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The Madden–Julian oscillation (MJO) is the dominant mode of vari-
ability in the tropical atmosphere on intraseasonal time scales and
planetary spatial scales. Despite the primary importance of the MJO
and the decades of research progress since its original discovery, a
generally accepted theory for its essential mechanisms has remained
elusive. Here we present a new minimal dynamical model for the
MJO that recovers robustly, for the first time, its fundamental fea-
tures (i.e., its “skeleton”) on intraseasonal/planetary scales: (i) the
peculiar dispersion relation of dω/dk ≈ 0, (ii) the slow phase speed
of roughly 5 m/s, and (iii) the horizontal quadrupole vortex struc-
ture. This is accomplished here in a model that is neutrally stable
on planetary scales; i.e., it is tacitly assumed that the primary in-
stabilities occur on synoptic scales. The key premise of the model
is that modulations of synoptic scale wave activity are induced by
planetary scale, low-level moisture preconditiong, and they drive the
“skeleton” of the MJO through modulated heating. The “muscle”
of the MJO—including tilts, vertical structure, etc.—is contributed
by other potential upscale transport effects from the synoptic scales.

Madden–Julian oscillation | convectively coupled equatorial waves | tropical at-

mospheric convection

The dominant component of intraseasonal variability in
the tropics is the 40- to 50-day tropical intraseasonal os-

cillation, often called the Madden–Julian oscillation (MJO)
after its discoverers [1, 2]. In the troposphere, the MJO is an
equatorial planetary-scale wave envelope of complex multi-
scale convective processes. It begins as a standing wave in
the Indian Ocean and propagates eastward across the western
Pacific Ocean at a speed of roughly 5 m/s [3]. The planetary-
scale circulation anomalies associated with the MJO signifi-
cantly affect monsoon development, intraseasonal predictabil-
ity in mid-latitudes, and the development of the El Niño
southern oscillation (ENSO) in the Pacific Ocean, which is
one of the most important components of seasonal prediction
[3, 4].

Despite the widespread importance of the MJO, present-
day computer general circulation models (GCMs) typically
have poor representations of it [5]. A growing body of evi-
dence suggests that this poor performance of GCMs is due to
the inadequate treatment of interactions of organized tropical
convection on multiple spatiotemporal scales [5, 6]. Such hier-
archical organized structures that generate the MJO as their
envelope are the focus of current observational initiatives and
modeling studies [6], and there is a general lack of theoretical
understanding of these processes and the MJO itself.

There have been a large number of theories attempting to
explain the MJO through mechanisms such as evaporation–
wind feedback [7, 8], boundary layer frictional convective in-
stability [9], stochastic linearized convection [10], radiation in-
stability [11], and the planetary-scale linear response to mov-
ing heat sources [12]. While they all provide some insight into
the mechanisms of the MJO, these theories are all at odds with
the observational record in various crucial ways [3, 4], and it
is therefore likely that none of them captures the fundamen-
tal physical mechanisms of the MJO. Nevertheless, they are
all interesting theories that contribute to our understanding
of certain aspects of the MJO. Other insight has been gained
through the study of MJO-like waves in multi-cloud model
simulations [13, 14] and in super-parameterization computer

simulations [15, 16, 17, 18], which appear to capture many of
the observed features of the MJO by accounting for smaller-
scale convective structures within the MJO envelope. The
role of convective momentum transport from synoptic scale
waves in producing key features of the MJO’s planetary scale
envelope has also been elucidated by multi-scale asymptotic
models [19, 20, 21, 22, 23]. Despite all of the interesting con-
tributions listed above, no theory for the MJO has yet been
generally accepted, and the problem of explaining the MJO
has recently been called the search for the Holy Grail of trop-
ical atmospheric dynamics [11]. Here we contribute to this
search.

While theory and simulation of the MJO remain difficult
challenges, they are guided by the generally accepted, fun-
damental features of the MJO (i.e., the MJO’s “skeleton”)
on intraseasonal/planetary scales, which have been identified
relatively clearly in observations:

I. peculiar dispersion relation of dω/dk ≈ 0 [24, 25, 26],
II. slow phase speed of roughly 5 m/s [27, 28, 29], and

III. horizontal quadrupole vortex structure [27, 28, 29].

The goal of the present paper is to design the simplest dy-
namical model that captures the intraseasonal/planetary scale
features of the MJO’s “skeleton” in I–III, and to recover
these features robustly throughout the parameter space of the
model.

Physical Mechanisms and Basis of the Model
Many previous attempts at a theory for the MJO emphasize
different planetary scale instability mechanisms as being fun-
damental to its existence [7, 8, 9, 10, 11, 12]. Here, instead,
the premise is that the intraseasonal/planetery skeleton of the
MJO in I–III arises through neutrally stable interactions. The
tacit assumption is that the primary instabilities and damping
occur on synoptic scales [30, 31, 32], and the “muscle” of the
MJO is provided by convective momentum transport from
synoptic scale waves [19, 20, 21, 22, 23] and enhanced sur-
face heat fluxes [33]. The fundamental mechanism proposed
here for the MJO skeleton involves neutrally stable interac-
tions between (i) planetary scale, lower tropospheric moisture
anomalies and (ii) synoptic scale convectively coupled wave
activity, whose modulations provide the planetary scale heat-
ing anomalies that drive the planetary scale circulation.

Several studies have shown that the lower troposphere
tends to moisten during the suppressed convection phase of
the MJO, and lower tropospheric moisture appears roughly in
quadrature with the MJO’s heating anomaly [34, 35, 36]. It
is well-known that this low-level moisture content plays a key
role in regulating mesoscale convection, and there is a growing
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body of evidence that shows it also plays a key role in regu-
lating convection on the scales of synoptic scale convectively
coupled waves and the MJO [34, 35, 36, 31, 32, 14, 13]. A
fundamental part of the model presented below is the effect
of low-level moisture on the envelope of synoptic scale wave
activity.

The important role of synoptic scale wave activity in
driving the MJO is documented in a growing body of evi-
dence in the form of observations [28, 37, 38], simulations
[15, 16, 17, 13, 14, 23], and theory [18, 19, 20, 21, 22]. This
synoptic scale wave activity is a complex menagerie of con-
vectively coupled equatorial waves, such as two-day waves,
convectively coupled Kelvin waves, etc. [30, 31, 32], and it
drives the MJO in two main ways. First, the planetary scale
MJO skeleton is driven by modulated heating anomalies from
the planetary scale modulations of the synoptic scale wave ac-
tivity [20]. Second, the “muscle” of the MJO is provided by
convective momentum transport from vertically tilted synop-
tic scale waves, which drives the MJO’s westerly wind burst
[23, 18, 19, 20, 22], and enhanced surface heat fluxes [33].

Several previous diagnostic models for the MJO have illu-
minated some of its basic planetary scale features. Matsuno–
Gill models show a basic Kelvin–Rossby wave structure for
the MJO [39, 40], although it lacks the horizontal quadrupole
vortices. This model has been refined by also including three
cloud types (instead of only one) in creating the mean plan-
etary scale heating [20]. Here we formulate a dynamic ver-
sion of a Matsuno–Gill model with the important distinction
that there is no dissipation on planetary scales; i.e., convec-
tive momentum transport does not create mean damping on
intraseasonal/planetary scales. This is in accordance with ev-
idence that convective momentum transport can sometimes
accelerate and sometimes decelerate the mean wind on in-
traseasonal/planetary scales [19, 20, 23, 41, 42]. In fact, no
prominent large scale dissipative mechanisms are included in
the model here except a fixed, constant radiative cooling. The
tacit assumption is that the primary instabilities occur on syn-
optic scales [30, 31, 32]. In short, the flavor of Matsuno–Gill
models is retained here, except there are no dissipative mech-
anisms, and the dynamic heating arises from modulations of
synoptic scale wave activity, which respond to anomalies of
lower tropospheric moisture.

The Dynamic Model
Here, based on the mechanisms outlined in the previous sec-
tion, a dynamic model is designed for the MJO skeleton on
intraseasonal/planetary scales. The model is formulated in
terms of anomalies from a uniform base state of radiative–
convective equilibrium, R̄ = H̄ā, where R̄ = 1 K/d is the
fixed, constant radiative cooling rate, H̄ is a constant heat-
ing rate prefactor, and ā is a constant (nondimensional) am-
plitude of wave activity in the equilibrium state. The dry
dynamical core of the model is the equatorial long-wave equa-
tions [19, 20, 21, 43], and two other dynamic variables are
included to represent moist convective processes:

q : lower tropospheric moisture

a : amplitude of wave activity envelope [1]

The nondimensional dynamical variable a parameterizes the
amplitude of the planetary scale envelope of synoptic scale
wave activity. It is noteworthy that, for the MJO skeleton
model designed here, it is only the amplitude of the wave ac-
tivity envelope that is needed, not any of the details of the
particular synoptic scale waves [30, 31, 32] that make up the
envelope. A key aspect of the model here is the interaction

between a and q: as motivated by the discussion in the previ-
ous section, positive (negative) low-level moisture anomalies
create a tendency to enhance (decrease) the envelope of equa-
torial synoptic scale wave activity. The simplest equation for
the wave activity with these features is at = Γq(ā + a). The
wave activity envelope then feeds back on the other variables
through a heat source H̄a and—in accordance with conserva-
tion of moist static energy—a moisture sink −H̄a. Thus the
model equations for the anomalies from radiative–convective
equilibrium take the form

ut − yv = −px

yu = −py

0 = −pz + θ

ux + vy + wz = 0

θt + w = H̄a

qt − Q̃w = −H̄a

at = Γq(ā + a). [2]

Here u, v, and w are the zonal, meridional, and vertical ve-
locities, respectively; and p and θ are the pressure and po-
tential temperature, respectively. Notice that this model con-
tains a minimal number of parameters: Q̃ = 0.9, the (nondi-
mensional) mean background vertical moisture gradient; and
Γ = 1, where Γq acts as a dynamic growth/decay rate of
the wave activity envelope in response to moisture anomalies.
In dimensional units, Γ ≈ 0.2 K−1 d−1. These will be the
standard parameter values used here unless otherwise noted.
Also notice that the parameter H̄ is actually irrelevant to the
dynamics (as can be seen by rescaling [2] and recalling the
equilibrium condition R̄ = H̄ā), but it is written here for
clarity of presentation.

Vertical and Meridional Truncation.Now we introduce the
simplest dynamical model that looks like the Matsuno–Gill
model plus low-level moisture advection and wave activity. To
obtain this model from [2], first linearize the a equation and
truncate the vertical structures at the first baroclinic mode:

ut − yv − θx = 0

yu − θy = 0

θt − ux − vy = H̄a

qt + Q̃(ux + vy) = −H̄a

at = Γāq. [3]

Note that the variables in [3] have first baroclinic mode ver-
tical structures (either cos(z) or sin(z)) associated with them
[21, 43], and a slight abuse of notation has been made in keep-
ing the same variable labels in [3] as in [2].

The next step in obtaining the simplest dynamical model
for the MJO skeleton is to assume that the modulated
heating due to synoptic scale wave activity has the simple
equatorial meridional structure proportional to exp(−y2/2).
Such a meridional heating structure is known to excite only
Kelvin waves and the first symmetric equatorial Rossby waves
[21, 43], and one can write the resulting meridionally trun-
cated equations as

Kt + Kx = − 1√
2
H̄A

Rt − 1

3
Rx = −2

√
2

3
H̄A

Qt +
1√
2
Q̃Kx − 1

6
√

2
Q̃Rx =

„

−1 +
1

6
Q̃

«

H̄A

At = ΓāQ [4]
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where K and R are the amplitudes of the Kelvin and equato-
rial Rossby waves, respectively, and they have the associated
meridional structures as shown in Fig. 1. In the absence of
forcing, the “dry” long-wave Kelvin and equatorial Rossby
wave solutions of [4] are dispersionless waves that propagate
at 50 and 17 m/s, respectively [21, 43]. In the presence of the
dynamical forcing A in [4], the Kelvin and equatorial Rossby
waves can be coupled to each other and to Q and A, and
these coupled modes can be dispersive. Both Q and A have
associated meridional structures proportional to exp(−y2/2).
A higher meridional mode of moisture is also excited by this
simple equatorial heating, and it evolves as

∂tq2 + Q̃

„

− 1

12
Rx +

1

3
√

2
A

«

= 0, [5]

where q2 has an associated meridional structure proportional
to (2y2 − 1) exp(−y2/2), and it does not feed back onto the
variables K, R, Q, A (i.e., it is slaved to them) due to the as-
sumed meridional truncation of a. The variables u, v, θ are
then recovered by using the formulas [21, 43]

u =
1√
2

„

K − 1

2
R

«

φ0 +
1

4
Rφ2

θ = − 1√
2

„

K +
1

2
R

«
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1

4
Rφ2

v =

„

1

3
Rx − 1

3
√

2
A

«

φ1, [6]

where φ0 ∝ exp(−y2/2), φ1 ∝ y exp(−y2/2), and φ2 ∝
(2y2−1) exp(−y2/2) are the parabolic cylinder functions that
yield the meridional structures of the variables [21, 43]. Thus
the linear equations in [4] provide the simplest dynamical
model for the MJO skeleton by implementing a Matsuno–Gill
model plus low-level moisture advection and equatorial wave
activity.

Formula for Intraseasonal Oscillation Frequency.A formula
for the intraseasonal oscillation frequency ω of the MJO skele-
ton can be obtained by considering the even simpler case of
flow above the equator. In this case, [3] are used, v and y
are set to zero, and meridional derivatives are ignored. The
result is a linear system of four equations for u, θ, q, a, and
the system can be solved exactly due to the perfect east–west
symmetry:

2ω2 = ΓR̄ + k2 ±
q

(ΓR̄ + k2)2 − 4ΓR̄k2(1 − Q̃) [7]

where k is the zonal wavenumber. A simple formula for the
oscillation frequency of the low-frequency waves,

ω ≈
q

ΓR̄(1 − Q̃), [8]

can be obtained from [7] approximately. For the standard
parameter values used here, the oscillation period correspond-
ing to [8] is 45 days, in agreement with observations of the
MJO [24, 25, 26]. Notice that this formula is independent
of the wavenumber k; i.e., this model recovers the peculiar
dispersion relation dω/dk ≈ 0 from the observational record
[24, 25, 26].

The approximate formula in [8] is valid provided that

ǫ1 = 4ΓR̄k2(1 − Q̃)(ΓR̄ + k2)−2 ≪ 1 and ǫ2 = ΓR̄k−2 ≪ 1.
For the standard parameter values used here, the nondimen-
sional numbers ǫ1 and ǫ2 are, in fact, significantly less than
1. The value of ǫ1 is roughly 4× 10−4 for wavenumber 1; and
the value of ǫ2 is 0.4 for wavenumber 1, 0.1 for wavenumber 2,
and even smaller for higher wavenumbers. Thus the approx-
imations ǫ1 ≪ 1 and ǫ2 ≪ 1 are valid, and it will be shown
below that [8] holds for the eastward-propagating branch of
the beta-plane model [4] as well.

The Skeleton of the MJO
In this section, the linear waves of the simplest model in [4]–
[6] are presented. Since [4] involves four dynamically cou-
pled variables, there are four linear modes. The dispersion
relation for the linear modes is shown in Fig. 2. (Only the
two low-frequency, intraseasonal modes are shown. The other
two modes are high-frequency modes and are only weakly cou-
pled to the wave activity; they will be discussed only briefly
below.) Fig. 2 shows that eastward-propagating waves, like
the MJO [24, 25, 26], have the peculiar dispersion relation
dω/dk ≈ 0. Moreover, this dispersion relation is robust over
a wide range of parameter values, and the oscillation periods
spanned by these reasonable parameter values are in the range
of 30–60 days, which is the observed range of the MJO’s oscil-
lation period [24, 25, 26]. The westward-propagating waves,
on the other hand, which are plotted with positive ω and
negative k, have variable ω, and their oscillation periods are
seasonal, not intraseasonal, for k = 1 and 2. This suggests the
first piece of our explanation for the observed dominance of
eastward-propagating intraseasonal variability: the westward-
propagating modes have seasonal oscillation periods, on which
time scales other phenomena are expected to dominate over
modulations of synoptic scale wave activity.

The physical structure of the wavenumber-2 MJO mode
is shown in Fig. 3 for the standard parameter values. Hori-
zontal quadrupole vortices are prominent, as in observations
[27, 28, 29], and the maximum wave activity is colocated with
the maximum in equatorial convergence. The lower tropo-
spheric moisture leads and is in quadrature with the wave
activity, which is also roughly the relationship seen in obser-
vations [34, 35, 36]. The pressure contours clearly display the
mixed Kelvin/Rossby wave structure of the wave. Equato-
rial high pressure anomalies are colocated with the westerly
wind burst as in Kelvin waves; and they are flanked by off-
equatorial low pressure anomalies and cyclonic Rossby gyres,
in broad agreement with the observational record [27, 28, 29].
Rectification of the vertical structure and some of the phase
relationships is likely due to effects of higher vertical modes
[19, 20, 13, 14].

The relative contributions of K, R, Q, and A to these lin-
ear waves are shown in Fig. 4 for wavenumbers 1, 2, and
3. The MJO has significant contributions from both the
Kelvin and Rossby components, whereas the westward modes
are dominated by the Rossby component. In addition, the
larger Q and A amplitudes suggest further explanation for
eastward-propagating rather than westward-propagating in-
traseasonal oscillations: the eastward-propagating modes are
more strongly coupled to equatorial moist convective pro-
cesses.

The sensitivity of the wave structure to parameter changes
is shown in Table 1. The wave structures are robust over a
wide range of parameter values. Changes are generally less
than 10 % for K, R, and A, whereas Q shows changes of as
much as 30 % from its standard value.

The physical structure of the low-frequency westward-
propagating mode is shown in Fig. 5. Its circulation is almost
purely Rossby wave-like with little character of a Kelvin wave,
and the positive anomaly of low-level moisture precondition-
ing is confined closely to the vicinity of the equator. This wave
differs from observed convectively coupled equatorial Rossby
waves in several respects, such as its equatorial (as opposed
to off-equatorial) heating anomaly, low frequency, and slow
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propagation speed [30, 44, 45, 46]. However, the spectral fil-
ters used for the wave structures in these observational studies
tend to emphasize relatively high spatiotemporal frequencies,
whereas the spectral peaks tend to occur on wavenumbers 3–
5 with oscillation periods of 20–60 days [30, 25, 26, 46]. The
present models do capture features of the observed westward
spectral peak for these wavenumbers.

In addition to the low-frequency modes presented above,
the simplest linear model in [4] also has two high-frequency
modes (not shown). The eastward- and westward-propagating
high-frequency modes propagate at 50–60 m/s and 17–30 m/s,
respectively, and, relative to the low-frequency modes, they
are only weakly coupled to the wave activity A. For these
and other reasons, the high-frequency modes do not appear to
be related to observed convectively coupled equatorial waves
[30, 32]. They have phase speeds comparable to the dry Kelvin
and equatorial Rossby waves, and they passively carry a small
moisture trace.

Concluding Discussion
A new minimal dynamical model for the MJO was presented
that recovers robustly its fundamental features (i.e., its “skele-
ton”) on intraseasonal/planetary scales:

I. peculiar dispersion relation of dω/dk ≈ 0,
II. slow phase speed of roughly 5 m/s, and

III. horizontal quadrupole vortex structure.

In addition, the simple formula

ω ≈
q

ΓR̄(1 − Q̃) [9]

for the roughly constant oscillation frequency of the MJO was
derived, and the model displays east/west asymmetry on in-
traseasonal/planetary scales that is consistent with the obser-
vational record. The key premise of the model is that modula-
tions of synoptic scale wave activity are induced by low-level

moisture preconditioning, and they drive the “skeleton” of
the MJO through modulated heating. The “muscle” of the
MJO—including tilts, vertical structure, etc.—is contributed
by other upscale transports from the synoptic scales. The
model was designed with neutrally stable interactions on in-
traseasonal/planetary scales, with the tacit assumption that
the primary instabilities in the tropical atmosphere occur on
synoptic scales.

The model was designed to capture the fundamental fea-
tures of the MJO on intraseasonal/planetary scales in the sim-
plest setting. Additional aspects of the vertical and meridional
structure of the MJO could be obtained by including addi-
tional vertical and meridional modes, and the “muscle” of the
MJO could be included through active convective momentum
transports and enhanced surface heat fluxes. Nonlinear sim-
ulations of the model would also reveal additional physical
effects beyond the basic linear theory shown here.

The simplest model shown here suggests an explanation
for the observed dominance of eastward-propagating intrasea-
sonal variabilility: the eastward-propagating modes are more
strongly coupled with the equatorial moist convective pro-
cesses, and the westward modes occur on seasonal time scales
for wavenumbers 1 and 2. The westward-propagating modes
are dominated by the Rossby wave contribution over the
Kelvin wave contribution, and they share some features with
observed convectively coupled equatorial Rossby waves, but
the simplest model considered here did not include all of
the physical processes that appear to be necessary from ob-
servations. For instance, off-equatorial convection and the
barotropic mode appear to play an important role in convec-
tively coupled equatorial Rossby waves, and these processes
could be included in the future.
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Fig. 1. Physical structures of the unforced “dry” Kelvin wave (A) and equatorial Rossby wave

(B) obtained from [6 ]. Contours show lower tropospheric pressure with positive (negative)

anomalies denoted by solid (dashed) lines. The contour interval is one-fourth the maximum

amplitude of the anomaly, and the zero contour is not shown. Anomalies of convergence

(divergence) that are greater than two-thirds the maximum amplitude are shaded dark (light)

gray.
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Fig. 2. Linear wave oscillation frequency ω(k) (A) and phase speed ω/k (B) as functions

of wavenumber k for the low-frequency modes of [4 ]. Filled circles denote results with the

standard parameter values. Other markers denote results with one change made to the standard

parameter values: Q̃ = 0.8 (open circles), Q̃ = 0.95 (crosses), Γ = 0.5 (squares), and

Γ = 2 (pluses). Horizontal lines in (A) denote oscillation periods of 30, 60, 90, and 120 days.
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Fig. 3. Physical structure of the wavenumber-2 MJO mode of [4 ]–[6 ] for the standard parameter values. Lower tropospheric velocity vectors are shown with contours

of lower tropospheric pressure anomalies (A) and lower tropospheric moisture anomalies (B) with positive (negative) anomalies denoted by solid (dashed) lines. The contour

interval is one-fourth the maximum amplitude of the anomaly, and the zero contour is not shown. Positive (negative) anomalies of wave activity A that are greater than

one-half the maximum amplitude are shaded dark (light) gray.

8 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author



K R Q A
0

0.2

0.4

0.6

0.8

1

A
m

pl
itu

de

MJO

 

  A
k=1
k=2
k=3

K R Q A
0

0.2

0.4

0.6

0.8

1

A
m

pl
itu

de

Linear wave component

Low−frequency westward−propagating mode

 

  B
k=1
k=2
k=3

Fig. 4. Contributions of each component K, R, Q, and A to the linear wave eigenvectors of

the MJO (A) and the low-frequency westward-propagating mode (B) for the standard parameter

values. Results for wavenumbers k = 1, 2, and 3 are shown in black, gray, and white,

respectively.
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Fig. 5. As in Fig. 3, except for the low-frequency westward mode of [4 ]–[6 ].
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Table 1. Sensitivity of low-frequency wave
structure to changes in model parameters

k Q̃ Γ K R Q A

+2 0.90 1.0 0.24 0.64 0.33 0.65

+2 0.80 1.0 0.25 0.58 0.44 0.64

+2 0.95 1.0 0.23 0.68 0.25 0.65

+2 0.90 0.5 0.21 0.64 0.43 0.60

+2 0.90 2.0 0.27 0.63 0.24 0.69

–2 0.90 1.0 0.15 0.83 0.17 0.50

–2 0.80 1.0 0.13 0.86 0.22 0.45

–2 0.95 1.0 0.17 0.82 0.11 0.54

–2 0.90 0.5 0.16 0.80 0.27 0.51

–2 0.90 2.0 0.15 0.85 0.10 0.49
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