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The improved parameterization of unresolved features of tr opical
convection is a central challenge in current computer model s for
long-range ensemble forecasting of weather and short-term cli-
mate change. Observations, theory, and detailed smaller-s cale
numerical simulations suggest that convective momentum tr ans-
port (CMT) from the unresolved scales to the resolved scales is
one of the major deficiencies in contemporary computer model s.
Here a combination of mathematical and physical reasoning i s
utilized to build simple stochastic models which capture th e sig-
nificant intermittent upscale transports of CMT on the large scales
due to organized unresolved convection from squall lines. P rop-
erties of the stochastic model for CMT are developed below in a
test column model environment for the large scale variables . The
effects of CMT from the stochastic model on a large scale conv ec-
tively coupled wave in an idealized setting are presented be low
as a nontrivial test problem. Here the upscale transports fr om
stochastic effects are significant and even generate a large scale
mean flow which can interact with the convectively coupled wa ve.

stochastic model | convective momentum transport | atmospheric convec-
tion parameterization | tropical atmospheric convection

Abbreviations: CMT, convective momentum transport; GCM, general circulation

model; CCW, convectively coupled wave

Moist convection in the tropics has a profound impact on the abil-
ity to predict extended range weather and short term climate

change (1). The reason for this is the observed complex multi-scale
features of organized, coherent, tropical convection across a wide
range of scales varying from tens of kilometers and a few hours to
the planetary scale of order 40,000 km on intraseasonal timescales
with significant energy transfer across these scales (2–5).The current
computer models for prediction of both weather and climate involve
general circulation models (GCM) where the physical equations for
these extremely complex flows are discretized in space and time and
the effects of unresolved processes are parameterized according to
various recipes. Typical mesh spacings of order 40 to 80 km are used
for extended-range ensemble predictions and order 100 to 200 km
for climate simulations; despite a large effort and some advances, the
skill of contemporary GCMs in capturing these large scale patterns
in the tropics is modest in the best circumstances (6). Contemporary
observations (7–9), theory (10–13), and cloud resolving numerical
simulations (14, 15) all point to the role of convective momentum
transport (CMT) as one of the main mechanisms where organized
moist convection on smaller scales affects the wave patterns on larger
scales; the dynamic effects of CMT are poorly resolved by contempo-
rary GCMs (16) although recent deterministic parameterization has
improved the mean climatology (17, 18) and the El Niño Southern
Oscillation (19). The main goal of this contribution is to develop a
simple stochastic model to capture unresolved features of CMT.

The motivation for such a stochastic model comes from the ob-
servations of CMT (7, 8); these detailed observations show that, in
the mean, CMT is downscale (damping on the large scales) and weak,
but the fluctuations about the mean are very large and can havein-
tense bursts of upscale transport (amplification on the large scales).
These are exactly the types of circumstances where suitablecoarse-
grained stochastic models are able to capture the intermittent impact
of smaller scale events on the larger scales. Theory and applications
for such types of coarse-grained stochastic models have been devel-

oped recently (20–24). In fact, it is increasingly apparentthat suitable
stochastic parameterization is an important strategy to improve the
fidelity of unresolved features in contemporary weather andclimate
models for a variety of physical processes (24). Here we develop and
test a simple stochastic model for CMT which accounts for thenovel
physical features of energy transfer in this context. For our purposes
here, we utilize the equations for the zonal momentumu in the large
scale dynamics of a hydrostatic, two-dimensional, Boussinesq fluid
to illustrate CMT; this equation is given by

∂tu + ∂x(u2) + ∂z(wu) + ∂xp = −∂z(w′u′) ≡ FCMT . [1]

In [1], w is the large scale vertical velocity andp is the pressure.
The right hand side of[1] is the force due to CMT,FCMT , from the
turbulent averaging of the fluctuationsu′ andw′ on the smaller unre-
solved scales. Most contemporary GCMs parameterize this effect as
cumulus friction on the large scales, i.e.,

−∂z(w′u′) ≈ −dc(u − û), [2 ]

wheredc > 0 is a damping constant and̂u is the vertical average ofu.
Such a parameterization strategy is broadly consistent with detailed
observations that CMT is damping on the large scales in the mean and,
in fact, scattered upright convection on small scales mixesmomentum
and induces damping; however,[2] ignores the key observational fact
that CMT can transport energy upscale intermittently through convec-
tive organization on the unresolved smaller scales. Such effects are
captured by the simple stochastic models developed next.

A Simple Stochastic Model for CMT
The stochastic model for CMT developed here involves a three-state
continuous-time Markov jump process (25) for the small scale dynam-
ics at each large scale spatio-temporal location(x, t) with transition
rates depending in a suitable fashion on the local values of the large
scale variables at(x, t) (20–24). Depending on the current small scale
state, the strength and nature of the CMT in[1] is specified as de-
veloped below. Thus these stochastic models have a small additional
computational cost. Recall that we are interested in parameterizing
effects of CMT on scales of order 50–200 km. It is well-known that
the large-scale low-level shears often organize moist deepconvection
into squall lines on these scales and furthermore that squall lines trans-
port CMT upscale (11, 14, 15, 26). The stochastic models capture the
statistics of this process. There are three phases in this process which
can affect CMT, labelled by 1, 2, and 3:
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1. Dry regime. Weak or no cumulus friction. Favored for dry envi-
ronments, regardless of shear.

2. Upright convection regime. Stronger cumulus friction. Favored
for moist, weakly sheared environments.

3. Squall line regime. Intense CMT, either upscale or downscale
depending on the shear. Favored for moist, sheared environments.

The transition rates between the regimes will depend on the large scale
resolved variables such as the velocityu, the potential temperatureθ,
and the lower and middle troposphere cloud heating functions, Qc

andQd, resp. Another important parameter,Λ, measures whether the
lower troposphere is moist or dry withΛ = 1 denoting a dry state and
Λ = Λ∗ < 1 a moist lower troposphere which is needed to precon-
dition for deep convection (27–29). Denote the discrete, stochastic
regime variable by

rt = 1 (dry), rt = 2 (conv.), rt = 3 (squall) [3]

Let the transition rate from regimei to regimej be Tij . Plausible
physical choices for the transition rates are

T12 =
1

τr

H(Qd)e
βΛ(1−Λ)eβQQd dry → conv. [4 ]

T13 = 0 dry → squall [5]

T21 =
1

τr

eβΛΛeβQ(Qd,ref−Qd) conv. → dry [6 ]

T23 =
1

τr

H(|∆Ulow| − |∆U |min)eβU |∆Ulow|eβQQc

conv. → squall [7 ]

T31 = T21 squall → dry [8]

T32 =
1

τr

eβU (|∆U|ref−|∆Ulow|)eβQ(Qc,ref−Qc)

squall → conv. [9 ]

whereH(x) is a Heaviside function defined as0 for x ≤ 0 and1 for
x > 0. We use exponentials in the transition rates to get sensitive
dependence on the large scale variables. The quantity∆Ulow mea-
sures the large scale low level shear which needs to be sufficiently
large to allow for a squall line transition. Note thatT13 = 0, which is
reasonable since some initial upright convection should form before
a squall line fully develops. There are two Heaviside functions in the
transition ratesT12 andT23 in [4] and[7]. They ensure, respectively,
that (i) a transition from a dry state to a convective state cannot occur
unless some mid-level cloud heatingQd is present, and (ii) a transition
from upright convection to squall lines cannot occur unlessthe low-
level shear is sufficiently high. These conditions should besufficient
for preventing inappropriate regime transitions. Explicit formulas for
Qd, Qc, ∆Ulow, Λ, τr, and all other parameters needed in[4]-[9]
are presented in Table 1.

Each of the three convective regimes has a different effect on
the large scale CMT in[1]. The CMT for the resolved large scale
momentum equation takes the form

FCMT = −∂z(w′u′) =

8

<

:

−d1(U − Û) for rt = 1

−d2(U − Û) for rt = 2
F3 for rt = 3

[10]

whereÛ is the barotropic wind,dj is small (and positive) or zero, and
F3 will be an upscale eddy momentum flux specified below. Hered1

andd2 will have the common valued1 = d2 = 1/τu and represent the
cumulus friction known to occur in either dry or moist upright convec-
tive environments. To calculateF3, the upscale CMT for the squall
line regime, we utilize an exactly solvable multi-scale model which
captures these features (12, 13, 30, 31). In this model, there is a bal-
ance (w′ = S′

θ) between the vertical velocityw′ and the potential tem-
perature sourceS′

θ, which represents convective heating. As a simple

model ofS′
θ for a tilted wave, consider a two-dimensional (x-z) setup

and a heat source with two phase-lagged baroclinic modes:S′
θ =

k cos[kx−ωt]
√

2 sin(z)+αk cos[k(x+x0)−ωt]
√

2 sin(2z). Two
key parameters here areα, the strength of the second baroclinic heat-
ing, andx0, the lag between the heating in the two vertical modes. The
vertical velocity is then given by weak temperature gradient (WTG)
balance,w′ = S′

θ, and the zonal velocity is given by the continuity
equation,u′

x + w′
z = 0:

u′(x, z, t) = − sin[kx − ωt]
√

2 cos(z)

− 2α sin[k(x + x0) − ωt]
√

2 cos(2z) [11]

w′(x, z, t) = k cos[kx − ωt]
√

2 sin(z)

+ αk cos[k(x + x0) − ωt]
√

2 sin(2z) [12]

With this form of u′ andw′, the eddy flux divergence is explicitly
calculated as

∂z(w′u′) =
3αk

2
sin(kx0)[cos(z) − cos(3z)] [13]

Notice that a wave with first and second baroclinic components gen-
erates CMT that affects the first andthird baroclinic modes (12, 13).
Thus, we model the CMT in the squall line regime by

F3 = −∂z(w′u′) = κ[cos(z) − cos(3z)]. [14]

Notice from[13]–[14] thatF3 depends onα (the strength of the strat-
iform heating relative to the deep convective heating) and on x0 (the
spatial lag between stratiform and deep convective heating). We will
ignore the specific dependence ofκ on α andx0 and chooseκ as a
function of three quantities:∆Umid, ∆Umid∆Ulow, andQd. Their
detailed definitions are given in Table 1. The coefficientκ is defined
here by

κ =

(

−
“

Qd

Qd,ref

”2
∆Umid

τF
if ∆Umid∆Ulow < 0

0 if ∆Umid∆Ulow > 0
[15]

Note that this definition allows CMT for jet shears but not foruni-
form shears as in observations. A quadratic dependence onQd is
appropriate, sincew′u′ depends quadratically onSθ. Notice also
that this definition ofκ depends on|∆Ulow| only in the nonlinear
switch – whenκ 6= 0 it does not vary with the magnitude of|∆Ulow|.
While the presentation above includes heating with only twovertical
baroclinic modes, the model could be generalized to includearbitrary
vertical structures. Next we calibrate the model in a simplecolumn
model testing environment.

Performance of the Stochastic Model for CMT in a Test Col-

umn Model
Here we calibrate the stochastic model for CMT in the simplest ideal-
ized setting with a single large scale grid point, i.e., a stochastic col-
umn model (24). The equations solved are simply∂u/∂t = FCMT ,
whereFCMT is the stochastic CMT described above in[10] and
[14]–[15], and whereu has a vertical structure with three baroclinic
modes:U(z, t) =

P3
j=1 uj(t)

√
2 cos(jz).

The thermodynamic variables are specified in the following way.
The value ofΛ is frozen asΛ = 0.4, while the values of the low-level
and deep convective heating parameters,Qc andQd, involve random
non-overlapping bursts. The bursts are chosen to representa random
series of heating events from convectively coupled waves (2, 4). The
time between successive bursts is picked from a Poisson distribution
with mean of 1 day, and the amplitude of each burst is chosen from
a Gaussian distribution with mean of 10 K/d and standard deviation
of 2 K/d. This is shown for the first 50 days of the simulation inFig.
1a. The low-level heatingQc(t) is set equal toQd(t) for this column
model case. Note that the heat sources are imposed functionsand
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do not allow any thermodynamic responses to changes in velocity; to
include a thermodynamic response in a simple way, the upscale CMT
is not allowed to exceed10 m s−1 d−1.

The initial velocity profile is the jet shear shown in Fig. 1c as the
thick solid line, which is defined in terms of vertical modes asu1 = 10
m/s,u2 = −10 m/s,u3 = 0. For this column model case, the model
relaxes back to this initial profile instead of a barotropic wind Û as
shown in[10] for rt = 1 or 2. The time evolution ofuj , j = 1, 2, 3,
is shown in Fig. 1b for a duration of 600 days. The fluctuationsabout
the initial conditions occur withu1(t)− u1(0) = −(u3(t)− u3(0))
due to the form of the CMT in[14]. The velocity mostly fluctuates
with 10 m/s < u1 < 15 m/s, but there are also intermittent bursts
whereu1 becomes as large as 20 m/s. The jet of the velocity profile
becomes more intense and moves to lower levels whenu1 intermit-
tently reaches values of 15–20 m/s, as shown in Fig. 1c. The jet
profiles in Fig. 1c are representative of those shown in the time series
in Fig. 1b, withu2 always at the value−10 m/s andu3 fluctuations
always followingu1 fluctuations due to the form of the CMT in[14].

This column model test case demonstrates the intermittent bursts
that can occur with this model. Other cases were tested wherethe
heating function bursts in Fig. 1a had fixed amplitudes and/or a fixed
period between bursts, and the results were similar to thoseshown in
Fig. 1. These tests also serve as a calibration of the model param-
eters. The test shown in the next section allows variations of model
variables in the horizontal; furthermore, the heating functionsQc and
Qd will be interactive functions of the model variables, thereby al-
lowing feedback between CMT and the model thermodynamics.

Stochastic CMT for a Large Scale Convectively Coupled

Wave
An interesting, important, and nontrivial test of the stochastic model
for CMT is its effect on an organized synoptic scale convectively cou-
pled wave (CCW) (4, 15). Here we represent the CCW through an
idealized multi-cloud model which captures key features ofthe ob-
servational record in its simplest nonlinear formulation (27–29). The
multicloud model is the following set of eight equations

∂u1

∂t
− ∂θ1

∂x
= F 1

CMT [16]

∂u2

∂t
− ∂θ2

∂x
= F 2

CMT [17]

∂u3

∂t
= F 3

CMT [18]

∂θ1

∂t
− ∂u1

∂x
= Hd + ξsHs + ξcHc − R1 [19]

∂θ2

∂t
− 1

4

∂u2

∂x
= Hc − Hs − R2 [20]

∂θeb

∂t
=

1

hb

(E − D) [21]

∂q

∂t
+ Q̃

∂

∂x
(u1 + λ̃u2) = −P +

1

HT

D − ∂

∂x
[q(u1 + α̃u2)]

[22]

∂Hs

∂t
=

1

τs

(αsP − Hs) [23]

The variablesuj are thejth baroclinic mode velocity,θj are the
jth baroclinic mode potential temperature,θeb is the boundary layer
equivalent potential temperature, andq is the vertically integrated wa-
ter vapor. The source terms for these equations include cloud heating
from three cloud types: deep convective heating,Hd, stratiform heat-
ing, Hs, and congestus heating,Hc. The radiative cooling isRj ,
evaporation isE, and downdrafts areD. These are allinteractive
source terms that are defined in terms of the model variables.The

definitions ofHd, Hc, Qd, andQc are

Hd =
1 − Λ

1 − Λ∗
Qd [24]

Hc = αc
Λ − Λ∗

1 − Λ∗
Qc [25]

Qd =

»

Q̄ +
1

τconv

(a1θeb + a2q − a0(θ1 + γ2θ2))

–+

[26]

Qc =

»

Q̄ +
1

τconv

(θeb − a′
0(θ1 + γ′

2θ2))

–+

[27]

See (29) for definitions of the other source terms.
The equations in[16]–[23] are those of the multicloud model

of (29) with the following changes. A few source terms have been
changed from (29). The congestus heating,Hc, which is shown in
[25], is treated diagnostically here by taking the limitτc → 0 in (29).
Also, the parametersγ′

2 in Qc andγ2 in Qd take different values here:
γ′
2 = 2 andγ2 = 0.1. Using a large value ofγ′

2 emphasizes the sec-
ond baroclinic mode and givesQc the characteristics of a low-level
convective available potential energy (CAPE) closure. Theparameter
τconv takes a value of 1 hour here instead ofτconv = 2 hours as it
was in (29). This change inτconv reduces the wavelength of the most
unstable waves from 4000 to 1500 km, thereby reducing artificial ef-
fects of the wave wrapping around the 6000 km periodic domainand
interacting with itself. An equation foru3 has also been included
here in[18]. Besides these changes mentioned above, the parameter
values used here are all the same as those in the standard caseof (29).

The multicloud model is used here with the stochastic CMT
modeldescribedabove, whichenters into[16]–[18] through the terms
F j

CMT , which are the components ofFCMT from [10] and[14]–[15]
in the jth baroclinic mode. The simulation shown here uses a peri-
odic domain of width 6000 km to represent a single CCW, and a grid
spacing of∆x = 50 km is used to represent a typical grid spacing
used in contemporary GCMs. The initial conditions are a spatially
uniform radiative-convective equilibrium with a small perturbation.

Fig. 2 shows the CCW that develops from the initial perturba-
tion. For the first 10 days of the simulation, the CCW is weak, and
the squall line regimert = 3 is never reached. After timet = 10
days, the deep convective heating,Hd, reaches values larger than 10
K/d, the squall line regime (rt = 3) of the stochastic CMT model is
often accessed, and upscale CMT generatesu3 intermittently. On the
other hand, upscale CMT has a significant but less obvious effect on
u1, which is coupled more strongly thanu3 to the dynamics of the
CCW.

Fig. 3 shows the structure of the CCW averaged in a reference
frame moving with the wave at−17.5 m/s from timet = 20 to 30
days. This CCW has key features in agreement with observations,
including the propagation speed and the left-to-right tiltwith height
(4, 27–29). Fig. 4 shows the structure of this wave average for u1, u2,
andu3. Also shown in Fig. 4 is the wave average for a simulation
without the stochastic CMT model, i.e., with simple cumulus friction
as in[2] replacing the stochastic CMT model. The stochastic CMT
model produces a nontrivial mean wind that can be seen in the plot
of the difference in Fig. 4c. In turn, this mean wind can interact
significantly with the CCW as time progresses (32).

Concluding Discussion
A simple stochastic model for CMT was developed and tested. The
model represents the convective regime at each large scale spatio-
temporal location(x, t)by a three-state continuous-time Markov jump
process,rt. Three convective regimes are represented: dry regime,
upright convection regime, and squall line regime. Transition rates
between regimes depend on the large scale resolved variables such as
the velocityu, the potential temperatureθ, and the low- and mid-level
cloud heating functions,Qc andQd, resp. The CMT from unresolved
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scales acting at the large scale spatio-temporal location(x, t) depends
on the convective regime at(x, t). During the dry and upright convec-
tion regimes, the resolved scales are damped due to cumulus friction,
and during the squall line regime, the resolved scales are forced by
upscale momentum transport.

The stochastic model for CMT was tested for a single large scale
grid point, i.e., as a stochastic column model. The model produced
intermittent bursts in the velocity with physically reasonable values.
This test is also useful as a calibration of the model parameters. The
stochastic model was also tested on a 6000 km domain with 50 kmgrid
spacing for a large scale convectively coupled wave. The stochastic
model for CMT produced a nontrivial mean wind in comparison to a
simulation without the stochastic CMT model.

While the tests shown in this paper involved a simplified vertical
structure with three baroclinic modes, the stochastic model for CMT
can be generalized to include a more general vertical structure using
the WTG formulas in[11]–[13]. Furthermore, the authors plan to
make other extensions of this model in the future. Another important
direction is the inclusion of two horizontal spatial variables, x and
y; several additional important effects are present with twohorizontal
spatial directions (7, 8, 33). Another interesting direction is to include
the nonlinear multi-scale interaction of the CCW and mean flow (32).

The stochastic model for CMT developed and tested here is
a promising approach given recent results of other CMT models.
Mixing–entrainment models of CMT have shown some skill in im-
proving the climate mean state, i.e., the Hadley circulation (17, 18), as
well as the El Niño Southern Oscillation (19). However, these mod-
els require a computationally expensive pressure calculation. The
stochastic model for CMT presented here is a less expensive alterna-
tive that does not require an expensive pressure calculation besides
having the additional attractive feature of representing intermittent
upscale CMT. This stochastic CMT model’s ability to captureinter-
mittent effects from unresolved scales also distinguishes it from other
stochastic parameterizations for different aspects of cumulus convec-
tion (34, 35).
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Table 1. Parameters of the stochastic CMT model

Parameter Description Value

τr Time scale of regime transition rates 8 h

βΛ Sensitivity of transition rates to changes in Λ 1

βQ Sensitivity of transition rates to changes in Qd and Qc (10 K/d)−1

βU Sensitivity of transition rates to changes in low-level wind shear (10 m/s)−1

Qc,ref Reference value of Qc for transition rates 10 K/d

Qd,ref Reference value of Qd for transition rates 10 K/d

|∆U |ref Reference value of low-level shear for transition rates 20 m/s

|∆U |min Minimum low-level shear needed for transition to squall line regime 5 m/s

d1 Momentum damping rate for dry regime (3 d)−1

d2 Momentum damping rate for upright convection regime (3 d)−1

τF Time scale of upscale CMT for squall line regime 1.25 d

∆Ulow sgn(U(z∗) − U(0)) max1 km<z<7 km |U(z) − U(0)|
∆Umid sgn(U(z∗∗) − U(z∗)) max7 km<z<13 km |U(z) − U(z∗)|
z∗ denotes the value of z where the maximum in ∆Ulow is achieved.
z∗∗ denotes the value of z where the maximum in ∆Umid is achieved.
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