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Scintillation Minimization versus
Intensity Maximization in Optimal
Beams: supplemental document

This document contains supporting content for the main article ‘Scintillation Minimization versus
Intensity Maximization in Optimal Beams’.

1. INTRODUCTION

For a beam with mutual intensity function J, the total intensity at the transmitter region is given
by

I0 =
∫

X∈A

J(X, X)dX , (S1)

where A denotes the transmitter region. LetR denote the receiver region. Then this beam has
a total received intensity given by

I =
∫

X1,X2∈A

H(X1, X2)J(X1, X2)dX1dX2 . (S2)

Here H is a Hermitian semi positive kernel given by

H(X1, X2) =
∫

X′∈R

h(X1, X′)h∗(X2, X′)dX′ , (S3)

where h(X, X′) is the propagator function from a point X ∈ A on the transmitter to a point
X′ ∈ R on the receiver. Then the total average intensity and scintillation of the received signal
are given by

E[I] =
∫

X1,X2∈A

E[H](X1, X2)J(X1, X2)dX1dX2 . (S4)

and

S =

∫
X1,X2,X3,X4∈A

J(X1, X2)E[H(X1, X2)H∗(X3, X4)]J∗(X3, X4)dX1dX2dX3dX4( ∫
X1,X2∈A

E[H](X1, X2)J(X1, X2)dX1dX2

)2 − 1 . (S5)

2. REFORMULATION OF SCINTILLATION MINIMIZATION AS A CONVEX CONSTRAINED
OPTIMIZATION PROBLEM

Now we show that the problem of minimizing scintillation can be reformulated as an equiva-
lent problem of minimizing a quadratic quantity with a constraint. To see this, first note that
scintillation involves a ratio,

S =
E[I2]

E[I]2
− 1 (S6)

and recall that I is linearly related to J, see Eq. (S2). Therefore, rescaling J by a constant α ̸= 0 is
not going to change the value of S ; i.e.,

J̃ = αJ ⇒ Ĩ = αI ⇒ S̃ = S .

Since a constant rescaling of J gives the same scintillation index, there is no need to consider
all possible J. Instead, one can consider a constrained class of J, so that any J can be written
as a rescaling of an element in this class. There are many choices to select such a constrained
class, and a convenient choice is to select the constraint so that E[I] = 1, which renormalizes the
denominator in the definition of scintillation. Hence we can define an equivalent reformulation of



the scintillation index minimization problem into a constrained optimization problem in Eqn. (7)
of the main text, where we require the constraint E[I] = 1.

One advantage of this reformulation is that the original non-convex optimization problem
(minimizing scintillation index directly) is now turned into a convex problem, where many
optimization packages are readily applicable.

3. ANALYTICAL MINIMIZER

Consider a beam with the mutual intensity given by the Dirac delta function:

J(X1, X2) = δ(X1 − X2) . (S7)

Suppose the turbulence depends only on the phase of the propagator as

h(X1, X) = h0(X1, X)eiψ(X1) , (S8)

where h0 is the propagator in uniform medium and ψ denotes a random function of turbulence.
Such a form of the propagator arises, for instance, for a single phase screen model of a turbulent
medium. Plugging Eq. (S7) into the above equation gives the expression of received intensity as

I =
∫

X1,X2∈A

δ(X1 − X2)e
i
(

ψ(X1)−ψ(X2)
)

dX1dX2

∫
X∈R

h0(X1, X)h∗0(X2, X)dX

=
∫

X1∈A

∫
X∈R

|h0(X1, X)|2dX1dX .
(S9)

This shows that the total received intensity is a deterministic quantity, yielding an intensity
variance of zero.

However, it has to be noted that, if the mutual intensity above is J(X1, X2) = δ(X1 − X2), then
the initial intensity I0 involves J(X, X) = δ(0). Since the Dirac delta function is not well defined
at 0, the initial intensity of this beam is an indeterminate quantity.

In order to avoid this ambiguity of δ(0), we use a mutual intensity function with a finite width,
specified by ϵ:

J(X1, X2) =
Iϵ(X1 − X2)

H0(0)ϵ|A|
, (S10)

where Iϵ is the indicator function given by

Iϵ(X) =

{
1, |X| ≤ ϵ

0, |X| > ϵ .
(S11)

H(X1, X2) in uniform medium is a function of only the difference X1 − X2 [1] which we denote
by H0(X1 − X2). Using Eq. (S1) and Eq. (S2), this beam has a total intensity of

I0 =
1

H0(0)ϵ
, (S12)

at the transmitter and a received intensity of

I =
1

H0(0)ϵ|A|

∫
X1,X2∈A,|X1−X2|<ϵ

H(X1, X2)dX1dX2 . (S13)

Using the single phase screen model for turbulence, H takes the form

H(X1, X2) = H0(X1 − X2)ei[ψ(X1)−ψ(X2)] , (S14)

where ψ s a random phase such that ψ(X′1)− ψ(X′2) is a stationary random process with mean
0 and covariance Dψ [2], the structure function of turbulence. This gives the expected value of
received intensity as

E[I] =
1

H0(0)ϵ|A|

∫
|X1−X2|<ϵ
X1,X2∈A

H0(X1 − X2)e−
Dψ (X1,X2)

2 dX1dX2 . (S15)
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In a small region |X1 − X2| < ϵ, we have that

H0(X1 − X2) = H0(0) + (X1 − X2)H′0(0) +O(|X1 − X2|2) = H0(0) +O(ϵ) (S16)

Plugging this into Eq. (S15) gives us

E[I] = 1 +O(ϵ) . (S17)

This means that the beam in Eq. (S10) has a received intensity of 1 at the leading order. Similarly,
we can compute the expectation of I2 as [2]:

E[I2] =
1

(H0(0)ϵ|A|)2

∫
|X1−X2|,|X3−X4|<ϵ

X1,X2,X3,X4∈A

H0(X1 − X2)H∗0 (X3 − X4)e−
C(X1,X2,X3,X4)

2 dX1dX2dX3dX4 , (S18)

where C is given by

C(X1, X2, X3, X4) = Dψ(X1, X2) + Dψ(X3, X4)− Dψ(X1, X4)

− Dψ(X2, X3) + Dψ(X1, X3) + Dψ(X2, X4) .
(S19)

Using Eq. (S15) and Eq. (S18) gives the variance of total intensity as

E[I2]− (E[I])2 =
1

(H0(0)ϵ|A|)2

∫
|X1−X2|,|X3−X4|<ϵ

X1,X2,X3,X4∈A

H0(X1 − X2)H∗0 (X3 − X4)
(

e−
C(X1,X2,X3,X4)

2 − e−
Dψ (X1,X2)+Dψ (X3,X4)

2

)
dX1dX2dX3dX4 .

(S20)
Using Eq. (S19), the exponential terms in the integral can be written as

e−
C(X1,X2,X3,X4)

2 − e−
Dψ (X1,X2)+Dψ (X3,X4)

2 = e−
Dψ (X1,X2)+Dψ (X3,X4)

2

(
e−

−Dψ (X1,X4)−Dψ (X2,X3)+Dψ (X1,X3)+Dψ (X2,X4)
2 − 1

)
.

(S21)
Note that Dψ(X1, X2) = Dψ(X1 − X2) is an increasing function of |X1 − X2|, often a power law
with Dψ(X1, X1) = 0 [2]. So when |X1 − X2| and |X3 − X4| are confined to small regions of size ϵ,
we have that

Dψ(X1, X2) = Dψ(X1, X1) + (X2 − X1)D′ψ(X1, X1) +O(|X2 − X1|2) = O(ϵ) . (S22)

Similarly,
Dψ(X3, X4) = O(ϵ) . (S23)

Using Eq. (S22) and Eq. (S23), we get the estimate

e−
Dψ (X1,X2)+Dψ (X3,X4)

2 = 1 +O(ϵ) (S24)

Similarly, we have

− Dψ(X1, X4)− Dψ(X2, X3) + Dψ(X1, X3) + Dψ(X2, X4)

= −Dψ(X1, X3)− (X4 − X3)D′ψ(X1, X3) +O(|X4 − X3|2)− Dψ(X2, X3)

+ Dψ(X1, X3) + Dψ(X2, X3) + (X4 − X3)D′ψ(X2, X3) +O(|X2 − X3|2)

= (X4 − X3)
(

D′ψ(X2, X3)− D′ψ(X1, X3)
)
+O(ϵ2)

= O(ϵ2) ,

(S25)

and we obtain

e−
−Dψ (X1,X4)−Dψ (X2,X3)+Dψ (X1,X3)+Dψ (X2,X4)

2 − 1 = O(ϵ2) (S26)
Using Eq. (S24) and Eq. (S26) in Eq. (S20), we obtain the variance of the total received intensity as

E[I2]− (E[I])2 =
O(ϵ2)

(H0(0)ϵ|A|)2

∫
|X1−X2|,|X3−X4|<ϵ

X1,X2,X3,X4∈A

H0(X1 − X2)H∗0 (X3 − X4)dX1dX2dX3dX4 (S27)

Performing a similar approximation as Eq. (S16) in the region |X3 − X4| < ϵ and plugging
into Eq. (S27) gives

E[I2]− (E[I])2 = O(ϵ2) . (S28)
This shows that the beam Eq. (S10) minimizes scintillation as ϵ → 0. However, such a beam
should also be transmitted using a very high intensity as is evident from Eq. (S12).
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Multiple phase screen model
The result above that a mutual intensity function in the form of a Dirac delta minimizes scintil-
lation can be extended to a multiple phase screen model of turbulence as well. Also, since the
splitting method for the paraxial wave equation [3] can be interpreted as a multiple phase screen
model, this result is potentially relevant for a general class of refractive indices.

Consider a multiple phase screen model with N phase screens placed at locations zi, with phase
{ψi} where i = 0, · · ·N − 1. Let uiψ,ω (Xi), Xi ∈ Rd denote the total field arriving at the ith phase
screen. ψ denotes the randomness wrt the medium and ω denotes the randomness wrt the source.
Let Ji(Xi, Yi), Xi, Yi ∈ Rd denote the corresponding mutual intensity function. Without loss of
generality, let z0 = 0. Then uiψ,ω (Xi) is given by

uiψ,ω (Xi) =
∫

Xi−1

G(Xi − Xi−1, zi − zi−1)eiψi−1(Xi−1)ui−1ψ,ω dXi−1 , (S29)

where G is the propagator function defined by

G(X, z) =
( k

2πiz

)d/2
exp

( ik∥X∥2

2z

)
. (S30)

Let E[·]ψ,ω denote an expectation wrt ψ and ω. Using the definition of the mutual intensity
function, this gives

J(Xi, Yi) = E[uiψ,ω (Xi)u∗iψ,ω
(Yi)]ψ,ω

=
∫

Xi−1,Yi−1

G(Xi − Xi−1, zi − zi−1)G∗(Yi −Yi−1, zi − zi−1)

×E[ei[ψi−1(Xi−1)−ψi−1(Yi−1)]ui−1ψ,ω (Xi−1)u∗i−1ψ,ω
(Yi−1)]ψ,ωdXi−1dYi−1 .

(S31)

Note that ui−1ψ,ω (Xi−1) depends only on {ψm(Xm)}i−2
m=1 and ω. This means ψi−1(Xi−1) and

ui−1ψ,ω (Xi−1) are independent random variables. This gives us

J(Xi, Yi) =
∫

Xi−1,Yi−1

G(Xi − Xi−1, zi − zi−1)G∗(Yi −Yi−1, zi − zi−1)

×E[ei[ψi−1(Xi−1)−ψi−1(Yi−1)]]]ψ,ωE[ui−1ψ,ω (Xi−1)u∗i−1ψ,ω
(Yi−1)]ψ,ωdXi−1dYi−1

=
∫

Xi−1,Yi−1

G(Xi − Xi−1, zi − zi−1)G∗(Yi −Yi−1, zi − zi−1)

×E[ei[ψi−1(Xi−1)−ψi−1(Yi−1)]]]ψ,ω Ji−1(Xi−1, Yi−1)dXi−1dYi−1 .

(S32)

Now suppose Ji−1(Xi−1, Yi−1) is of the form

Ji−1(Xi−1, Yi−1) = δ(Xi−1, Yi−1) . (S33)

Plugging the form of Ji−1 in Eq. S33 into Eq. S32 gives

Ji(Xi, Yi) =
∫

Xi−1

G(Xi − Xi−1, zi − zi−1)G∗(Yi − Xi−1, zi − zi−1)dXi−1 . (S34)

Expanding G according to S30 and substituting in S34 gives

Ji(Xi, Yi) = G(Xi, zi − zi−1)G∗(Yi, zi − zi−1)
∫

Xi−1

exp
(
− ikXi−1 · (Xi −Yi)

zi − zi−1

)
dXi−1

=
(2π(zi − zi−1)

k

)d
G(Xi, zi − zi−1)G∗(Yi, zi − zi−1)δ(Xi −Yi)

= δ(Xi −Yi)

(S35)

This means that mutual intensity function which is a delta function continues to stay a delta
function as it propagates through multiple layers of phase screens. Finally at the last phase screen,
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we can use the argument of a single phase screen case to conclude that the received intensity is
deterministic, and has a scintillation of zero.

Remark: It has to be noted that in the proof above, we have considered the domain of the
source to be all of Rd. This is not the case in practical applications; however, for sufficiently large
transmitter sizes, a Dirac delta mutual intensity function should potentially still have near zero
scintillation. In more detail, if a finite transmitter size is used, then Eq. (S35) is modified as:

Ji(Xi, Yi) = G(Xi, zi − zi−1)G∗(Yi, zi − zi−1)
∫

Xi−1∈A

exp
(
− ikXi−1 · (Xi −Yi)

zi − zi−1

)
dXi−1 . (S36)

For a one dimensional transmitter region, say A := (−r, r), this becomes:

Ji(Xi, Yi) = 2rG(Xi, zi − zi−1)G∗(Yi, zi − zi−1)sinc
( rk(Xi −Yi)

zi − zi−1

)
, (S37)

where sinc(x) = sin(x)
x denotes the sinc function. Using the definition of G in Eq. (S30), we have

Ji(Xi, Yi) =
( rk

π(zi − zi−1)

)
sinc

( rk(Xi −Yi)

zi − zi−1

)
︸ ︷︷ ︸

fγ

exp
( ik

2(zi − zi−1)
(∥Xi∥2 − ∥Yi∥2)

)
,

(S38)

where we used the notation fγ(x) = γ
π sinc(γx) with γ = rk

zi−zi−1
. Compared with the exponential

factor in Eq. (S38) which has length scale lre f = ((zi − zi−1)/k)1/2, the fγ(x) factor will be
approximately a delta function if γlre f ≫ 1. I.e.,

fγ(x) ≈ δ(x) as γlre f ≫ 1 , (S39)

so that one can regard Ji(Xi, Yi) as a delta function provided that the relation r ≫ zi−zi−1
klre f

, or
equivalently r ≫ lre f , approximately holds.

4. DISCRETIZATION

Let the transmitter plane be discretized as Xi, i = 1, · · · , n. Then in discrete form, J is a Hermitian
semi positive definite matrix of dimension n× n such that Ji,j = J(X1i , X2j ), i, j = 1, · · · n. Simi-
larly, H is a Hermitian semi positive definite matrix of size n× n such that Hi,j = H(X1i , X2j ) and
A is a tensor of dimensions n× n× n× n such that Ai,j,k,l = E[Hi,j H∗k,l ]. Then constraint on the
received intensity takes the form of a trace operator upon discretization:

E[I] =
∫

X1,X2∈A

E[H](X1, X2)J(X1, X2)dX1dX2
discretization−−−−−−−→ Tr(E[H]J⊤) . (S40)

Then the scintillation minimization problem has the form

min
J

f (J) s.t. J ∈ C, (S41)

where the cost function f is given by the quadratic form

f (J) = J∗AJ = ∑
i,j,k,l

Jij Aijkl J∗kl , (S42)

and the constraint is given by the set

C := {J : Tr(E[H]J⊤) = 1} ∩ {J : J ∈ Sn
+} . (S43)

Sn
+ denotes the set of Hermitian semi positive definite matrices of size n× n.
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5. CONVEXITY OF THE PROBLEM

It can be shown that the cost function f (J) is convex for any complex valued J. Let J ∈ Cn×n.
Using the definition of A,

J∗AJ = E
[

∑
i,j,k,l

Ji,j Hi,j H∗k,l J∗k,l

]
= E

[∣∣∣∑
i,j

Ji,j Hi,j

∣∣∣2] ≥ 0 ∀J ∈ Cn×n
(S44)

Now we have to prove that the constraint forms a convex set as well. First consider the set
C1 = {J : Tr(E[H]J⊤) = 1}. Then if J1, J2 ∈ C1, for any α ∈ [0, 1],

Tr(E[H][αJ⊤1 + (1− α)J⊤2 ]) = 1 (S45)

So the constraint on the trace gives a convex set when J ∈ Cn×n. Since the set of semi positive
definite matrices is also is a convex set in Cn×n, we have that the set of constraints C also form a
convex set.

6. OPTIMIZATION ALGORITHM

We have to minimize a convex function on a convex set. In this case we can use a projected
gradient descent(PGD) algorithm [4]. For a step size αm, the PGD algorithm updates as follows:

Jm+1 = PC (Jm − αm∇ f (Jm)), m = 0, 1, · · · (S46)

where PC is the projection onto the set of constraints given by

PC (Jm − αm∇ f (Jm)) = arg min
J∈C

∥Jm − αm∇ f (Jm)− J∥2
F , (S47)

where ∥ · ∥F denotes the Frobenious norm. The gradient of the cost function can be computed
using the formula:

∇J f (J) = J∗A := {∑
k,l

Ai,j,k,l J∗k,l}i,j . (S48)

The projection problem Eq. (S47) has a unique solution since C is closed and convex[4]. Eq. (S47)
seeks to find the nearest semi positive definite Hermitian matrix to the update from regular
gradient descent, with received intensity equal to 1. In other words, we need an algorithm to
solve the following constrained optimization problem:

min
J
∥Jm − αm∇ f (Jm)− J∥2

F

s.t. J ∈ Sn
+ and Tr(E[H]J⊤) = 1

(S49)

Let (X)+ denote the positive part of X given by

(X)+ =
(X + (X∗)⊤)

2
(S50)

Then for a properly chosen α, we can use an adaption of the algorithm in [5]:

Algorithm S1. Projected gradient descent algorithm

while m ≤ M do
Jm,1 ← Jm
while Tr(E[H]Jm,l)− 1 > tol and l ≤ L do

Jm,l+1 ← (X− νm,lE[H])+
νm,l+1 ← νm,l + α[Tr(E[H]Jm,l)− 1]
Jm ← Jm,l
l ← l + 1

Jm+1 ← (Jm − αm∇ f (Jm)− ν∗mE[H])+

6



7. RECONSTRUCTION OF H AND A

When H is low rank, we could use the randomized singular value decomposition(rSVD) algo-
rithm [6] to find H. A can also be reconstructed in a similar manner by reconstructing H multiple
times for different realizations of the random medium.

A. Randomized SVD algorithms
Here, we describe the adaptation to the randomized SVD algorithms we use to construct H and
A. The rSVD algorithm requires only the knowledge of H and A viewed as matrices acting on
random Gaussian vectors. The reconstruction algortithm for H is a straightforward adaptation
of the algorithm in [6] for a Hermitian matrix. The action of H on a Gaussian random vector is
interpreted through forward and adjoint solves of the propagation model.

Algorithm S2. rSVD algorithm for reconstruction of H

Ω := n× k1 + p1 Gaussian random matrix.
Compute Yn×k+p = HΩ using propagation model.
Find Qn×k+p := QR decomposition of Y.
Form Bk+p×k+p = Q∗HQ.
Find the eigenvalue decomposition of the small matrix B : B = UΣU∗.
Ũ = QU
H ≈ ŨΣŨ∗

The reconstruction of A requires an additional element of Monte Carlo averaging. A is in-
terpreted as ∑ω(H∗ω)H⊤ω for many realizations of the random variable ω representing different
configurations of the random medium. Hω denotes the profile of H (viewed as a vector) for each
realization of the random variable ω and this is constructed every time using the rSVD algorithm
for H. The action of each of these Hω(H∗ω)⊤ on a Gaussian random vector is captured using the
propagation model and finally averaged to compute an approximation for the action of A on a
Gaussian random vector.

Algorithm S3. rSVD algorithm for reconstruction of A

while i ≤ I do
Form Hi using Algorithm S2 for a realization of random medium i
Ω := n2 × k2 + p2 Gaussian random matrix.
Compute Yi,n×k2+p2 = Hi H∗i Ω
Find the average: ∑i Yi,n×k2+p2 /I

Qn×k2+p2 := QR decomposition of Y
while i ≤ I do

Form Hi using Algorithm S2 for a realization of random medium i
Bk+p×k2+p2 = Q∗Hi H∗i Q
Find the average: ∑i Yi,n×k2+p2 /I

Find the eigenvalue decomposition of the small matrix B : B = UΣU∗

Ũ = QU
A ≈ ŨΣŨ∗

B. Computing HΩ and the adjoint equation
To implement the rSVD algorithm, we need an efficient way to compute the matrix vector product
HΩ, where Ω is a random vector. From the definition of H,

HΩ = ∑
X2

H(X1, X2)Ω(X2) =
∫

X′∈R

h(X1, X′)∑
X2

h∗(X2, X′)Ω(X2) (S51)

Note that ϕ̃(X′) = ∑
X2

h∗(X2, X′)Ω(X2) =
(

∑
X2

h(X2, X′)Ω(X2)
∗)∗ denotes the conjugate of the

solution to the propagtion model with a source given by Ω∗, at a point X′ on the receiver. The
action of h(X1, X′) on this term is equivalent to solving the adjoint solution to the propagtion

7



model with a source given by ∑
X2

h∗(X2, X′)Ω(X2). Finally we can do an empirical average over

many such realizations to compute the expectation over the random medium E[·].
Suppose we use the paraxial wave equation(PWE) as the propagation model. Then the complex

amplitude of the signal A(X, z) is given by:

∇2
X A + 2ik∂z A + k2VA = 0

A(X, 0) = ϕ(X) .
(S52)

Here, V = n2− 1, where n is the random refractive index of the medium. The propagator function
h(X1, X) maps a delta function source located at the point (X1, 0) to the signal at a point (X, z).
We introduce the z dependence on h as h = h(X, X′, z). Related discussion can be found in [7].
Now, for fixed point X1 on the transmitter, h(X1, X, z) solves the PWE:

∇2
Xh + 2ik∂zh + k2Vh = 0

h(X1, X, 0) = δ(X− X1)
(S53)

Let h†
Z(X, X2, z) denote the solution to the adjoint equation. Drop the Z subscript for convenience.

Conjecture is that h(X1, X2, Z) = h†(X1, X2, 0), with the adjoint equation being

∇2
Xh† − 2ik∂zh† + k2Vh† = 0

h†(X, X2, Z) = δ(X− X2)
(S54)

Proof: Multiply Eq. (S53) with h†(X, X2, z) and vice versa and subtracting gives

h†(X, X2, z)∇2
⊥h(X1, X, z)− h(X1, X, z)∇2

⊥h†(X, X2, z)

+ 2ik[h(X1, X, z)∂zh†(X, X2, z) + h†(X, X2, z)∂zh(X1, X, z)] = 0
(S55)

Integrating the above equation in X, z gives

∫
X∈Rd

Z∫
z=0

h†(X, X2, z)∇2
⊥h(X1, X, z)− h(X1, X, z)∇2

⊥h†(X, X2, z) =

− 2ik
∫

X∈Rd

Z∫
z=0

[h(X1, X, z)∂zh†(X, X2, z) + h†(X, X2, z)∂zh(X1, X, z)]

(S56)

The integral on the RHS reduces to

−2ik
∫

X∈Rd

h(X1, X, Z)h†(X, X2, Z)− h(X1, X, 0)h†(X, X2, 0) = −2ik[h(X1, X2, Z)− h†(X1, X2, 0)]

Using Green’s theorem, the integral on the LHS vanishes proving that

h(X1, X2, Z) = h†(X1, X2, 0) . (S57)

C. Modified cost function
In order to find beams that give low values of scintillation but high enough received intensities,
we consider a modified cost function of the form

f̃ (J) = J∗AJ + µQ(J) . (S58)

Here, Q(J) denotes the square of ratio of intensity lost after propagation through the medium
and the received intensity:

Q(J) =
( I0 −E[I]

E[I]

)2
=

(Tr(J)− Tr(E[H]J∗)
Tr(E[H]J∗)

)2
. (S59)

Note that Q(J) is invariant to scalings of J, i.e, J and αJ, α > 0 give the same value of Q. For fixed
received intensities, say E[I] = 1, Q(J) takes the form of

Q(J) =
(

Tr(J)− 1
)2 , (S60)

which is convex in J.
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D. Numerical examples
In this section, we discuss the numerical setup presented in the main article in detail. For the
multiple phase screen model, we consider a two dimensional setup with reference frequency
k = 2π × 106 rad/m. We assume a transmitter region of (−r, r) with r = 0.04 m and a point
receiver placed at a distance of Z = 2000 m away from the transmitter. To simulate the statistics
of the turbulent medium, we use the method in [8] with the power spectral density for each phase
screen given by:

Φ(K) = 0.023r−5/3
0

exp(−K2/K2
m)

(K2 + K2
0)

5/6
(S61)

with C2
n = 10−13. The value of the Fried parameter for a plane wave source over the full sequence

of phase screens is given by:
r0,pw = (0.423C2

nk2Z)−3/5 (S62)

and is around 0.039 m in this example. We also use 15 phase screens placed at equal distances and
use 50,000 Monte Carlo iterations to generate samples from the random medium. Discretization
in X-direction ∆x = 0.002 such that there are 40 grid points at the transmitter and the simulation
takes place in a larger X domain (−L, L) with L = 2 m.

As a second setup, we use the paraxial wave equation in two dimensions to simulate the field.
Again, we set k = 2π × 106 rad/m and use a point receiver. We use a transmitter size of 0.05 m
and a propagation distance of Z = 3000 m in the z- direction. Suppose the random medium is
given by

n2 − 1 = V = ϵV1 sin(ωxx) sin(ωzz), V1 ∼ N (0, 1) (S63)

with ϵ = 3.5× 10−8, ωx = 2π/L, ωz = 10π/Z where L = 0.8 is the size of the larger simulation
domain of X. We consider 15,000 Monte Carlo samples for the random medium. We also use
∆x = 0.002 such that there are 50 grid point on the transmitter and ∆z = 93.75 so that there are 33
grid point in z direction. For the convenience of the reader, we present a zoomed-in version of
Fig. 4. from the main article.

(a) Phase screen model (b) PDE model

Fig. S1. Scintillation S and intensity quotient Q of optimal J (zoomed-in version of Fig. 4. in
main article). µ is presented on the log-scale.
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