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Energy Principle for the Kessler Scheme

In this section, we will derive the energy principle given in section 4a of the main text. First, we obtain an
expression for the material derivative of II. Using the fact that
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The second and third terms on the right hand side of (2) can be simplified further:

_/ abatot [(bft()t - BU)HU + (bZOt - BS)HS] dzl
0

= —/z H, + (b5 — b — (b, (2) — by(2 /)))c%totH dz’
(3)
/ H,d? —/ (btot — ptet — (Bu(z')—l;s(z’)))%]{udz'

/Hdz

/ (" =0 = (bu(=') = ba(2)) gy Hud' =

where we have used the fact that

A similar procedure yields
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We can integrate the terms [~ H, dz' and [ H,dz' that appear (3) and (4) exactly. Using an integration
by parts we have:
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We have thus shown, so far, that

_/ aliot [(bZOt - Bu)Hu + (szt - BS)HS] d?' = —zH, + a'H(szt - bgm - (Bu - BS)(G))

— 2 H(b — 't — (b, — by)(a)) + 2 H,
and

B / af (057 = bu) Hy + (0 = bo) H,] 2 = = (2 = @) + 2Hy — aH (b = 0™ = (bu = bs)(a))

+ 2, H(bY" — bt — (by — bs)(a)) — z,H,,
in which case,

Dbtot
Dt

20 e s -
_/ 8btot [(bz - bu)Hu + (bg b — bs)Hs] dZ/

= {— zH, + aH (" — bt — (l;u — BS)(a)) — 2, H(b" — bt — (?)u —bs)(a)) + z,.Hu}

(ﬁ(yz) (Rvd - cfg()) %(ﬁ(@‘@%) -9 (Rvd - Cigo + 1)) Sr> ,

and

: 0 tot T tot T /Dbg()t _
_/a dbtot [(bu —by)Hy + (b — bs)H| d= Dt

- { — (2 —a) 4 zH, — aH D — b — (b, — by)(a)) + 2 H (b — bt — (b, — by)(a)) — zHu]

2 %(;xz)qur),

)

where S, = A, +C, — E,.
Combining (10) and (9), and a great deal of simplifying we obtain the material derivative of II:
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Using the momentum equations, it is straightforward to verify that
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Adding p(z)DII/Dt to (12), and using incompressibility, we obtain the desired equation:
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Integrating II for the Anelastic Equations

In this appendix, we provide the details of the decomposition of IT described in section 3b of the main text.
We integrate the term [ (b%°* — b,)H, d2’ by parts:

’

= [ b = —H = = G =) [0 =B as|
a , a - (14)

= [N — NS~ 8~ G~ b)) [ E () ds e

’
z =z

The first term in (14) is straightforward to evaluate:
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For the second term in (14), we multiply the integrand by the characteristic function of [a, z] and integrate
over the entire real line. Doing this ensures that the zero of the delta function’s argument lies in the region
of integration.
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and the integral on the right hand side of (16) becomes
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To see why equations (21) and (22) are true, note that by — bs, and (b, —bs)~! are both monotone (increasing
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Adding these two expression and making further simplifications we obtain
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