although in the
two examples shown, there is not good agreement on the
specific spatial distribution of these. This summarizes, in
a potentially more interpretable quantity, results seen in
studies based on percentiles or other measures of extremes
(Chen et al. 2021; Yin et al. 2021; Gupta et al. 2020).

Changes in organization of precipitation or in probability
distributions that summarize aspects of convective organization
have also been considered. One of the simplest behav-
iors is for area of clusters of contiguous precipitating
points (Peters et al. 2009; Wood and Field 2011) or for

precipitation integrated over these clusters, termed clus-
ter power. The probability distribution of tropical cluster
power has a power law range followed by an approximately
exponential cutoff in observations, which is reasonably
simulated by climate models (Quinn and Neelin 2017a;
2017b). The cutoff scale increases in a warming climate,
yielding probability increases for the largest clusters (Quinn
and Neelin 2017b) analogous to those described for the
distribution of precipitation accumulations or intensity.
While quantitative changes vary among models, the tropical
cutoff scale increase can be super-CC (Quinn and Neelin
2017a). Explanations for the distribution shape and for the
physics of the cutoff scale are slightly more complex than
for precipitation distribution discussed in the Section “How
Precipitation Distributions Arise: Variations Across a
Moisture/Buoyancy Threshold” due to the involvement of
interactions between neighboring grid cells (Hottovy and
Stechmann 2015a; Ahmed and Neelin 2019) but it appears
to similarly be a physical scale governed by the moist
physics of a climate model. Other results involving clusters
can be more complex. In Chang et al. (2016), spatiotem-
poral clusters at midlatitudes over the USA exhibit partial
compensation for increased intensity by reduced storm size.

Other effects not taken into account in the simple CC
paradigm include the role of intermittency (Schleiss 2018;
Visser et al. 2020) and the duration of precipitating events
(Stechmann and Neelin 2014; Wasko et al. 2015; Norris
et al. 2019b).

Discussion and Conclusions

There has been considerable progress in quantifying
changes in precipitation distributions under warming as sim-
ulated in climate models. The default comparison has been
to whether increases in high percentiles tend to scale propor-
tional to expectations from Clausius-Clapeyron increases
in moisture. There has been increasing recognition that
departures from this scaling occur both in climate change
simulations and within current observations. The sense
that these must be associated with feedbacks from con-
vective heating to the circulation is here summarized by
showing that when the moisture and thermodynamic equa-
tions are considered together, such dynamical feedbacks
should be expected unless specific conditions are met
(Section ““Thermodynamic” and Dynamical Contributions
and Issues”). In particular, for precipitation associated with
convective conditions, which occur with large-scale mois-
ture below saturation, such feedbacks are required by the
combination of the moisture equation and thermodynamic
equation. The common term “thermodynamic component”
for changes associated with increased moisture alone can
be severely misleading under these circumstances since
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dynamical changes result from the need to satisfy thermo-
dynamic balances.

In parallel with these developments, there has been
progress in understanding the processes underlying precip-
itation probability distributions—including how they are
shaped by their relationship to their thermodynamic envi-
ronment in current climate. Dynamical insights from this
can help clarify some of the factors at play in changes
under global warming. In particular, these processes yield
relatively simple basic postulates for the form of these
changes.

As a pathway to further insight, it may be fruitful
to bring together the various research threads described
above. We have noted intriguing connections between
the empirical exploration of super-CC scaling in the
moisture-dependence of high percentiles and the onset of
convection as a function of its thermodynamic environment,
whether measured by water vapor and temperature, or by
an empirical buoyancy variable (Section “Precipitation
Relationship to the Thermodynamic Environment”). The
role of the thermodynamic environment in dictating con-
vective heating-convergence feedbacks through a gross
moist stability may be valuable in understanding regions
of super-CC scaling (the Sections ““Thermodynamic” and
Dynamical Contributions and Issues” and “Scaling
Arguments). Finally, the connection between key fea-
tures of the precipitation probability distribution and
fluctuations across the sharp onset threshold of precip-
itation given by the thermodynamic environment (the
Section “How Precipitation Distributions Arise: Variations
Across a Moisture/Buoyancy Threshold”) are only begin-
ning to be exploited for the analysis of global climate mod-
els (the Section “How Precipitation Distributions Change:
Changes in Extremes”). Quantities such as the precipitation
scale—incorporating both dynamic and thermodynamic
effects—that governs the medium-to-high intensity range
for precipitation pdfs appear promising as tools for eluci-
dating precipitation probability changes in global climate
models.
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