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For tropical rainfall, there are several potential sources of
predictability, including synoptic-scale convectively coupled
equatorial waves (CCEWs) and intraseasonal oscillations
such as theMadden–Julian Oscillation (MJO). In prior work,
predictability of these waves and rainfall has mainly been
explored using forecast model data. Here the goal is to esti-
mate the intrinsic predictability using, instead, mainly obser-
vational data. To accomplish this, Tropical Rainfall Measur-
ingMission (TRMM) data is decomposed into different wave
types using spectral/Fourier filtering. Predictability ofMJO
rainfall is estimated to be 22 to 31 days, depending on longi-
tude, asmeasured by the lead timewhen pattern correlation
skill drops below 0.5. Predictability of rainfall associated
with convectively coupled equatorial Rossbywaves, Kelvin
waves, and a background spectrum or non-wave component
are estimated to be 8 to 12 days, 2 to 3 days and 0 to 3
days, respectively. Combining all wave types, the overall pre-
dictability of tropical rainfall is estimated to be 3 to 6 days,
over the Indian and Pacific Ocean regions, and on equatorial
synoptic and planetary length scales. For comparison, out-
going longwave radiation (OLR) wasmore predictable than
rainfall by 5 to 10 days over these regions. Wave-removal
tests were also conducted to estimate the contribution of
each wave type to the overall predictability of rainfall. In
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summary, no single wave type dominates the predictabil-
ity of tropical rainfall; each of the types (MJO, CCEWs, and
non-wave component) has an appreciable contribution, due
to variance contribution, length of decorrelation time, or a
combination of these factors.
K E YWORD S
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1 Introduction

Different types of “weather waves” exist in different areas of the globe. While baroclinic eddies generatemuch of the
synoptic-scale weather fluctuations inmidlatitudes, convectively coupled equatorial waves (CCEWs) are, in a sense,
the “weather waves” of the tropics. CCEWs are a significant component of synoptic-scale variability—i.e., time scales
of roughtly 2–10 days and length scales of roughly 1,000–10,000 km (e.g., Takayabu, 1994a,b; Wheeler and Kiladis,
1999; Kiladis et al., 2009). TheMadden–Julian Oscillation (MJO) is another significant contributor to tropical weather
and climate, with a larger-scale signature on scales of roughly 30–90 days and 20,000 km (e.g., Zhang, 2005; Lau and
Waliser, 2012;Waliser, 2012).

In the present paper, some of themain questions of interest are: What are the intrinsic limits of predictability of the
“weather waves” of the tropics (CCEWs and theMJO)? Furthermore, to what extent do CCEWs and theMJO contribute
to predictability of, more generally, tropical rainfall? The goal is to estimate both (i) the predictability of wave signals
of each individual type and (ii) the predictability of the overall precipitation signal, which is comprised of amixture of
the signals of different waves and a “background” signal (Wheeler and Kiladis, 1999; Hottovy and Stechmann, 2015).
If the “background signal” is overwhelmingly strong, then the CCEWsmay not contributemuch predictability to the
overall precipitation signal; on the other hand, it is also possible that the coherence of CCEWsmay contribute to an
enhancement in the amount of predictability of tropical precipitation, beyond the predictability of the “background
signal” alone.

An investigation of these questions serves many purposes. For instance, CCEWs and theMJO have been difficult to
simulate in global climate models (e.g., Lin et al., 2006; Hung et al., 2013; Jiang et al., 2015); and for assessing model
performance, forecast skill could be a useful metric if upper bounds on predictability are known (e.g., for theMJO, see
Waliser, 2012; Neena et al., 2014). Also, if CCEWs are shown to offer a significant source of predictability, then it would
providemotivation for the search for improved understanding and simulation of CCEWs.

Some recent work has provided some estimates of the predictability of CCEWs and tropical precipitation, and
the approach of the present paper will differ in many ways. Ying and Zhang (2017) investigated predictability using
convection-permitting simulations with theWeather Research and Forecasting (WRF) model. The 9-km horizontal
grid spacing provided detailed simulations of multi-scale tropical weather systems, although it was computationally
expensive and the investigation was limited to approximately one month. Dias et al. (2018) and Janiga et al. (2018)
investigated larger amounts of data from approximately one year and over five years, respectively. These latter two
studies used data from several numerical weather predictions models such as the Global Forecast System (GFS) of the
National Centers for Environmental Prediction (NCEP), the Integrated Forecast System (IFS) of the European Centre
forMedium-RangeWeather Forecasts (ECMWF), the NCEP Climate Forecast System, version 2 (CFSv2), and the Navy
Earth SystemModel (NESM). In the present paper, in contrast, predictability will be estimated without a numerical
weather predictionmodel; instead, estimates of predictability will be derived fromprimarily observational data. As such,
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these different approaches provide complementary estimates that together can give a fuller picture of predictability.
Some of the advantageous aspects of the present approach are that (i) the use of mainly observational data provides
perhaps amore independent estimate, since it is not subject to the particulars of physics assumptions withinmodels,
and (ii) the computational expense of themodel simulations is eliminated, which allows us to consider relatively long
time series with relatively little computational expense.

The concept of predictability can be categorized into intrinsic predictability versus practical predictability. Intrinsic
predictability represents the inherent limit of prediction given a nearly perfect forecast model of dynamical system and
nearly perfect initial/boundary conditions; in such a setting, the predictability is then an indication of the chaotic nature
of the dynamical system (Lorenz, 1969; Zhang and Epifanio, 2007; Sun and Zhang, 2016). Practical predictability is the
ability to make a prediction, given realistic uncertainties in both the forecast model and initial/boundary conditions
(Lorenz, 1982, 1996; Zhang andNielsen-Gammon, 2006). The prior work of Dias et al. (2018) and Janiga et al. (2018)
was mainly related to practical predictability. In the present paper, the approach is perhaps more closely aligned
with estimating intrinsic predictability, since perfect initial conditions are used, and since the results do not rely on a
numerical weather predictionmodel.

The remainder of the paper is organized as follows. In section 2, the observational data is described, along with the
methods for estimating predictability. In section 3, estimates of predictability are presented for the rainfall associated
with individual wave types (MJO, CCEWs, and the non-wave component). In section 4, the different wave types are
combined to provide estimates of predictability of the full rainfall signal. In section 5, the predictability of rainfall data is
comparedwith the predictability of outgoing longwave radiation (OLR) data. Finally, section 7 includes a concluding
discussion.

2 Data andMethods

2.1 Data and Setup

The Tropical Rainfall MeasuringMission (TRMM) data is used here for investigating the intrinsic predictability. The
TRMMdatamainly used in this paper has a daily temporal resolution and 0.25◦ spatial resolution running from January
1st, 1998 to December 31st, 2017 . Daily precipitation totals are derived from 3B42 Research Version. The dataset is
downloaded from https://pmm.nasa.gov/data-access/downloads/trmm.

TRMMdata is available at different temporal resolution including the 3 hourly product and the daily product. While
the 3-hourly data comes with the advantage of higher temporal resolution, it also has some disadvantages. For instance,
the 3-hourly data will include the diurnal cycle, which may a priori need some special treatment, and 3-hourly data
is perhaps not necessary for investigating the wave types with the largest spectral peaks (MJO, Kelvin, and Rossby
Wheeler and Kiladis, 1999). For this reason, the daily version of TRMM data is mainly used here unless otherwise
specified. Some sensitivity tests using 3-hourly data and further discussions are included in section 6.

For testing the robustness and sensitivity of themain results, in addition to TRMMprecipitation data, gridded daily
interpolatedOLR data from January 1979 to December 2013 fromNational Oceanic and Atmospheric Administration
(NOAA) polar-orbiting satellites are also analyzed in this study. OLR data has often been used in the past as a proxy for
tropical precipitation and deep tropical convection, so it is interesting to compare the predictability of OLRwith the
predictability of TRMMdata (OLR download link: https://www.esrl.noaa.gov/psd/data/gridded/data.interp_
OLR.html). TheOLR data initially fromNCAR archives has gaps, and the gaps have been filled using temporal and spatial
interpolation (Liebmann and Smith (1996)) to create the interpolatedOLR data used here. The data for each day are
archived on a resolution of 2.5◦ latitude × 2.5◦ longitude globally. Note that the OLR and TRMMdatasets have different

https://pmm.nasa.gov/data-access/downloads/trmm
https://www.esrl.noaa.gov/psd/data/gridded/data.interp_OLR.html
https://www.esrl.noaa.gov/psd/data/gridded/data.interp_OLR.html
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native resolutions; therefore, in making comparisons between the two, a spatial filter is used to include only certain
wavelengths that are resolved by both datasets; see section 5 for the specifications.

For the purpose of assessing model parameters and evaluating the prediction skills, the dataset is split into training
data and testing data. The long time data before the year 2011 for TRMM (the year 2005 for OLR) is used as the
training period for training parameters in themodel and January 2011 to December 2015 (January 2005 to December
2009 for OLR) serves as the prediction period for testing. Data after the year 2015 is not used as testing data since a
cosine tapering has been applied for these data for the purpose of Fourier transform. In the preprocessing, a smoothed
seasonal cycle of the entire dataset is removed via the annual mean and the first three harmonics for all the data, so the
remaining data represent anomalies from the seasonal cycle. An alternative definition of the seasonal cycle was also
tested, where the hard cut-off at the third harmonic was replaced by a smoothed cutoff defined by a cosine tapering,
and no significant differences in the results were seen.

CCEWs have ameridional structure with equatorial synoptic length scale of O(1000) km (e.g., Kiladis et al., 2009;
Ogrosky and Stechmann, 2016). For this reason, instead of taking data at all the spatial and temporal points directly, we
are only considering rainfall after averaging over the tropical belt, which provides a rainfall signal r (x , t ) for longitude x
and time t . In the future it would be interesting to consider the rainfall signal at each latitude y instead of averaging over
the tropical belt. The tropical belt average is performedwith aGaussianweight, which can be viewed as a projection onto
a parabolic cylinder function. Specifically, the projection to parabolic cylindermode 0 is used here, namely projecting
the data onto the function

φ0(y ) =
1

π1/4
e−y

2/2 . (1)

To define the projection, denote r (x , y , t ) as the rainfall data, where x is the longitude, y is the latitude, and t is the time.
In (1), y is nondimensional, created by scaling with the reference scale 1500km. The discrete version of tropical belt
average (the projection) then is

r (x , t ) =
∫ ∞
−∞

r (x , y , t )φ0(y )dy ≈
90◦N∑
90◦S

r (x , yi , t )φ0(yi )∆y (2)

While it is also common to instead averagewith equal weight over a band of latitudes such as 10◦S to 10◦N, theGaussian
weight is chosen here because it provides a smoother average, and it provides a connection with the parabolic cylinder
functions, which provide a set of meridional basis functions for equatorial waves. Averaging meridionally using a
Gaussian weight is also used in some previous papers (e.g., Stechmann andOgrosky, 2014; Stechmann andMajda, 2015;
Ogrosky and Stechmann, 2016; Ogrosky et al., 2017). Note that for somewave types, such as equatorial Rossby waves,
an even tighter connection with equatorial wave theory would perhaps use additional parabolic cylinder functions,
since the convergence patterns of equatorial Rossby waves include off-equatorial contributions. Also note that, by
using a symmetric-in-y average in (1)–(2), the data is not expected to include themixed Rossby–gravity (MRG) waves,
since their signal appears in the antisymmetric data (i.e., the data from equator-to-5◦N-averaged precipitation, minus
equator-to-5◦S-averaged precipitation;Wheeler and Kiladis, 1999). While the symmetric-in-y data from (1)–(2) will be
themain focus here, themethods have also been repeated for antisymmetric-in-y data by replacingφ0(y ) in (1)–(2) with
φ1(y ) = π−1/4

√
2 y exp (−y 2/2). Usingφ1(y ) instead ofφ0(y ) allows the antisymmetric-in-y data to be identified, and it

is used in the results below to investigate the predictability ofMRG and n = 0 eastward inertio-gravity (EIG) waves.
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2.2 WaveDecompositions with Fourier Filtering

For identifying signals due to different types of waves, themainmethod used in this study is the space-time spectral
analysis (e.g., Wheeler and Kiladis, 1999). A brief overview is as follows.

The method begins with some preprocessing, described above, to remove the seasonal cycle, and to obtain an
average over the latitudes near the equator, via a Gaussian weight. The result of the preprocessing is r (x , t ), from (2). As
further pre-processing, a cosine tapering is applied near the beginning and end of the time series, so the values of the
time series are zero and the beginning and end, thereby providing a signal that is periodic in time, in preparation for a
Fourier Transform.

Next, a spatial Fourier Transform followed by a temporal Fourier Transform is applied on the longitude-time data
r (x , t ) to convert the signal into the wavenumber–frequencey domain, namely,

r (x , t ) =
∑
k

∑
ω

r̂k ,ωe
−i ωt e2πi k x/Pe , (3)

where k is the zonal wavenumber,ω is the frequency and Pe is the circumference of the Earth at the equator (approxi-
mately 40,000 km). The Fourier coefficients r̂k ,ω are then used to identify the different wave types.

In order to isolate the signal for each of the different wave types (e.g., MJO, CCEWs, etc.), we follow themethod of
Fig. 6 ofWheeler and Kiladis (1999). In particular, each wavenumber–frequency point (k ,ω) is assigned to a different
wave type α , where α is an index that indicates the wave type (MJO, Kelvin, Equatorial Rossby, and the non-wave
component). The Fourier decomposition in Eqn. 3 can then bewritten as a sum over different wave types α , rather than
a sum over different frequenciesω:

r (x , t ) =
∑
k

∑
α

r̂k ,α (t )e2πi k x/Pe , (4)

with

r̂k ,α (t ) =
∑

ω∈Ωk ,α

r̂k ,ωe
−i ωt , (5)

where α is an index that indicates thewave type (MJO, Kelvin, Equatorial Rossby, and the non-wave component) and
Ωk ,α is the set of frequencies for wave type α at wavenumber k .

For example, for theMJO,Ωk ,α is set to beΩk ,α = {ω : 1/96 ≤ ω ≤ 1/30} for wavenumber k = 1, 2, 3, 4, 5 to extract
MJO signals r̂k ,α (t ) via Eqn. 5 at wavenumber k = 1, 2, 3, 4, 5. In practice, the dataset is filtered to keep the part from
1/96 cpd to 1/30 cpd in the wavenumber-frequency domain for wavenumber k = 1, 2, 3, 4, 5 respectively and set all
the other part of the data for wavenumber k = 1, 2, 3, 4, 5 all zeros. To convert back, an inverse Fourier transform is
applied to the filtered data for each wavenumber k from 1 to 5. After that, the first 10% and the last 10% of these data
at each wavenumber are cut (due to the cosine tapering applied at the beginning and end of the dataset to facilitate
the Fourier transform). Then predictions aremade using these filtered data at each wavenumbers independently. The
total trueMJO signal is considered to be the combination of these final filtered data for wavenumber k = 1, 2, 3, 4, 5
(i.e.,∑5

k=1 r̂k ,α (t )e
2πi k x/Pe ) and the prediction for the total MJO signal is generated by combining predictions at each

wavenumber in the same way (i.e.,∑5
k=1 r̂

pr ed
k ,α
(t )e2πi k x/Pe , where r̂ pr ed

k ,α
(t ) is the prediction for r̂k ,α (t )). Analyses on

other CCEWs (e.g., n=1 ER, Kelvin) are performed following the similar procedures by setting a different set to Ωk ,α
according to the filtering boxes from Fig. 6 ofWheeler and Kiladis (1999). The “non-wave component” is defined here as
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the remaining part of the signal after theMJO, ER, Kelvin waves have been removed from the original spectral data.
Westward inertio-gravity (WIG) waves are treated here as a part of the non-wave component, due to the limitations
of using daily TRMM observed data, although some explorations ofWIG waves with 3-hourly data are described in
section 6.

2.3 ModelingWave Signals as DampedOscillators with Stochastic Forcing

Asmotivation for model choice, we recall that a goal here is to estimate predictability with less reliance on operational
forecast models andmore reliance on observational data. This goal is made possible here by thewave decomposition
method described above, since the signal from one individual wave type can bemodeled reasonably well by a simple
damped oscillator model, which can be used as a simple forecast model. In this section, the simplemodel is described
along with themethod for fitting to observational data.

As a simple model for an individual wave type, a damped oscillator with stochastic forcing will be used. Specifically,
the complexOrnstein-Uhlenbeck (cOU) process (see, e.g.,Majda andHarlim, 2012) is applied formodeling andpredicting
filtered signal r̂k ,α (t ) at each single wavenumber k and each wave type α [recall from (4) the details about defining
r̂k ,α (t )]. The traditional Ornstein–Uhlenbeck process is real-valued and does not oscillate (Gardiner, 2004); on the other
hand, the cOU process is complex-valued and is a damped oscillator with stochastic forcing. The cOU process is also
exactly solvable andmeaningful for predicting the complex Fourier coefficient r̂k ,α (t ) for a single wave. In what follows,
we write r (t ) in place of r̂k ,α (t ) to simplify notation. The evolution of the cOU process is a complex linear stochastic
differential equation:

dr (t ) = (−γ + i ω)r (t ) + σdW (t ) (6)

where γ,σ > 0 andω are real numbers and

dW (t ) ≡ dW1(t ) + i dW2(t )√
2

(7)

is a complex Gaussian white noise where each component satisfies

dWj (t ) ≡ ÛWj (t )d t , j = 1, 2, (8)

that is, white noise ÛWj (t ) is intuitively like a “derivative” of the Wiener processWj (t ) and it satisfies the following
properties:

Å[ ÛWj (t )] = 0, (9)
Å[ ÛWj (t ) ÛWj (s)] = δ(t − s), (10)
Å[ ÛWi (t ) ÛWj (s)] = 0 for i , j . (11)

The exact solution of (6) is

r (t ) = e (−γ+i ω)t r (0) + σ
∫ t

0
e (−γ+i ω)(t−s)dW (s) (12)

Here, 1/γ represents the decorrelation time of the signal andwω is the oscillation frequency with 2π/ω to be the time
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of one oscillation period. σ is the standard deviation of the white noise. The whole signal r (t ) is a periodic decaying
signal with random randomwhite noise. As t →∞, r (t )will converge to a stationary Gaussian distribution withmean 0
and variance σ2/(2γ) (e.g., Majda and Harlim, 2012;Majda et al., 2001). The autocorrelation function is given by the
analytical formula

R (τ) = R (t , t + τ) = e−(γ+i ω)τ (13)

in the stationary state as t → ∞ and τ is the lag. To summarize, as a forecast model, (12) provides an ensemble of
forecasts, with a forecast mean of r (t ) = e (−γ+i ω)t r (0).

Onemight wonder whywhite noise is used here, whereas the tropical rainfall spectrum is known to have a form
similar to red noise (e.g., Wheeler and Kiladis, 1999; Hottovy and Stechmann, 2015). The formulation here is, in
fact, consistent with a red-noise spectrum of tropical rainfall. The basic feature of spatiotemporal “red noise” is that
the variance is decreasing as a function of temporal frequency or spatial wavenumber k . These basic features are
actually built into the different values of the parameters γ and σ for different wavenumber k . For instance, for a larger
wavenumber k , the fitted cOU process will have a corresponding smaller variance σ2/2γ with the fitted values of γ and
σ for this particular wavenumber. Different cOU processes are fitted for different wavenumbers independently. With
different choices of parameters for different wavenumbers, the basic feature of decreasing variance as a function of
wavenumber k is retained.

Themodel parameters γ,ω are needed tomake a forecast, and different values are used for each zonal wavenumber
k andwave type α . Here the parameters are chosen bymatching the observed autocorrelation of the training data and
the analytic autocorrelation function. Themodel parameters are determined to capture the first maximum/minimum of
the real and imaginary parts of the observed autocorrelation for positive lags, except for the non-wave component. For
the non-wave component, since it has no propagation direction, its values ofω are nearly zero, so γ,ω are selected by
matching the discrete summation of observed autocorrelation function and the integral of the analytic autocorrelation
function, a method that provides better model performance. Also, this is consistent with treating the non-wave
component like the background spectrum of tropical convection, for which a natural simple model is eddy diffusion
(Hottovy and Stechmann, 2015) without any wave oscillations.

An example of the autocorrelation fitting is shown for the MJO in Figure. 1. The left panel shows the observed
autocorrelation function and the analytical autocorrelation function from (13), where the parameters γ and ω were
chosen to capture the first maximum/minimum of the real and imaginary parts of the observed autocorrelation function.
As seen in the figure, the autocorrelation function of the fittedmodel has a quite good fitting up to lags of onemonth,
although there is nonnegligible model error for lags that are larger than onemonth. It is possible that a nonlinear oscilla-
tor model (e.g., Chen et al., 2014) would be able to fit the statistics evenmore accurately; however, the present paper is
aimed at modelingmany different wave types andmany different wavenumbers, which involves model parameters for
each wave type and each wavenumber; therefore, a simple linear oscillator model is advantageous here for its minimial
number of parameters, and it provides reasonable results, as shown in Figure. 1.

2.4 Estimating Predictability

To estimate predictability, forecasts are performed using the stochastic, damped oscillator models described in sec-
tions 2.2–2.3. The initial conditions r (0) for the forecast are assumed to be perfect, in which case the formula for the
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F IGURE 1 Panel a (Panel d): Real (Imaginary) part of the fitted auto-correlation function (red line) ant the numerical
auto-correlation function from the observational TRMMdata (blue line) for wavenumber k = 1 ofMJO; Panel b (Panel
e): Real (Imaginary) part of the time series forMJO (k=1) observations and forecasts with lead time as 25 days in the
year 2011; Panel c and f: Forecast skill (correlation coefficient and RMSE) for predictions for five-years signals of
MJO(k=1).

mean prediction is given by the expected value of (12), i.e.,

Å[r (t )] = Å[e (−γ+i ω)t r (0) + σ
∫ t

0
e (−γ+i ω)(t−s)dW (s)] = e (−γ+i ω)t r (0). (14)

Note that such a forecast methodwould not be applicable to real-time forecasting due to the use of Fourier filtering in
time, as described in section 2.2; some real-timewave decompositionmethods have been proposed (e.g., Wheeler and
Weickmann, 2001;Wheeler andHendon, 2004; Kiladis et al., 2014; Stechmann andOgrosky, 2014; Stechmann and
Majda, 2015; Ogrosky and Stechmann, 2015a,b, 2016), although it is not clear that real-timemethods are as skillful
at wave decompositions as non-real-timemethods based on temporal Fourier filtering. In any case, the use of these
perfect initial conditions is in line with themain goal here of estimating bounds on intrinsic predictability.

The prediction skill is evaluated by two commonly used criteria, Correlation Coefficient (ρ) and RootMean Square
Error (RMSE). Mathematically, with the true dataX = (X1,X2, · · · ,XN ) at N points in time and the corresponding
predictionsXpr ed = (X pr ed

1 ,X
pr ed
2 , · · · ,X pr ed

N
), the correlation coefficient is calculated by

ρ(X,Xpr ed ) =
∑N
i=1(Xi − X )(X

pr ed
i

− X pr ed )√∑N
i=1(Xi − X )2

√∑N
i=1(X

pr ed
i

− X pr ed )2
(15)

whereX ,X pr ed are the averages ofXi ,X pr ed
i

(i = 1, 2, · · · ,N ) respectively and the RMSE is

RMSE (X,Xpr ed ) =

√√√
1

N

N∑
i=1

(Xi − X pr ed
i
)2 (16)
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The overall forecasting skill is defined as the lead day where ρ(X,Xpr ed ) ≥ 0.5 and RMSE (X,Xpr ed ) ≤ SD (X)
(standard deviation of the data of the true signal). In other words, the criterion of a reasonable forecast is a threshold of
0.5 for correlation coefficient and 1 standard deviation for the RMSE. These threshold choices are also commonly used
in other forecast studies (e.g., Chen andMajda, 2015).

For the purpose of evaluating cOU predictions andwave exclusion tests, two baselines for comparison are used:
the zero prediction and persistence prediction. The zero prediction is obtained by predicting that the signal will be
identically zero for all future data points. (Note that the time series is centered tomean zero, so this can also be viewed
as a climatological prediction, where the predicted value is the climatological mean.) The persistence prediction is
obtained by predicting that the future weather condition will be the same as the present condition.

3 Predictability of Individual Wave Modes: MJO, CCEWs, and the Non-wave
Component

In this section, we investigate the question: What is the intrinsic predictability ofMJO-related rainfall, CCEW-related
rainfall, and background-spectrum rainfall? Each of the wave types will be considered in isolation to identify the
predictability of each individual wavemode.

3.1 MJO

MJOpredictability is shown for each wavenumber k in Fig. 2 and Table 1. The predictability is defined as the lead time
when the correlation coefficient drops to 0.5. In brief, all MJOwavenumbers have predictability of approximately 25–32
days.

As one example forecast for illustration, time series for k = 1 are shown in Fig. 1b,e. The figure shows a comparison
of the true signal and predicted signal at lead time of 25 days. This lead timewas chosen for illustration because it is
approximately the predictability limit of the k = 1MJO signal (see Fig. 2 and Table 1). As seen in Fig. 1b,e, the predicted
signal catches the overall variability of the oscillations quite well although it fails to catch themore extreme values with
the present simple forecasting framework. In the other panels, in Fig. 1c,f, the RMSE and correlation coefficient are
shown. The correlation coefficient is seen to decrease as lead time increases, and it decreases to 0.5 at a lead time of 25
days, which is used as the value reported in Fig. 2 and Table 1.

Tomove beyond forecasts of individual wavenumbers, we can combine the wavenumbers k = 1 to 5 of theMJO
signal, using (4). In brief, only theMJO signal (fromwave k = 1 to 5) is kept, and the signals of all other wave types are
set to zero. Algorithmically, the space–time data rMJO (x , t ) is then obtained using a temporal inverse Fourier transform
followed by a spatial inverse Fourier transform. From the space–time data rMJO (x , t ), one can observe a forecast of
the MJO at each location around the equator. Such a forecast skill at each longitude is shown in Fig. 3. In terms of
RMSE (Fig. 3 Panel a), the forecast skill is greatest over the IndianOcean andwestern Pacific warm pool (longitudes
from roughly 60E to 180), although this is also the region of greatest standard deviation in theMJO signal. In terms
of correlation coefficient (Fig. 3 Panel b ), the forecast skill is more nearly equal at each longitude. As a summary of
forecast skill, in the Panel c in Fig. 3, it can be seen that the forecast skill is approximately 25-30 days at each longitude,
similar to the forecast skill for individual wavenumbers shown in Fig. 2 and Table 1. Hence, whether viewed longitude by
longitude or wavenumber by wavenumber, the predictability of theMJO is estimated to be 25–30 days.
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F IGURE 2 Forecast skills for different wavenumbers ofMJO, ERwave, Kelvin wave, Non-wave Component , MRG
wave and n = 0 EIGwave.

Wave type Wavenumber Forecast skill [D] γ[M −1] ω[2πM −1] ω̂[D−1](CPD)

MJO k=1 25 0.33 -4.39 -0.023
MJO k=2 27 0.37 -4.28 -0.023
MJO k=3 32 0.36 -4.39 -0.023
MJO k=4 26 0.35 -4.39 -0.023
MJO k=5 28 0.41 -4.71 -0.025
ER k=-2 33 0.17 -6.09 -0.032
ER k=-3 16 0.52 -7.85 -0.042
ER k=-4 12 1.03 -9.42 -0.050
ER k=-5 11 1.08 -11.78 -0.063
ER k=-6 9 1.18 -12.62 -0.067
Kelvin k=1 17 0.38 -9.00 -0.048
Kelvin k=2 6 1.79 -15.71 -0.083
Kelvin k=3 4 2.85 -23.56 -0.125
Kelvin k=4 4 3.76 -27.49 -0.146
Kelvin k=5 2 4.81 -39.27 -0.208

Non-wave Component k=1 2 1.72 0.08 0.001
Non-wave Component k=2 8 0.76 -0.20 -0.001
Non-wave Component k=3 5 1.94 -0.26 -0.001
Non-wave Component k=4 2 3.52 -0.10 -0.001
Non-wave Component k=5 1 10.04 -0.29 -0.002

MRG k=-1 5 1.07 -47.12 -0.250
MRG k=-2 5 1.29 -47.12 -0.250
MRG k=-3 4 1.93 -47.12 -0.250
MRG k=-4 3 2.72 -47.12 -0.250
MRG k=-5 5 2.21 -39.27 -0.208
EIG k=1 5 1.30 -47.12 -0.250
EIG k=2 3 2.75 -47.12 -0.250
EIG k=3 2 4.90 -47.12 -0.250
EIG k=4 2 13.65 -70.69 -0.375
EIG k=5 3 12.55 -70.69 -0.375

TABLE 1 Summary of forecast skills for the wave types: MJO, ER, Kelvin, Non-wave Component, MRG and n = 0
EIG. Forecast skills have the unitDay , γ,ω have the unit 2π/Month and ω̂ = ω/(30 · 2π) is the frequency (CPD) with the
unit 1/Day .
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F IGURE 3 Forecast skills forMJO at different locations. Top two panels: RMSE (panel a) and correlation coefficient
(panel b) for predictingMJO from TRMMdata with different lead days; Bottom panel (panel c): Overall forecast skill for
predictingMJO components from TRMMdata with different methods cOU (solid pink) and persistence prediction
(dashed green).

3.2 CCEWs

Predictability is estimated for twoCCEWs: the ER and Kelvin waves. The results will be analyzed from two perspectives:
wavenumber by wavenumber, and longitude by longitude.

First, predictability is reported for each individual wavenumber, analyzing each wavenumber separately from each
otherwavenumber, in Table 1 and Fig. 2. The predictability is seen to depend strongly onwavenumbers. For instance, the
ERwave has a predictability of 33 days for wavenumber 1 but a predictability of roughly 8–10 days for wavenumbers 5
to 10; and the Kelvin wave has a predictability of 17 days for wavenumber 1 but a predictability of roughly 2–3 days for
wavenumbers 5 to 10. Overall, one can see a rough general trend in Table 1 and Fig. 2: predictability tends to increase as
wave oscillation period increases. This is consistent with the intuition that waves with longer oscillation periods also
tend to have longer decorrelation time γ−1, and longer decorrelation times are associatedwith longer predictability
times. A figure of ω̂ for different wave types versus different wavenumbers along with some additional figures are also
provided in the supporting information.

Second, to analyze the predictability at different longitudes, the data from different wavenumbers are combined
together to predict, e.g., the ER signal as a function of longitude. The spatial variations of predictability for the ER and
Kelvin waves are shown in the first two columns in Fig. 4. Both ER and Kelvin have their largest variance over the Indian
Ocean andwestern Pacific warm pool, from about 60◦E to 150◦W. The predictability of the ERwave varies from 8 days
to 12 days over all the locations, while the forecast skill of the Kelvin wave varies from 2 days to 3 days, with little
variation from location to location.
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F IGURE 4 Forecast skills for ERwave, Kelvin wave and non-wave component. From the left to right are ERwave
(panel a,d,g), Kelvin wave (panel b,e,h) and non-wave component (panel b,e,h), from the top to bottom are RMSE (panel
a,b,c), correlation coefficient (panel d,e,f) and overall forecast skill (panel g,h,i).

3.3 Non-wave Component

Lastly, consider the non-wave component. Thewavenumber-by-wavenumber results are shown in Table 1 and Fig. 2.
Note that the non-wave component is not assigned a particular propagation direction (e.g., eastward or westward),
so the +k and −k wavenumbers are analyzed together as a single unit, as wavenumber k . The predictability of the
non-wave component is typically low, in the range of 1 to 2 days. An anomaly is seen in wavenumbers 2 and 3, for which
the predictability times are 8 and 5 days, respectively; these longer predictability times are likely the result of, e.g., the
MJO signal being partially identified as “non-wave component,” since theMJO signal could potentially influence some
frequencies that lie outside the filtering box of Fig. 6 of Wheeler and Kiladis (1999). Overall, though, when viewed
longitude by longitude (see Fig. 4 Panel (i)), the non-wave component has low predictability of roughly 1 day.

We note here the possibility of localized regions of enhanced predictability, as illustrated by the case of the non-
wave component near 120E longitude; see Fig. 4 Panel (i). To ensure that this behavior is not a result of an error in the
data analysis, one can trace its source to the plot of correlation coefficients, fromwhich the forecast skill is calculated;
see Fig. 4 Panel (f). One can see that the curves for two different lead times (e.g., lead times of 2 and 3 days) can
sometimes be nearly overlapping when their correlation coefficients are nearly equal; e.g., see 120E longitude. If this
occurs for a correlation coefficient of 0.5 (i.e., the cutoff correlation coefficient for defining the “forecast skill”), then
the forecast skill can have a sharp change for nearby longitudes, as seen here for the non-wave component near 120E
longitude. Such behavior also appears if OLR data is analyzed instead of TRMMdata, as shown below in section 5. We
speculate that it may be related to the unique geographical features of the Indo-Pacific maritime continent, such as its
associated topography and/or land-sea contrast. This behavior could be eliminated by choosing a different cutoff, such
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as 0.6 instead of 0.5, since we see this behavior here for the lower correlation coefficient values of 0.55 or lower; but we
will retain the cutoff of 0.5 since it is a commonly used definition of forecast skill.

4 Predictability of Tropical Rainfall

The previous section assessed predictions of rainfall associated with an individual wave type (MJO, ER, Kelvin, or
non-wave component). In this section, in contrast, predictions of the full rainfall signal are analyzed. As a first brief look,
see Fig. 5. The solid curve indicates the predictability of the full rainfall signal, and it is repeated identically in each panel
of the figure. The forecast skill is roughly 3 to 6 days over the Indian and Pacific Ocean regions. This skill represents a
substantial improvement over what was seen for the non-wave component alone (see Fig. 4), which was predictable
for only roughly 1 to 2 days. The improved skill can be attributed to the additional wave types beyond the non-wave
component: the CCEWs and theMJO.

In what follows, to provide amore detailed view of the full rainfall signal, wave-exclusion studies are also used in
order to assess the contribution of eachwave type to overall predictability (Sec. 4.1). Also, to assess predictability on
different length scales, the planetary length scales (zonal wavenumbers -5 to +5) are investigated in Sec. 4.2.

4.1 Wave-Exclusion Studies

In this section, we ask: How important is each individual wave type for the predictability of the full rainfall signal? To
investigate this question, we exclude the predictions of onewave type in predicting TRMMrainfall data, and evaluate the
resulting decrease in predictability. To exclude a wave type, twomethods are examined: either (i) setting the prediction
of the wave’s signal to be zero, or (ii) using a persistence prediction for that wave type. While we are changing the
predictions for the component of the onewave type of interest, all the other components of the signal are kept being
predicted by cOU processes, as in our standardmethodology.

The main results of the wave-exclusion studies are shown in Fig. 5. The forecast skill is presented as a function
of longitude. With all wave types predicted and none excluded, the precipitation is most predictable over the Indian
Ocean to Pacific Ocean regions, where the predictability is roughly 3 to 6 days, aside from the longer predictability of 9
days near 120E.When onewave type is excluded, a substantial loss of predictability is typically seen. In particular, if
either theMJO, ER, or non-wave component is excluded, then a loss of predictability of several days can be seen over
the IndianOcean and Pacific Ocean regions.

For the Kelvin wave, on the other hand, the results are somewhatmixed. Little predictability is lost if the Kelvin
wave is excluded by predicting it to be zero. Overmany parts of the Indian and Pacific Oceans, no predictability is lost,
and over other parts of the tropics, the loss is 1 to 2 days of predictability. Given that the overall predictability is only 1
to 2 days for many regions outside the Indian and Pacific Oceans, one could possibly view this as a substantial loss. Also,
if the Kelvin wave is instead excluded by using a persistence forecast, then a substantial loss in predictability is seen:
roughly 1 to 4 days.

Two factors are perhaps sufficient to explain eachwave type’s importance: decorrelation time and variance. The
decorrelation time (γ−1) has a rough correspondence with the predictability, as seen in Table 1 (see also Figs. 2, 3, and 4).
For instance, theMJO and ERwaves have the longest decorrelation times and predictability, whereas the non-wave
component and Kelvin waves have shorter decorrelation times and predictability. However, decorrelation time alone
is not enough to explain the contribution of each wave type to the predictability of overall rainfall. For instance, the
MJO and non-wave component have somewhat similar contributions based on thewave exclusion studies (Fig. 5), yet
the non-wave component has a very short decorrelation time. Hence, a second factor is needed to explain why the
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F IGURE 5 Panel a: Forecast skill for predicting TRMMdata (wavenumber from -15 to 15) with cOU processes for
all wave and non-wave components. Panel b-e: Forecast skills for predicting five-years TRMMdata (wavenumber from
-15 to 15) with different predictedMJO (Panel b), ERwave (Panel c), Kelvin wave (Panel d) and non-wave component
(Panel e). Three forecast methods are used wave-exclusion studies: cOU prediction (pink), persistence prediction (blue)
and prediction with all zeros (green).

non-wave component has an important contribution: variance. The variance (or, rather, its square root, the standard
deviation) is shown for each wave type in Fig. 6. The non-wave component has the largest standard deviation of all
wave types, so substantial predictability will be lost if a poor forecast is used for such a large share of the total standard
deviation. In this way, each of the wave types has an appreciable contribution to the overall predictability of rainfall, due
to a long decorrelation time or a large variance or a combination of these factors.

4.2 Planetary-Scale Predictions

In the results above, the equatorial synoptic length scales (zonal wavenumbers -15 to +15) were considered, in order to
include effects of many CCEWs. Instead, if we are only interested in the large-scale variations of rainfall, is it possible to
achieve better prediction skill?

This question is now investigated by considering only zonal wavenumbers k = −5 to 5, in order to represent the
planetary-scale zonal variations of rainfall. One might expect enhanced predictability if only the largest scales are
considered, consistent with the general idea that spatial averagingwill improve forecast skill (e.g., Li and Stechmann,
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2018). Exactly howmuch improvement is seen? The predictability is shown in Fig. 7. The forecast skill is quite long:
roughly 10 to 20 days over the Indian and PacificOcean regions. Comparing Fig. 7 to the forecast skills forwavenumbers
from -15 to 15 in Fig. 5a, the forecast skill for the planetary scale predictions has very significant improvements from
60◦E to 150◦W. The planetary scale predictions are overall about 5-15 days more predictable in these areas, particularly
near 120◦E and 180◦ with about 10-15 days improvements in forecast skills.
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F IGURE 7 Forecast skills for predicting five-years TRMMdata on planetary scales (wavenumber from -5 to 5) with
different predictionmethods for theMJO.

The dominant coherent wave signal on planetary scales is theMJO. How important is theMJO to the predictability
of rainfall on planetary scales? To investigate this question, a wave-removal study is implementedwhere theMJO is
removed in one of two different ways: predict theMJO-associated rainfall is zero, or use a persistence prediction for the
MJO-associated rainfall. The results are shown in Fig. 7. The forecast skill of tropical rainfall is significantly decreased
when the MJO is removed from consideration. Specifically, the forecast skill is only 4 to 7 days over the Indian and
Pacific Ocean regions if the MJO is removed. Hence, the MJO plays a crucial role in the predictability of rainfall on
planetary scales, and it contributes up to 15 days of additional predictability.
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5 Comparing predictability of precipitation versus cloudiness (OLR)

Besides precipitation, another quantitative measure of moist convection is OLR. OLR data is commonly used as a proxy
for cloudiness, for many purposes, such as identifying CCEWs or theMJO (e.g., Wheeler and Hendon, 2004; Kiladis
et al., 2014). In prior studies on predictions of CCEWs and theMJO, Dias et al. (2018) analyzed precipitation whereas
Janiga et al. (2018) analyzedOLR. The predictability could possibly vary significantly depending onwhich data is used,
since, e.g., OLR and precipitation represent distinct physical quanitities with potentially different properties. In this
section, we investigate the predictability of OLR, andwe compare it with the predictability of precipitation.

For comparingOLR and precipitation, results are shown in Fig. 8, and can be summarized as follows. On the one
hand, for the broad conclusions regarding comparisons of different wave types, the results are essentially the same, and
they are therefore not repeated in detail for theOLR case. For instance, whether OLR or precipitation data is used, each
of the wave types is seen to have an appreciable contribution to the predictability of the full rainfall signal. The detailed
amounts of eachwave’s contribution can be different for OLR versus precipitation, as illustrated in Fig. 8 for the case
of the non-wave component (see section 4 for a note about the enhanced predictability of the non-wave component
near 120E longitude). Nevertheless, the broad conclusion remains the same: each of the wave types has an appreciable
contribution.

On the other hand, one clear difference between OLR and precipitation is that OLR is generally speaking more
predictable. Fig. 8 quantifies the difference in predictability. The larger predictability of OLR is seenwhether viewing
individual wave types or the full rainfall signal. The detailed amount can be different for different wave types; for
example, for the non-wave component, Fig. 8 shows that OLR is more predictable than precipitation by only roughly 1
to 2 days at most locations, whereas for the full rainfall signal, OLR is more predictable than precipitation by roughly 5
to 10 days at many locations over the Indian and Pacific Ocean regions. Other wave types, such as theMJO (not shown),
are also noticeably more predictable in terms of OLR versus precipitation.

As some additional sensitivity tests, beyond considering two quantities (precipitation andOLR), we also analyzed
the impact of using only zonalwavenumbers -15 to 15 in the predictions. In otherwords, recall that only the synoptic and
planetary scales (zonal wavenumbers -15 to 15) have been considered throughout the present paper. Such a choice was
made in part because the predictability of wavenumbers with 10 ≤ |k | ≤ 15 is already low (see Table 1 and Fig. 2) and in
part because the focuswas onCCEWs and theMJO. The predictability of higherwavenumbers ( |k | > 15) is low, but they
could influence the overall predictability if they account for significant variance. To investigate, we now ask the question:
If only zonal wavenumbers -15 to 15 are predicted, and if all higher wavenumbers are predicted to be zero, and if the
prediction is assessed via comparison with the full dataset (including |k | > 15), then what is the resulting prediction
skill? In other words, if only wavenumbers -15 to 15 aremodeled, how skillfully can the full dataset (including |k | > 15)
be predicted? The results are shown in Fig. 8c for the full TRMM rainfall dataset, which includes zonal wavenumbers
-720 to 720. The predictability drops significantly, consistent with the fact that the higher wavenumbers (smaller scales)
contribute an appreciable amount of variance and tend to be less predictable (e.g., see Table 1 and Fig. 2). A similar drop
in predictability is also seen for OLR in Fig. 8d, although the higher resolution comparison is not too drastically different
in its predictability compared to the standard case. OLR predictability may be less sensitive to changes in resolution
because it is generally more smoothly varying than precipitation, or possibly because the higher resolutionOLR data
includes only wavenumbers -72 to 72 (as opposed to the precipitation case which includes wavernumbers -720 to 720
at its highest resolution).
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F IGURE 8 Forecast skills for the non-wave component of (a) TRMMand (b) OLR. Forecast skills for the full signal
including all wavetypes for (c) TRMMand (d) OLR. Red bar is for the forecast skill from the comparison between the
predictions of 31wavenumbers and the 31wavenumbers of the true signal, green bar is for the forecast skill from the
comparison between the predictions of 31wavenumbers and the true signal with all wavenumbers.

6 Discussion

In this section, several additional tests are discussed, along with some additional discussion and comparisons with other
studies.

While the results abovewere obtained using daily data, another version of TRMM rainfall data is also available as
3-hourly data, which offers additional possibilities, such as the resolution ofWIGwaves. As one test with the 3-hourly
data, we compared two cases: one case whereWIGwaves were treated as its ownwave type and another case where
WIGwaves were includedwith the non-wave component. In these tests, for each time available in the time series, a
24-hour running time average was used to average over the effects of the diurnal cycle; note that the result is still a
3-hourly time series, although each data point corresponds to a 24-hour time average. In comparing these two cases,
the results were essentially the same, suggesting that, at least when analyzed after a 24-hour running time average,
theWIGwaves do not contribute a substantial addition to the predictability. This is possibly due to the fact that the
spectrum is red, so the variance of high-frequency waves such as theWIGwaves is a relatively small contribution to the
overall rainfall variance and predictability.

Other sensitivity studies were also carried out to examine different ways of modeling the non-wave components.
Since the non-wave component has a wide range of frequencies, whereas the CCEW types were defined over more
restrictive ranges of wavenumbers and frequencies, onemaywant to examine alternativemethods where the non-wave
component is divided into subcomponents. Two alternative cases were considered. First, the non-wave component
was divided into the two subcomponents of oscillation periods less than 5 days and greater than 5 days. As a second
case, three components were used: periods less than 5 days, between 5 and 10 days, and greater than 10 days. In these
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alternative cases, the forecast skill for the non-wave components are nearly the same as in the standard case in Fig. 2
and Table 1. For the different wavenumbers, the skill is either the same as in the standard case, or sometimes 1 day
better skill, and 2 days better skill for a small number of wavenumbers. Hence the precise forecast skill of the non-wave
component changes a little if different methods are used, but the overall broad conclusions about different wave types
still hold.

It is interesting to make some further comparisons with other prior work. For instance, practical and intrinsic
predictability of multiscale weather and CCEWs over Indian Oceanwere investigated based on theWeather Research
and Forecasting (WRF)Model in Ying and Zhang (2017). They found that the practical predictability limit decreases
rapidly as scale decreases alongwithmany other interesting error analysis and results about the predictability. More
specifically, one of the conclusions in Ying and Zhang (2017) is that precipitation has amore limited predictability in
comparison to other variables, and its practical predictability limit is only 3 days for large scales and < 12 h for the
smaller scales. Both the decreasing predictability for smaller scales and the limited predictability of precipitation are
also reflected in the present paper to some extent. In other work, Neena et al. (2014) estimateMJO predictability to be
20-30 days based on single-member hindcast and 35-45 days based on ensemble-mean hindcasts, respectively. Those
results are somewhat consistent with the 20-30-day predictability of theMJO estimated in the present paper, although
it is difficult to compare in detail due to the different quantities predicted. Neena et al. (2014) focus on predictions
of the real-time multivariate (RMM)MJO index ofWheeler and Hendon (2004), which is based on zonal winds and
OLR, variables that are typically seen to bemore predictable than precipitation, which was the variable of focus in the
present paper. Beyond these examples of prior work, there are also a number of other interesting papers that examine
the practical predictability of current models (e.g.,Wheeler et al., 2017; Kim et al., 2018; Vitart and Robertson, 2018,
and references therein).

7 Conclusion

In this paper, themain goal was to analyze the predictability of CCEWs and theMJO, and to assess how important each
wave type is to the predictability of the full rainfall signal. The methodology utilized observational data as much as
possible, in order to avoid the influence of any particular model’s assumptions about detailed physics parameterizations.
Also, themethodology allowed the forecasts to be decomposed into the contributions from eachwave type (CCEWs,
theMJO, and a background spectrum or non-wave component), and eachwave typewas treated with an independent
forecast model. In this way, one wave type could be considered by itself in isolation, or one wave type could be excluded
tomeasure its influence on the full rainfall signal.

CCEWs and theMJOwere seen to provide a significant source of predictability. If the tropics had no CCEWs nor
MJO, then it would arguably be a tropics where the entire spectrum looks like the non-wave component, or background
spectrum or random scattered thunderstorms (e.g., Hottovy and Stechmann, 2015). Since the non-wave component of
rainfall has a predictability of 0 to 3 days, whereas the the overall predictability of tropical rainfall was estimated to
be roughly 3 to 6 days, over the Indian and Pacific Ocean regions, one could say that CCEWs and theMJO contribute
approximately 3 additional days of predictability. From a slightly different viewpoint, one could say that CCEWs and the
MJO double the range of predictability, from 0–3 days to 3–6 days. These results help to quantify the importance of
CCEWs and theMJO, in terms of rainfall predictability, as an alternativemeasure of importance beyondmore traditional
measures such as climatological variance (e.g., Takayabu, 1994a,b;Wheeler and Kiladis, 1999).

Two factors are perhaps sufficient to explain the importance of eachwave type: decorrelation time and variance.
For the first factor, if a wave type has a long decorrelation time, then it is also likely to be predictable at long lead
times. For the second factor, if a wave type has a large variance—i.e., if it contributes a significant fraction of the overall
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variance—then it is likely to make a significant contribution to the overall predictability as well. In the case of the
non-wave component, which has largest contribution to variance of all mode types, the contribution is to limit the
overall predictability to several days, in opposition to the otherwave types, such as theMJO,which aremore predictable
but which have lesser contributions to the overall variance. The wave-exclusion studies of section 4 helped to quantify
the contributions of each wave type, and to illustrate the importance of the two factors of decorrelation time and
variance.

In a comparison of two datasets, OLR data was seen to bemuchmore predictable than TRMMprecipitation data.
Such a result is consistent with the well-known general property that OLR data is more smoothly varying in space and
time than precipitation data. Here a quantitative comparisonwas given in terms of predictability. OLRwas seen to be
more predictable than rainfall, over many locations in the Indian and Pacific Ocean regions, by approximately 5 to 10
days. Given that rainfall predictability was estimated to be roughly 3 to 6 days, the additional predictability of 5 to 10
days for OLR is quite large. One implication is that it could be difficult to compare and contrast different studies, such as
Dias et al. (2018) who analyzed precipitation and Janiga et al. (2018) who analyzedOLR.

Finally, results were also provided for another question: What are the decay time scales of CCEWs and theMJO?
Observational estimates of the decay time scales were provided here in Table 1, and they can be comparedwith the
decay time scales predicted by theoretical models (e.g., Stechmann andHottovy, 2017; Ogrosky et al., 2019). As a brief
comparison, Stechmann andHottovy (2017) report theoretical values ofMJO decay time scales of roughly 1.5 months
in their standard parameter regime. Here theMJO decay time scale was estimated from precipitation observations to
be roughly 3months. Note, however, that the 3-month estimate was based on fitting the autocorrelation function for
lags of roughly 0 to 30 days (in order to provide an accurate forecast for these relatively short lag times). Instead, if the
autocorrelation function were fit for longer lags, such as 0 to 100 days (see Fig. 1a,d), then an estimate of roughly 1.5
months would bemore appropriate, based on the decay of the autocorrelation function from lag 0 to a lag of 50 or 100
days. As another estimate, if OLR is used instead of precipitation data, we found decay times of roughly 1.7 months
for zonal wavenumbers 1, 2, and 3. In brief, while different methods could lead to different decay time scales from
observational estimates, andwhile different parameter values could lead to different decay time scales from theoretical
models, there is some broad agreement between observations and theory in this preliminary comparison. It would
be interesting in the future tomake amore detailed comparison between theoretical and observational estimates of
CCEWandMJO decay time scales.
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8 graphical abstract

The intrinsic predictability of tropical rainfall is
estimated through several potential sources of
predictability, including the convectively cou-
pled equatorial waves (CCEWs) andMadden-
Julian Oscillation (MJO), using mainly obser-
vational TRMM (Tropical Rainfall Measuring
Mission) data here. In summary, no singlewave
type dominates the predictability of tropical
rainfall; each of themode types (MJO, CCEWs,
and thebackground spectrumornon-wave com-

ponent) has an appreciable contribution, due to variance contribution, length of decorrelation time, or a combination of
these factors.
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